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Abstract

A simple model of a boson-fermion mixture of unpaired fermions plus linear-dispersion-relation Cooper pairs that
includes pair-breaking effects leads to Bose~Einstein condensation for dimensions greater than unity, at critical temperatures
substantially greater than those of the BCS theory of superconductivity, for the same BCS model interaction between the

fermions. © 1998 Published by Elsevier Science B.V.
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1. Introduction

It is widely believed that superconductivity is a kind
of Bose-Einstein (BE) condensate, the idea going
back at least to the 1940’s [1]. Recent experimental
observations [2] of BE condensation (BEC) in ultra-
cold alkali-atom gas clouds, as well as the 1996 No-
bel Prize [3] for the discovery of superfluid phases in
liquid helium-three, have spurred even greater interest
in the phenomenon, e.g., Ref. [4].

We first consider an ideal quantum gas of perma-
nent (i.e., number-conserving) bosons with a gen-
eral dispersion relation in d dimensions. For the more
familiar (i.e., quadratic-dispersion-relation) bosons
there exists a non-zero absolute temperature 7, below
which a macroscopic occupation emerges for a sin-
gle (of infinitely many) quantum state only if d > 2
[5,6]. (The d = 2 case, in fact, displays the same [7]
smooth, singularity-free temperature-dependent spe-

cific heat for either bosons or fermions.) The BE distri-
bution summed over all states yields the total number
of bosons Ng, each of mass m, of which, say Ngo(T)
are in the lowest state £ (= 0 in the thermodynamic
limit). Explicitly

i
ePler—ps) _ 1°

Np=Npo(T) + Y _ (n

k#0

where B = 1/kgT and up < 0 is the chemical poten-
tial. For T > T,, Npo(T) is negligible compared with
Ng; for T < T,, Npo(T) becomes a sizeable fraction
of Ng. Atprecisely T =T,, Npo(T.) >~ Oand ug ~ 0,
while at 7 = 0 the last term in (1) vanishes so that
Ng =Ngp(0) (viz., absence of any exclusion princi-
ple).

The sum in (1) can be converted to an integral over
positive k = |k|, where k is a d-dimensional vector,
as follows. The volume of a hypersphere of radius
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R in d > 0 dimensions is given [8] by V;(R) =
72R? /I (14d/2).For d = 3 this becomes 47 R* /3;
for d = 2 it is the area R? of a circle of radius R; for
d = 1 it is just the “diameter” 2R of a line of “radius”
R; and for d = 0 it is unity. Using this for ¢ > 0 the
summation in (1) over our d-dimensional vector k
becomes

27Td/2 L 4 d—1
> — r(d/2) (27?) /dk" @)

k#0

with the prefactor reducing as it should to 2, 27 and
47 for d = 1, 2 and 3, respectively. Let

e =Cik’, s>0, (3)
be the boson excitation energy as a function of the
wavenumber k, i.e., the bosonic dispersion relation.
For ordinary bosons of mass m in vacuum, s = 2 and
C, = #*/2m, while for a Cooper pair in the Fermi sea
s = 1 as will be discussed below. Defining the bo-
son number density in d dimensions as ng = Np/ LY,
then (1) with T < T, becomes an elementary inte-
gral easily evaluated in terms of the usual Bose inte-
grals [8] (with z = e#s/kT the fugacity)

X
8 (2) = o) P
(oo} Zl
=) 5 o {o). (4)

The last identification holds when o > 1, where (o)
is the Riemann Zeta-function of order ¢. The function
{ (o) < oo for o > 1, while the series g, (1) diverges
foro < 1.

The condensate fraction for 0 < T < 7, in d-
dimensions is the fractional number Ngo(T) /Ng(0)
of bosons in the & = O state. Note that g ~ 0 when
0 < T < T, since from (1) Ngo(T) = (e Pt — 1)~
implies that e##e = Npo(T)/[Npo(T) +1] < 1, and
approaches 1~ over this entire temperature range be-
cause Ngo(T) on cooling grows to a sizeable fraction
of N which is macroscopic. Since Np = Ngo(T) +
Npi>0(T) and Np = Ngp(0), from (1) and (2) one
can write

Nao(T) _
Ngo(0)

1 — 24742 (d/2)ng] !

o<
dk k4!
8 J ePCk — 17
0

Using (4) to evaluate the last integral gives

Npo(T) _

Nso(0) ~

I'(d/s) gass(1)
s(BCy)4/s

- 12977 r(d/2)ng) ™!
(6)

Since Npo(T.)/Npo(0) = 0, one obtains the general
T, formula

_ G [ sI(d/2) (2m)¢ sfd
1=t |20 T (d]5) () "®] ™

Using (7), the condensate fraction (6) then reduces
to

Npo(T) . dfs

Npo(0) I = (T/TH". (8)
These results are formally valid for all 4 > 0 and
s > 0. Note, however, that for 0 < d < s, T, = 0 since
8a4)s(1) =oc ford/s < 1.

The case s = d gives the celebrated harmonic series
gi(ly=1+ % + % -+ ... which diverges. Clearly, for
d < s, the series g,4/,( 1) diverges even more severely.
This implies that BEC does not occur for s-dispersion-
relation bosons for d < s dimensions which is con-
sistent with the well-known fact that BEC does not
occur for quadratic-dispersion-relation bosons for di-
mensions equal or smaller than two. For s = 2, C, =
f?/2m and d = 3, (7) and (8) become

T - 27Tﬁ2né/3 ~ 3.31fizn23/3
T mks(£(3/2)]1%23 mkg
Ngo(T) a2
> =1—(T TL R 9
Npo(0) (T/T.) (9)

since £(3/2) ~ 2.612. These are the familiar results
for BEC in 3D.
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2. Linear-dispersion-relation Cooper-pairs as
bosons

Consider a gas of fermions at zero absolute temper-
ature with kinetic energies €, = i’k?/2m* and €, =
#2k3/2m* interacting pairwise via the BCS model in-
teraction

ka/ = -V if E[.“ - hCl)D < €k, » €k, < EF + ﬁa)Du
=0 otherwise, (10)

with V> 0, Er = h%k%/2m* is the Fermi energy and
hwp the maximum energy of a vibrating-ionic-lattice
phonon, where Vi is the double Fourier transforms
of the interaction in which k = j|k, — k| and k' =
5|k — k3| are relative wavevectors, and m* is the
fermion effective mass.

Without abandoning the phonon mechanism mod-
eled by (10), Refs. [9] suggest that superconductivity
is perhaps a BEC in either 2D or 3D, of excited (i.e.,
nonzero center-of-mass momentum (CMM), AK >
0) “pairons” pre-existing above T.. At T = 0 all
pairons are at rest (K = 0), while a mixture of both
kinds (K=0and K > 0) ispresent for 0 < T< T, a
K = O pairon being an ordinary Cooper pair. Pairons in
d dimensions have “excitation energy” in their (posi-
tive) binding energy Ag given [ 10] for weak coupling
by

Ex = Ay — Ak P a(d)vphK, (1

where [9] a(l) = 1, a(2) = 2/, a(3) = 1/2, the
pair binding energy for K = 0 is 4y = 2hwp/(e¥* —
1), A = g(Er)V being a dimensionless coupling
constant and g(e) is the number of fermionic states
per unit energy for each spin. This result was first
cited in Ref. [11] for 3D. On the other hand, col-
lective modes in a superconductor have indeed been
discussed since the late 1950°s by Bogoliubov, Tol-
machev, Shirkov, Nambu, Anderson, Rickayzen, and
Bardasis and Schrieffer. A review of the early work
by Martin is available [12], as is a more recent treat-
ment by Belkhir and Randeria [ 13]. However, we do
not deal here with “collective modes” but rather with
(nonzero center-of-mass) “Cooper pairs” which can
Bose-Einstein condense while collective modes can-
not. Cooper pairs are entities distinct from collective
modes such as zero-sound phonons or plasmons since

they: (a) are bounded in number (before the thermo-
dynamic limit is taken), and (b) are fixed in num-
ber as they carry a fixed constituent-fermion-number
(namely two), while phonons or plasmons, say, do
not share either property. Pairons in general are con-
sidered “bosonic” even though they do not obey Bose
commutation relations. This is because for a given K
they have indefinite occupation number since for each
K there are, in the thermodynamic limit, an indefinite
number of allowed (relative wavevector) k values, so
that pairons do in fact obey the Bose-Einstein distribu-
tion. Thus, (3) and (7) with s = 1 and C; = a(d) vih
give the weak-coupling 7,-formula in d dimensions
for linear dispersion-relation bosons

a(d)vrh ldth/2y, 14

ks I'((d+1)/2)g4(1)

For the moment we have ignored the fact that pairons
with K > Ko, break up, where Ko, = dy/a(d) bvr is
determined from 4, = 0, in the linear approximation
implied by (11). Numerical calculations for d4¢ [10]
show that Koy is somewhat smaller but of the order
of Ko, where the exact Ag gives Kq through Adg, =
0; i.e., the linear approximation to Ax is quite good.
Since g2(1) = {(2) = #?/6 ~ 1.64493 and g;(1) =
£(3) =~ 1.20206, (12) reduces to the T, formulae

of Ref. [9], T, = 1.244%kg ' vpny? in 2D and 7, =

1.009%iks ~'wny” in 3D. Note from (12) that 7, > 0
ford > 1, aresult of possible relevance in understand-
ing even quasi-1D organic superconductivity [14] as
a BEC. Organic superconductors include (1 + €)D
materials such as the Bechgaard salts, (2 + €)D ma-
terials like the ET salts and fully-3D materials such as
the alkali- and alkaline-earth-doped fullerene crystais
called “fulleride” superconductors [ 15]. The (1 +¢)D
and (2 + €)D compounds consist of coupled parallel
chains and planes, respectively, of atoms.

In d-dimensions, applying (2) to the number of
fermions N = 23", 8(kr ~ k), where 6(x) is the
Heaviside step function, the fermion number density
becomes

d
ne N o fF . (13)
L4 24=27d/2d 1 (d/[2)
On the other hand, the number of bosons Ngo(0)
actually formed at 7 = O through interaction (10) is
precisely g( Er)Aiwp, where [6]

T, = (12)
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L d d9% m* d/2 [dgld/2)—1
8(e) = (2—7?) de (277&2) rdjp)
(

If all fermions were imagined paired, ng/n = 1/2.
However, since ng = g(Ep)fza)D/L“', (13) and (14)
show that in fact

ng/n=dhep/4Er = vd/4, (15)

a fraction much less than 1/2 since typically fiwp <
Er. This allows rewriting (12) as

7. v 1/d
7, =20 [21‘((1){((1)}

(pure unbreakable-pairon gas). (16)

In particular, for d = 2 with a(2) = 2/ and ng/n =
v/2 from (15), we have

. 3 .
I‘_:4_‘_/_6 ?ﬁziﬁ:()j()z\/;
T[;' '7T2 n ’77'2

(pure unbreakable-pairon gas) (2D). (17)

Treating the pairons now as breakable, namely that
Agx < 0 according to (11) for all K > Kp;, implies
from (1) that (2) must really be integrated over K
only up to Kp; in order to avoid d¢ < 0. Thus, for
d>1

d—1
Tl- J eZ/A
—ﬂ;_va(d) (d“l) ('—V—" T_?)»oo

(pure breakable-pairon gas) (18)

while ford = 1, T./Tr = 0 for any A. The infinite result
is expected since for vanishingly small coupling Ko,
also vanishes, meaning that al/l the pairons are K = 0
bosons and the system is BE condensed at all finite 7.

However, unpaired background fermions mixed to-
gether with the breakable pairons will “tame” this di-
verging 7, down to a finite value, as shown below. First
let us remark that the BCS “condensation energy”, i.c.,
the energy shift of the many-fermion ground state en-
ergy in the superconducting, E,, relative to the normal,
E,, state, ultimately reduces [16] to

ZﬁwD
EA — E,, = —g(EF)ha)Dgﬂ—"-T

= =Npo(0)do — — 38(Ep) &, (19)

where
A— ZﬁwD e 1/

A—0
is the zero temperature BCS gap energy. The final
term is familiar, but the term before that is not: it
shows that the energy shift is just a superposition of
Npo(0) point pairon binding energies 4y, and valid
for any coupling. Note the crucial distinction between
4y and A leading to this simple result which suggests
the model to be treated now.

3. Simple boson—fermion model

Consider an ideal mixture of unpaired fermions
and breakable pairons with linear dispersion rela-
tion for which thermal pair-breaking is explicitly
allowed. The total number of fermions N consists of
N non-interacting, i.e., unpairable fermions and N,
interacting or pairable ones, namely

N =N+ Na. (20)

Specifically, at T = 0 N is just the number of fermions
below the spherical interaction shell in k-space of
thickness fiwp, as implied by (10), while N, is the
number within the shell. Unpairable fermions obey the
usual Fermi-Dirac distribution with fermionic chem-
ical potential u, while the pairable ones at any 7" are

,lt"*"ﬁh)n d
_ g(e)de
Na(T) =2 / e
pu—hap

pthop

£

~2g(p) BT =2g(p) hwp,

p—Fhaop

(21)

which in 2D is independent of 7" and exact since g(&)
is constant. Moreover, if fiwp/p < 1, Eq. (21) is a
good approximation for d # 2. The relevant number
equation for the pairable fermions is

No(T) = Noo(T) + 2[Npo(T) + Nppck<kn (T) ],
(22)

where Noo(T) is the number of pairable but unpaired
fermions. Let Np x~o(T) denote the total number of
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unbreakable bosonic pairs, considered before, with
center-of-mass momentum (CMM) K > 0, i.e.,

Npx>o(T) =Y  Npx(T)
K>0

= Npock<ky (T) + Npxy<x(T),

while Ngo(T) is the number of bosonic Cooper pairs
with zero CMM.
A simple boson-fermion model follows on identi-

fying
N2o(T) = 2NB ko <K<k {T) s (23)

namely, by asserting that the pairable but unpaired
fermions are precisely the broken bosons with Koy <
K < Kpnax in the pure unbreakable-pairon gas model
considered before, where K = 2kpv/1 + v is the
largest value of K beyond which the interaction (10)
vanishes [17]. Note that (23) vanishes as 7 — 0 so
that N2(0) = 2Ng(0), or that at T = 0 all pairable
fermions are paired. From Eqs. (21) and (23) the
number equation (22) becomes

glp)hwp = Npo(0)
= Npo(T) + Npock<ky (T) + Np ko <k<kma (T) -
(24)

Hence, the number equation of this breakable-boson-
fermion-mixture model is almost equivalent to that of
the model [9] of a pure gas of unbreakable linear-
dispersion-relation bosons. These have a condensate
fraction (8) for s = 1, and a critical temperature T,
obtainable from Ngo(T.)/Npo(0) = 0 which lead
precisely to (12). Using the same techniques as lead
to (7), the temperature Tg"i* at which Ngo(T) ~ Oand
up =~ 0 in (24) satisfies a transcendental equation,
as opposed to the algebraic one that gave (7). The
transcendental equation can be manipulated to give the
expansion

[4a(d)v/1 + v Tp/Tm*]4!
d r(d){(d)

™ =Tc{1 +

x exp [—4a(d)V1 + vTr/T™] +"'}’ (25)

where 7 is given by (16), assuming u o~ E in any d,
and v < | ford # 2. In fact, using the 2D expression
w(T)/Ep = 1—(T/Tp) In[14e~#D/kT) 18] at T =

0.1 aceivseneresesed 0218

0.0117
L
- 10° N ’r'
~ ’ / BCS “phonon barrer
o 101,/ R !
- ]
10° _

10% E
ot
Fig. |. Full curves refer to BEC critical temperature 7, (in units
of Tr) in d dimensions according to (7) with s = 2, dashed

curves to (12), where ng/n = d@p/4Tr, m = 2m™ as explained
in text. Thin and thick curves refer to ®p/Tr = 0.05 and 0.001,
respectively. The dotted curve refers to (7 ) with s =2, ng/n = %
and m = 2m™, namely all fermions imagined paired, the value of
0.218 at d = 3 being a familiar result. Light and dark crosshatch-
ings comprise Uemura plot |[19] data for exotic and conventional
superconductors, respectively. The thin horizontal line marked
BCS “phonon barrier” corresponds to the BCS 7.-formula with
A < 1/2, namely 7./Tr < (1.13e™2) @p/Tr ~ 0.1536p/Tr
for the case @p/Tr = 1077,

T, as given by (17) for v = 0.05, u(7,.) ~ 0.9997E.
The correction term in (25) is minute: being about
2x10~7in 2D using (17) with » = 0.05, and about 7 x
107" in 3D using (16) with » = 0.001. Thus, T™* ~
T, the critical temperature for the pure unbreakable-
boson gas. Curiously, in contrast to the infinite T, ( 18)
of a pure boson gas of breakable pairons, the mere
presence of background unpaired fermions has driven
T, down to a finite value, in spite of all pairons in
the mixture for weak coupling still being only X =0
bosons.

Fig. 1 displays T, /Tr vs. 1 £ d < 3 for: (a) “ordi-
nary” quadratic-dispersion-relation bosons according
to (3) with s =2, m =2m* and ng/n = Opd/4Tr =
vd/4 for v = 0.05 (thin full curve), and » = 0.001
(thick full curve), as well as for ng/n = 1/2 (all
fermions imagined paired) (dotted curve); (b) linear-
dispersion-relation Cooper pairons according to (3)
with s = I, v = 0.05 (thin dashed curve) and v =
0.001 (thick dashed curve). Fig. 2 exhibits the 2D
critical temperature Tcmi" ~ T, (scaled in terms of Tr)
for the simple boson—fermion model just discussed,
which is really just (16) for d =2 (full curve), com-
pared with the maximal BCS result 7, = 1.13@pe~'/*
for A = 1/2, both as function of v = @p /Tr. Empiri-
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0.16 T L A s s e T —— T

0.08 r

T,/ T

0.04

0 . ——— .
10° 10° 10

8p/ Tg

Fig. 2. Scaled critical BEC temperature 7./Tr vs. &p/Tr for
the 2D simple boson-fermion model (equivalent to the 2D value
in {(17) as discussed in text, for d = 2) (full curve). The dashed
curve is the maximal BCS result T, = 1.13@p e~ /A for A = 1/2.
The rectangle comprises empirical data for the cuprate supercon-
ductors [ 19].

cal [19,20] cuprate T, values lie within the rectangle
shown.

Lower predicted 7. values are expected from two
refinements now under study: (a) reductions in ng due
to realistic non-spherical Fermi surfaces where “nest-
ing” of some parts of the surface in general occur, thus
necessarily reducing the number of pairable fermions
and hence of pairs, and (b) interaction between (ex-
tended) pairons is expected to lower the T, as oc-
curs say in liquid helium-four where interactions re-
duce [21] 7, by almost 30% from the ideal gas value.

4. Conclusions

Three BEC models have been discussed for a d-
dimensional many-fermion system with a BCS model
interaction: (a) a pure boson gas of unbreakable
linear-dispersion Cooper pairons; (b) the same with
breakable pairons; and (c) a (breakable) boson-
fermion gas mixture in a simple model. Model (b)
of breakable pairons in weak-coupling gives an infi-
nite BEC critical temperature 7, as expected since
all bosons are in the zero center-of-mass-momentum
state and thus BE condensed at all temperatures. Mix-
ing those bosons with background unpaired fermions,
model (c), however, gives finite T, values which are
substantially higher than those of BCS theory for the
same interaction. In contrast to BCS theory, however,

pairs are allowed to pre-exist above T, before the
weak-coupling limit is taken.

This same breakable-boson—fermion-mixture model
might also serve as a useful zero-order picture of the
superfluid transition [3] in liquid helium-three where
the interaction is not (10) but rather an appropriate
interatomic potential, e.g., [22], that bind a certain
fraction of the fermions into bosonic Cooper pairs.
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