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Abstract

The binding energy of a Cooper pair formed with the BCS model interaction potential is obtained numerically for all
Ž .coupling in two and three dimensions for all non-zero center-of-mass momentum CMM of the pair. The pair breaks up for

very small CMM, at most about four orders of magnitude smaller than the maximum CMM allowed by the BCS model
interaction, and its binding energy is remarkably linear over the entire range of the CMM up to breakup. q 1998 Elsevier
Science B.V.

PACS: 03.65.G; 71.10.Li; 05.30.Fk
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1. Introduction

Pairing of fermions in superconductivity theories is commonly considered to be only among partners of equal
Ž .and opposite linear momenta, i.e., into pairs with zero net center-of-mass momentum CMM . We investigate

non-zero CMM pairing, and in particular the dependence on the CMM of the pair binding energy, mentioned in
w x Ž .Schrieffer’s 1 monograph on superconductivity as being linear in the long wavelength small CMM limit, in

w xcontrast to the expected 2 quadratic behaviour of a particle moving freely in vacuum. In this paper we first
review the derivation of the Cooper pair eigenvalue equation for the pair binding energy as a function of its
CMM. Next, this equation is reduced in two and three dimensions to double-integral equations that are solvable
analytically for small CMM and numerically for arbitrary CMM. Finally, Cooper pairs are distinguished and
compared with several familiar ‘‘collective modes’’.
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2. Non-zero center-of-mass momentum pairing

Ž . w xBesides the rest energy, the total energy E of a Cooper pair 3 of fermions of momentum "k and "kK 1 2
Ž .and with center-of-mass momentum CMM "K interacting pairwise and immersed in a background of Ny2

Ž .inert spectator fermions in a spherical Fermi surface in k-space of radius k is obtained as follows. Let theF
1 Ž .relative and center-of-mass coordinates be r'r yr and R' r qr , respectively. The corresponding1 2 1 22

wave vectors are related through

1Ksk qk , ks k yk . 1Ž . Ž .1 2 1 22

Define the kinetic energy operators

"
2

"
2

"
2

2 2 2ˆ ˆ ˆ ˆ ˆT sy = ; T qT sT qT sy = y = , 2Ž .i i 1 2 r R r R
) ) )2m m 4m

with m) the effective fermion mass. The eigenvalue equation for the total energy E is thenK

ˆ ˆ ˆT qT qV C sE C , 3Ž .ž /r R K K K K

where

C sc r F R , 4Ž . Ž . Ž .K K

F R sei KPR 5Ž . Ž .K

and

ˆ X X XV C s d r V r ,r c r F R , 6Ž . Ž . Ž . Ž .HK K K K

Ž X. Ž .with V r,r a general non-local pair interaction. Expanding c r in a complete set of plane-wave states,K

c r s C ei kPr 7Ž . Ž .Ý k
k

the Cooper problem consists in setting

1< <C s0 for all k , k -k or k" K -k . 8Ž .k 1 2 F F2

It is this restriction that distinguishes Cooper’s from Schrodinger’s equation, which is for two particles in¨
vacuum while the Cooper problem refers to two particles in a medium of Ny2 other fermions satisfying the

Ž . Ž .Pauli Exclusion Principle. Combining Eqs. 2 – 8 gives

2 2
" " XX X2 2 i kPr i kPr i kPr i KPRk q K e q d r V r ,r e yE e C e s0. 9Ž . Ž .HÝ K K k

) )ž /m 4mk

2 2 ) Ž . yi kX
Pr Ž . dPutting e '" l r2m , multiplying Eq. 9 by e , integrating over r, using Hd r exp iQPr sL dl Q ,0

where Ld is the system volume in d dimensions, and cancelling the ei kPR, leaves

1 K
X X X X2e q e C q V C sE C 10Ž .Ž . Ýk K k k , k k K k2

k

where

1 X XX XK yi k Pr i kPr
XV ' d r d r e V r ,r e . 11Ž . Ž .H Hk , k KdL
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The BCS model interaction to be used here assumes that

X1 12 2 2 2< < < <( (yVu 2 k qk yK if k - k" K , k " K - k qkK ž /F D F F D2 2
XV s 12Ž .k , k ½ 0 otherwise

with V)0, and "v '"
2 k 2 r2m) the maximum energy of a vibrating ionic lattice phonon. The step functionD D

2 2(reflects the fact that the interaction operates only if 0FKF2 k qk . This means that two fermions interactF D

with a constant attraction yV when the tip of their relative momentum wavevector k points anywhere inside
Ž . Ž .the overlap volume in k-space of the two spherical shells in Fig. 1. Using Eq. 12 , Eq. 10 simplifies to

X2 2 ) 2 2
X(2e yE q" K r4m C sVu 2 k qk yK C 'yA 13Ž .Ž . Ýž /k K k F D k K

Xk

Ž .with the prime on the summation sign denoting the restrictions over k in Eq. 12 . Solving for C leads tok

yAK
C s . 14Ž .k 2 2 )2e yE q" K r4mk K

2 2Ž . Ž .(Multiplying this by Vu 2 k qk yK and summing over k, restricted as in Eq. 12 , givesF D
X y12 2 2 2 )(1sVu 2 k qk yK 2e yE q" K r4m . 15Ž .Ž .Ýž /F D k K

k

Ž .Setting the total energy eigenvalue E '2 E yD , the pair is bound if D )0 and Eq. 15 becomes anK F K K
Ž .eigenvalue equation for the pair positive binding energy D . For Ks0 it becomesK

g e deŽ .X E q" vF Dy11sV 2e y2 E qD sV 16Ž . Ž .Ý Hk F 0 2ey2 E qDE F 0Fk

from which one immediately obtains the familiar result

2"v D y2rlD s ™ 2"v e 17Ž .0 D2rle y1 l™0

Ž . Ž .for the Ks0 pair binding energy, where l'g E V is a dimensionless coupling constant and g E is theF F
Ž . Ž .density of fermionic states for each spin evaluated at the Fermi surface. The equality in Eq. 17 is exact in 2D

Ž . Ž .for all coupling—as well as in 1D or 3D provided that "v <E so that g e fg E , a constant that can beD F F
Ž .taken outside the integral in Eq. 16 .

Ž . Ž .Note that since Eq. 17 yields only D F11 K for lF1r2 and Q f300 K compared with the total rest0 D

mass energy of two electrons which is ;1010 K, a Cooper pair is very weakly bound indeed when compared,
say, with the deuteron for which these two energies are, respectively, about 2 and 2000 MeV, or with the
pi-meson as made up of a ‘‘down’’ and ‘‘up’’ quark where the two energies are, respectively 560 and 700 MeV.

Ž .Fig. 1. Cross-section of overlap volume in k-space shading where the tip of the relative wave vector k must point for the attractive BCS
Ž .model interaction Eq. 12 to be non-zero, for a Cooper pair of CMM "K.
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Ž . y2Fig. 2. Exact 2D Cooper pair dispersion relation calculated numerically from Eq. 18 for ls0.5 and n s10 , compared with its linear
Ž .approximation Eq. 19 .

Ž . Ž .For a two-dimensional system Eq. 15 reduces see Appendix A to

4l 2 2 1r2 1r2 y1pr2 w Ž . x Ž .1qnyk 1qn sin f yk 1qn cos f 2 2˜1s df dj j D q2 1qn k y2q2j , 18Ž . Ž .Ž .H H k
2 2 1r2 1r2p w Ž . x Ž .0 1yk 1qn sin f qk 1qn cos f

2 ) 2 2 2 1r2 ˜Ž . Ž .where g E 'L m r2p" the 2D density of states; j'krk ; k'Kr2 k qk ; D 'D rE ; andF F F D k K F
2 2 Ž .n'"v rE sk rk . For small K , one obtains analytically from Eq. 18D F D F

1r2 2rl1qn qe2 Ž .
2D ™ D y "Õ KqO K 19Ž . Ž .K 0 F2rl

p e y1K™0

which for weak coupling l™0 reduces to

2
2D ™ D y "Õ KqO K . 20Ž . Ž .K 0 F

pK™0

Ž .Fig. 2 compares D in the linear approximation Eq. 19 to the exact dispersion relation obtained numericallyK
Ž . y2from Eq. 18 , for ls0.5 and ns10 . Indeed, the linear approximation is very good for moderately small l

and n over the entire range of K values for which D G0. Pair breakup, specifically D -0, occurs at aK K
2 2(relative small value of K , about four orders of magnitude smaller than the maximum value 2 k qk allowedF D

Ž .by the interaction Eq. 12 for the values of l and n exhibited in the figures.
3 2 3 ) 3Ž . Ž . Ž .(In three dimensions, assuming n<1 and the 3D density of states g ´ s L rp " m ´r2 fg E ,F

Ž . Ž .Eq. 15 becomes see Appendix A

2 2 1r2 1r2 y1pr2 w Ž . x Ž .1qnyk 1qn sin f yk 1qn cos f 2 2 2˜1s2l df sin f dj j D q2 1qn k y2q2j 21Ž . Ž .H H k
2 2 1r2 1r2w Ž . x Ž .0 1yk 1qn sin f qk 1qn cos f

˜ y2rlŽ .which for small K , assuming from Eq. 17 the weak coupling expression D f2n e which is very accurate0
Ž .for the typical range of l and n values see Fig. 4 below , gives

y2rl y2rl y2rl'1yn e 2e qn e q1Ž .
4r lD ™ D yeK 0 2rl 2rl y2rl'K™0 � 4e n ln Aq ln B qn ln AB q2e 1yn eŽ .

=
1

2
"Õ KqO K , 22Ž . Ž .F2rl 'e q1y 1qnŽ .
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Ž . y2Fig. 3. Exact 3D Cooper pair dispersion relation calculated numerically from Eq. 21 for ls0.5 and n s10 , compared with its linear
Ž .approximation Eq. 22 .

y 2r l y 2r l y 2r l' ' '' 'Ž . Ž . Ž .where A ' 1 q n y 1 y n e r 1 q n q 1 y n e , and B ' 1 q 1 y n e r
y2rl'Ž . Ž . w x1y 1yn e . For n<1, l™0 and K™0, Eq. 22 reduces to the result cited in Ref. 1 , namely

1 2D ™ D y "Õ KqO K . 23Ž . Ž .K 0 F2
K™0

Results in 3D are qualitatively similar to those in 2D and are illustrated in Fig. 3.
Ž .In Fig. 4 are compared the weak coupling asymptotic Cooper pair binding energy in Eq. 17 to the exact

value D for a range of n values and for several l values. In 2D, D is given exactly by the equality in Eq.0 0
Ž . Ž .17 , while for 3D it was obtained numerically by solving Eq. 21 , with ks0. The two are seen to agree very

y3 Ž .well for small l for the relevant empirical values of nf10 in 3D, at least for conventional elemental
superconductors, and for all n in 2D.

3. Collective modes in a superconductor

Collective modes in a superconductor have indeed been discussed since the late 1950s by Nambu, Anderson,
w xRickayzen, and Bardasis and Schrieffer. A review of the early work by Martin is available 6 , as is a more

y2 rl Ž .Fig. 4. Fractional deviation of the weak coupling asymptotic value 2"v e in Eq. 17 of the zero-CMM Cooper pair binding energy,D
Ž . Ž .to its exact value D , as function of n fQ rT for three values of l, in both 2D thin straight lines and 3D thick curves . In 2D the0 D F

Ž . Ž .exact D is given by the equality in Eq. 17 for any n . In 3D D must be obtained numerically from Eq. 21 with k s0. For 2D-like0 0
w x Ž . y3cuprate superconductors n is empirically 4 0.03 to 0.07; for 3D-like conventional elemental superconductors n f10 .
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Ž . Ž . Ž . Ž .Fig. 5. Dispersion curves for: the plasmon Eq. 24 dashed ; the weak coupling repulsive interaction zero-sound phonon Eq. 25
Ž . Ž . Ž . Ž .dot-dashed ; the weak coupling attractive interaction Anderson mode Eq. 28 dotted ; and the weak coupling 3D Cooper pair dispersion

Ž . Ž .D y D from Eq. 23 full curve .0 K

w xrecent treatment by Belkhir and Randeria 7 . However, we do not deal here with ‘‘collective modes’’ but rather
Ž .with non-zero center-of-mass ‘‘Cooper pairs’’ which can Bose–Einstein condense while collective modes

cannot. Cooper pairs are entities distinct from collective modes such as zero-sound phonons or plasmons since
Ž . Ž . Ž .they: a are bounded in number before the thermodynamic limit is taken , and b are fixed in number as they

Ž .carry a fixed constituent fermion number namely two , while phonons or plasmons, say, do not share either
Ž .property. Fig. 5 compares and contrasts them in the long wavelength limit K™0 . The dashed quadratic curve

Ž w x .is the plasmon dispersion relation see Ref. 5 , p. 180 , for an electron gas
29

v sv 1q KrK q . . . 24Ž . Ž .K P TF10

Ž . wŽ . .xy1r3 Ž 2 2 .in the ‘‘ring RPA approximation’’ valid for r 'r ra ' 4pr3 n r " rme <1, where r is ans 0 0 0

average electron spacing, n'k 3r3p
2 being the electron number density, a the first Bohr radius "

2rme2 withF 0
2(m the electron mass, while the plasmon frequency is v ' 4pne rm and the ‘‘Thomas–Fermi inverseP

2 2 2(screening length’’ is K ' 6pne rE with E '" k r2m as before. The dot-dashed curve is the weakTF F F F
Ž w x .coupling zero-sound phonon dispersion Ref. 5 , p. 183 , curve for repulsive interactions between fermions at

Ts0, and is given by
2 2wv , 1q2 exp y 2p " rmk n 0 q2 Õ K 25Ž . Ž .� 4K F F

Ž . 2 Ž . 3 yi qPr Ž . Ž . Ž .for n 0 <" rmk , where n q 'Hd r e V r and V r the repulsive interparticle interaction potential.F

The slope of this straight line rises as coupling is increased, and assumes the form
1r22 2v , n 0 r3p " rmk Õ K 26Ž . Ž .Ž .K F F

Ž . 2 Ž .for n 0 4" rmk . Note that Eq. 26 can be rewritten asF

n 0Ž .
2 2 2v , Õ K 27Ž .K F2 23p " rmkŽ .F

2 Ž .and becomes the plasmon frequency squared v if n K is taken as the Fourier integral of the CoulombP

interaction, 4p e2rK 2. On the other hand, for attractive interactions V-0 between the fermions one has the
w xso-called ‘‘Anderson mode’’ 6 ,

1
< <v , 1y4 g E V Õ K 28Ž . Ž .K F F'3

in the weak coupling limit, which is shown as the dotted curve in Fig. 5. Finally, the weak coupling Cooper pair
Ž . Ž .dispersion relation D yD from Eq. 23 is represented by the full curve. In 2D, the Anderson mode Eq. 280 K
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' 'w xcarries 7 a factor 1r 2 instead of the 1r 3 of 3D; it thus also lies higher than the 2D Cooper pair dispersion
'Ž .relation Eq. 20 since 1r 2 )2rp.

Ž .Of possible interest is that the quadratic correction term in Eq. 19 just after the linear term diverges
exponentially like e2r l in the limit of zero coupling, as was verified by computer-algebra expansion of D inK

Ž .powers of K in 2D. This suggests that Eq. 19 does not possess a power expansion in K beyond and including
the K 2 term for all coupling. An analogous divergence, though much weaker, also occurs with the plasmon

Ž .dispersion relation Eq. 24 , rewritten explicitly as

9p "
2

2v sv 1q K q . . . 29Ž .K P
) 2ž /40 m e kF

in the limit of weak coupling e2 ™0.

4. Conclusions

The Cooper pair binding energy for the BCS model interaction acting pairwise between fermions decreases
Ž .almost linearly to zero with the pair center-of-mass momentum CMM as was determined numerically for all

coupling from the Cooper eigenvalue equation in both two and three dimensions. This linear behaviour contrasts
with the quadratic dispersion relation of a bound composite particle moving in vacuum, e.g., a deuteron.
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Appendix A

Ž . Ž .We sketch the derivation of working Eq. 18 in 2D and Eq. 21 in 3D, from the Cooper pair eigenvalue Eq.
Ž .15 . Since E '2 E yD , the latter equation can be written in d-dimensions asK F K

d XL d k
1sV A.1Ž .H 2 2 2 ) 2 2 )ž /2p " k yk rm qD q" K r4mŽ .F K

Ž .where the prime on the integral sign again denotes the restrictions in Eq. 12 . These restrictions are identical in
two and three dimensions, and can be written as

1 2 12 2 2< <k - ky K sk ykK cos fq K , A.2Ž .F 2 4

1 2 12 2 2 2< <k qk ) kq K sk qkK cos fq K A.3Ž .F D 2 4

with f the angle between k and K, since it can be limited to values between 0 and pr2 because of symmetry.
Ž . Ž .Manipulating Eqs. A.2 and A.3 we obtain

12 2 2k ykK cos fq K yk )0, A.4Ž .F4

12 2 2 2k qkK cos fq K yk yk -0. A.5Ž .F D4
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Ž .These conditions can be studied separately but must be satisfied simultaneously. The left side of Eq. A.5 is an
increasing parabola for kG0, and so is equivalent to

1r21 12 2 2 2k-k ' k qk y K sin f y K cos f , A.6Ž .Ž .max F D 4 2

Ž .where k is found by requiring the left side of Eq. A.5 to be zero and choosing the positive solution. Themax
1Ž .left side of Eq. A.4 corresponds to a parabola with a minimum at ks K cos f. For this value of k the left2

1 12 2 2 2 2 2Ž . Ž .hand side of Eq. A.4 becomes K sin fyk . If k - K sin f Eq. A.4 is satisfied for all kG0; otherwiseF F4 4

we must consider the range of k values making the parabola positive. This parabola intersects with the x-axis at
the points

1r21 12 2 2k 'y k y K sin f q K cos f , A.7Ž .Ž .0 F 4 2

1r21 12 2 2k ' k y K sin f q K cos f . A.8Ž .Ž .min F 4 2

2 2 2 2 Ž .The intersection point with the y-axis is K r4yk . So if k )K r4 the restriction Eq. A.4 becomesF F
Ž .k)k ; otherwise k)k or k-k . Thus, Eq. A.4 can be rewritten asmin min 0

12 2 20-k-` if k - K sin f ,F 4

1 12 2 2 2 2k)k if k ) K sin f , and k ) K , A.9Ž .min F F4 4

1 12 2 2 2 2k)k or k-k if k ) K sin f , and k - K .min 0 F F4 4

Ž .Taking into account that pairs break up for very small CMM Figs. 2 and 3 , we consider only the restriction
Ž .k)k , which together with Eq. A.6 givesmin

k -k-k , 0-f-pr2. A.10Ž .min max

Note that for larger values of K there exists a minimum value of f below which k )k . Using themin max
Ž . Ž .dimensionless variables defined below Eq. 18 , the ds2 and ds3 expressions for g E given in the text,F

Ž . Ž . Ž .and the restrictions Eq. A.10 , one finally obtains Eq. 18 for ds2 and Eq. 21 for ds3.
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