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Abstract

Bose–Einstein condensation temperatures T for non-interacting bosons in square arrays of finite-length filamentsB

arranged on a square lattice are calculated both by numerical methods and by use of a simple approximate theory which is
appropriate in certain parameter ranges. It is assumed that both longitudinal and transverse motion can be described by
constant effective masses M and M , but maximum wave vectors are introduced related to the filament lattice constant orL T

Ž .1r2to the filament separation. For large numbers of filaments a gradual crossover from T A 1rM M to T AB L T B
Ž 2.1r31rM M is found as parameters are varied to make k T change from being larger than to smaller than the maximumL T B B

transverse boson energy, W . For k T )W it is shown that, in the absence of disorder, the number of filaments requiredT B B T

to bring T up to a given fraction of its value for large numbers of filaments is approximately proportional to the filamentB
Ž .1r2lengths and to M rM . It is argued that disorder will act to flatten off any length dependence of this number aboveL T

some length dependent on the amount of disorder. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is no Bose–Einstein condensation of non-
interacting bosons with a quadratic dispersion rela-
tion in a one-dimensional system in the limit of

w xinfinite lengths 1 . However, as will be verified by
calculations in this paper, condensation in the weak

w xsense 2 of a temperature below which the occupa-
tion number of the ground state starts to become
macroscopic, i.e., of the same order as the number of
bosons, can occur in a finite-length one-dimensional

) Corresponding author. Present address: 56, Portland Road,
Tottenham, London N15 4SX, UK. E-mail: d.eagles@ic.ac.uk.

system because of finite separations between succes-
sive energy levels, particularly between the states
with the lowest and next-lowest energies.

In this paper we use the word filament to denote a
quasi one-dimensional region in which current carri-
ers can move along the region’s length in a one-di-
mensional band, but are in the lowest-energy quan-
tum state for transverse motion at all temperatures of
interest. If pairs of electrons in such a filament are
strongly bound, then a first approximate way to treat
such a system could be to regard it as an ideal Bose
gas in one dimension, although any interaction be-
tween pairs may have more serious consequences
than in bulk material. This is certainly the case for

w xfermions in one-dimensional systems 3 .
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Ž .PII S0921-4534 98 00103-8



( )D.M. EaglesrPhysica C 301 1998 165–172166

The main calculations of this paper are concerned
with the problem of what happens in a square array
of finite-length filaments on a simple square lattice,
with the effect of overlaps of wave functions of
different filaments approximated by inclusion of a
transverse boson mass. Wave vectors in the longitu-
dinal and transverse directions are assumed to be

Ž . Ž .limited by pra and pra , where a is theL T L

lattice constant in the direction of the filament length,
and a is the separation between nearest-neighbourT

filaments. A particular case where longitudinal and
transverse masses are equal and a and a tend toL T

zero is equivalent to the problem of bosons in a
rectangular box with infinite wall heights studied

w xpreviously by other authors 4 .
First we present numerical results for the conden-

sation temperature T as a function of numbers ofB

filaments for a few representative cases. These cases
cover a range of ratios of longitudinal to transverse
masses between 10y1 and 10y3. Transverse boson
masses can be expected to be fairly heavy if adjacent
filaments are not too close.

After presentation of the numerical results, we
show how these may be obtained approximately in
some parameter ranges by analytical calculations
which approximate the Bose–Einstein occupation
factor by a term inversely proportional to the differ-
ence in energy between those excited states which
play a significant part in the problem and the ground
state, and then approximate sums over longitudinal
wave vectors by integrals except for the case of the
states with lowest energy with respect to transverse
motion.

The work presented here could be applicable to
arrays of quantum wires of doped semiconductors if
they become superconducting. If so, then at low
carrier concentrations, a Bose-gas model may be
appropriate. Superconducting transition temperatures
as high as about 50 K for plasmon-induced pairing
have been predicted for quantum wells in CdS at an

w xoptimum carrier concentration 5 .
Another semiconductor of interest in this connec-

tion is SrTiO , since it is superconducting at lower3

carrier concentrations than other known supercon-
ducting semiconductors. In SrTiO with 3% of Ti3

replaced by Zr, there are strong indications that
superconductivity on the Bose-gas side of the BCS–
Bose gas transition has been seen in one ceramic

w xsample with a very low carrier concentration 6–8
of the order of 1015 cmy3. This observation gave
qualitative confirmation of predictions made many
years earlier for this material, although the pairing
temperature inferred from experiments is about
twenty times smaller than was predicted with the

w xmodel used before 9 .
The most promising way to make suitably ori-

ented arrays of conducting filaments would be to use
w xvery narrow ion beams travelling parallel to a 111

direction of a thin SrTiO sample. Ion beams which3

can be focused on areas with dimensions as small as
8 nm with a half angle of 0.15 mrad were reported

w xseveral years ago 10 . Even for such a small beam
angle it would probably be necessary to work with
films in order to get filaments with a fairly uniform
diameter. For a filament of diameter 8 nm, the
largest carrier concentration which will permit all
carriers to be in the lowest quantum state with

w xrespect to transverse motion can be calculated 11 ,
for a three-valley model for the conduction band, to
be 2=1019 cmy3, implying a linear concentration
per filament of about 1.3=107 cmy1. Probably,
considerably lower carrier concentrations would be
needed for the ratio of pair diameters in the filaments
to the pair separation to become smaller than unity
so that the Bose-gas regime could be approached.

Another use of the results presented here may be
connected with assessment of the validity of a high-
drift-velocity model developed by the present author
w x12–15 to give a possible explanation of claims of
room-temperature superconductivity in narrow chan-
nels through films of oxidised atactic polypropylene
w x w x16–21 and polydimethylsiloxane 21 . It is ex-
pected that further discussion of this topic will be
presented in a later paper.

Some numerical results for square arrays of fila-
ments are shown in Section 2, and a simplified
approximate theory for some ranges of parameters of
interest is presented in Section 3. Conjectures about
effects of disorder are made in Section 4.

2. Basic equations and numerical calculations for
square arrays

We consider non-interacting bosons on a square
array of filaments of length L on a simple square
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lattice, with the sides of the square of length D. We
measure the length L and the transverse dimension
D from points half a lattice constant a beyond theL

end lattice points of a filament, and half the nearest-
neighbour interfilament distance a beyond the out-T

ermost filament rows. We suppose that the bosons
have masses M and M in the filament directionL T

and perpendicular to this, and call these longitudinal
and transverse masses. We assume boundary condi-
tions such that the boson wave functions vanish at
the ends of the filaments and at the sides of the
square. The boson states can be characterised by
integers i,j,k, where i,j run from 1 to n , withT

n sDra , and k runs from 1 to n , with n sT T L L

Lra . The wave functions are proportional toL
Ž . Ž . Ž . Ž . Ž . Žu x u y u z sin ip xrD sin jp yrD sin kp zT T L
.rD , where u and u are periodic functions withT L

Ž .periods a and a . The energy E i,j,k of the stateT L B
Ž . Ž .i,j,k measured from the lowest energy state 1,1,1
is given by

E i , j,k sE i2 q j2 y2 qE k 2 y1 , 1Ž . Ž . Ž .Ž .B T L

where

22E s " r2 M prD ,Ž .Ž .T T
2Ž .

22E s " r2 M prL .Ž .Ž .L L

Condensation into the lowest-energy state cannot
take place if the sum of the boson occupation factors
over all states except the lowest for a chemical
potential situated at the energy of the lowest state is
greater than the total number of bosons, N . BelowB

the temperature at which this sum is equal to N , theB

occupation of the ground state will start to become
macroscopic, i.e., of the order of N , and so theB

equality of the sum with N determines the conden-B
w xsation temperature T in this weak sense 2 . For anB

average linear concentration c of bosons per fila-
ment, this criterion can be written as

n nT L 1
2scLn ,Ý Ý Texp E i , j,k rk T y1Ž .B B Bi , js1 ksk0

3Ž .

where k s2 if is js1 and k s1 otherwise, and0 0

n sDra , n sLra 4Ž .T T L L

are the numbers of different wave numbers in the
transverse and longitudinal directions, respectively.

We have written a computer programme to calcu-
Ž .late the ratio k T rE cL with input required be-B B L
Ž .ing values of: i cL, the average number of bosons
Ž .per filament; ii the ratio r given by

rs "
2r2 M a2 r "

2r2 M L2 , 5Ž .Ž . Ž .T T L

representing the ratio of the maximum transverse
energy to the small characteristic longitudinal energy

Ž .E depending on the filament length; iii n , theL T

number of filaments in each row of the array; and
Ž .iv n , the number of lattice constants per filament.L

The results are insensitive to n provided that it isL

large.
Ž .In Figs. 1–3, we plot the ratio k T rE cL as aB B L

function of n on a log–log scale for cLs2000,T
Ž . Ž .Lra s1000, n s4000, and values of M rMT L T L

varying from 103 to 10.
For values of cL and n used for the numericalL

work for Figs. 1–3, the condensation temperature for
a single filament satisfies k T f1.38 E cL, withB B L

Ž .E given by Eq. 2 , and it is found that, forL

maximum transverse boson energies small compared
with k T , the enhancement factor for large arraysB B

is approximately 0.3r1r2. The single-filament con-
Ž .densation temperature is proportional to crM L ,L

and the enhancement factor for large arrays is ap-
wŽ .1r2Ž .xproximately proportional to M rM Lra .L T T

Ž . Ž .Fig. 1. Ratio k T rcLE plotted against n for M rM sB B L T T L
3 Ž .10 , cLs2000, Lra s1000 and n s4000. Solid circles—T L

Ž .numerical results from Eq. 3 . Open circles—approximate results
Ž .from Eq. 21 .
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Ž . 2Fig. 2. As for Fig. 1, but with M rM s10 .T L

Under the same condition that the maximum trans-
verse boson energy is small compared with k T ,B B

Ž .and if also E and E of Eq. 2 satisfy E )E ,T L T L

the characteristic number of filaments n2 at whichT

T reaches half its value for large n is also approx-B T

imately equal to 0.3r1r2. As an example, if Ls2
mm, cLs2000, M sm , M s100m , a s2 nmL e T e T
Ž 4.giving rs10 , and n s4000, we find that theL

single-filament T s3.0 K, the enhancement factorB
Ž 1r2 .at large n is about 32 s0.32 r , and the valueT

of n at which the enhancement is about half thisT

value is such that n2 f25s0.25r1r2.T

In Section 3, an approximate theory will be given
which gives fair agreement with the numerical re-
sults in some parameter ranges. This approximate
theory gives more insight into why the above state-

Ž .Fig. 3. As for Fig. 1, but with M rM s10.T L

ments about enhancement factors and their depen-
dence on n are valid.T

3. An approximate theory for small maximum
transverse energies

For energies E smaller than about 0.5k T it isB B B

a fair first approximation to replace the Bose–Ein-
Ž .stein occupation number in Eq. 3 by

1
f k T rE , 6Ž . Ž .B B Bexp E rk T y1Ž .B B B

and we shall find empirically by comparison with
numerical results that in many circumstances consid-
eration of only those states for which this inverse
linear approximation can be used in the sum of Eq.
Ž .3 gives a fair approximation to the sum.

For a given dimensionless transverse quantum
number p defined byT

1r22 2p s i q j , 7Ž .Ž .T

Ž .we take the sum over k up to k p , wherem T

k smin n ,k , 8Ž .Ž .m L p

with k given byp

E p2 y2 qE k 2 y1 sbk T , 9Ž .Ž . Ž .T T L p B B

where b;0.5. If p s21r2, then the sum can beT
Ž 1r2 .performed exactly. We find the sum, S 2 is

given by

Ž 1r2 .k 2mk T 1B B1r2S 2 sŽ . Ý 2E k y1L ks2

k T 3 1 1 3 k TB B B B
s y y fž /2 E 2 k k q1 4 EL m m L

10Ž .
Ž 1r2 . Ž .if k 2 is large. Hence, from Eq. 3 , we see thatm

k T for the case of one filament is given byB B

k T f 4r3 E cL. 11Ž . Ž .B B L

1r2 Ž .If p )2 , then the sum S p for a given pT T T

is given by
Ž .k pm Tk T 1B B

S p s , 12Ž . Ž .ÝT 2 2E k y1qs p y2Ž .L Tks1
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where

ssE rE srrn2 , 13Ž .T L T

Ž .and r is defined by Eq. 5 .
If s)1r3, as is probable for L4D, then

Ž .k pm Tk T 1B B
S p s , 14Ž . Ž .ÝT 2 2E k qqL ks1

where

1r22qs s p y2 y1 15Ž .Ž .T

is real. If we approximate the sum by an integral
w Ž . xfrom 0.5 to k p q0.5 , we findm T

k TB B Ž .k p q0.5m TS p f 1rq arctan xrqŽ . Ž . Ž .T 0.5EL

1 k T p 1B B
f yarctan 16Ž .ž /q E 2 2 qL

if k is large. This further reduces tom

1 k T pB B
S p f 17Ž . Ž .T q E 2L

if q is large.
Ž .The integer k p will be large if n 41 and ifm T L

2 2E p y2 - byn E rk T k T , 18Ž . Ž .Ž .T T L B B B B

w Ž .xwith b;0.5 see Eq. 9 and n is some large
number. If this inequality is satisfied for the maxi-

Ž 1r2 .mum p s2 n , and if n 41 and s41, thenT T L
Ž .the approximation of Eq. 16 can be used for all pT

except for p s21r2 for which we can use theT
Ž .right-hand approximation of Eq. 10 . We shall also

Ž .make the further approximation that q of Eq. 15 is
Ž .large for most values of p , and hence use Eq. 17T

for p /21r2. Hence, we findT

k T 3 pB B 2
2 2cLf q 1y1rn avŽ .T Ž i qj ) 2 .2 1r2½E 4n 2 sL T

=
1

. 19Ž .1r2 52 2i q j y2Ž .

For values of n which are greater than about 10 itT
Ž 2 2 .is a fair approximation to ignore the 2 in i q j y2

Ž .and replace the average in Eq. 19 by an integral
Ž .average of 1rr over a square with sides of length

Ž .n q0.5 with a small square with sides of lengthT

0.5 removed from one corner, where r is the dis-
tance from that corner. With these approximations
we find

1
av f pr2n r ln tan 3pr8� 4Ž . Ž .T1r22 2i q j y2Ž .

s1.782rn . 20Ž .T

Ž . Ž .From Eqs. 19 and 20 , after ignoring the term
Ž 2 . Ž 2 . Ž .1rn in 1y1rn in Eq. 19 , we deduce thatT T

1
k T f 4r3 cLE ,Ž . Ž .B B L 2 1r21rn q3.73rrŽ .T

21Ž .

Ž .with r given by Eq. 5 . Since the second term in the
Ž .denominator of Eq. 21 is only correct to first order

Ž .in 1rn , the equation will be a poor approximationT
1r2Ž 1r2 .for small n unless r sn s is large. ForT T

Ž .n s1 the earlier expression of Eq. 11 is moreT

appropriate to use.
Ž .We see from Eq. 21 that the maximum enhance-

ment factor of T from the one-filament case isB

0.27r1r2, and that the value of n2 to reduce theT

enhancement to a half of its maximum value is also
0.27r1r2. Results approximately the same as these
were mentioned in the previous section. Since the

Ž . 1r2 Ž .single-filament T A 1rL , and r AL, Eq. 21B

implies that T for large arrays is independent of L,B

provided n is large, but the number of filamentsL

required to reach a given fraction of the maximum
T is proportional to L.B

From our numerical results in Figs. 1–3, we find
that the enhancement factors at large n comparedT

with the case n s1 are equal to r1r2 multiplied byT

about 0.30, 0.32, and 0.36 respectively, compared
Ž .with the factor 0.27 predicted by Eq. 21 . Defining

a transverse bandwidth W byT

W s2 "
2r2 M p 2ra2 , 22Ž .Ž . Ž .T T T

Ž .we find that the maximum value of k T rWB B T

decreases from about 14 to 1.6 as we pass from
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parameters of Fig. 1 to those of Fig. 3. Thus we see
Ž .that Eq. 21 is a better approximation for large nT

for larger values of this ratio, as we expected from
w Ž .xour derivation see Eq. 18 . On the other hand the

Ž .departure of the predictions of Eq. 21 below nu-
merical values for small n is slightly larger for theT

parameters of Fig. 1, reaching 29.5% for n s4 or 5T

for these parameters, but only reaching 17% for
n F5 for the parameters of Fig. 3. This is presum-T

ably because of the relatively small value of r1r2

Ž .f32 for the parameters of Fig. 1, which makes the
Ž .approximations in deriving Eq. 20 have a bigger

fractional effect on final results for any given small
value of n .T

Ž .According to Eq. 21 , k T saturates to a con-B B

stant value for large n for given values of the otherT

parameters. However, the numerical results of Figs.
1–3 show a slight fall for large n after a maximumT

is passed. We think this fall arises because, for L not
sufficiently large compared with D, the quantity s of

Ž . Ž .Eq. 13 will not be large, and so q of Eq. 15 will
not be large for some small values of p . Then, forT

Ž .some p , the second term in the brackets of Eq. 16T

will not be negligible. Hence, the sum will be lower
than that found in the approximations appropriate for
large length-to-width ratios, and so T will be low-B

ered.
Ž . 1 r 2N ow cLE A cr M L and r sL L

Ž .1r2Ž . Ž .M rM Lra . Thus, for large n , Eq. 21L T T T
Ž .w Ž .1r2 ximplies T A cra 1r M M . This differsB T T L

2r3Ž 2 .1r3from the result that T An 1rM M , whichB T L
Žoccurs for anisotropic masses for anisotropy which

. w xis not too extreme 22 when bandwidths in all
directions are large compared with k T ; in thisB B

formula n is the three-dimensional carrier concentra-
Ž 2 .tion, which is equivalent to cra for our filamentT

arrays. Presumably this difference arises because of
our assumption that W <k T . In our numericalT B B

work we find a transition to this second type of
dependence on masses when we decrease carrier
concentrations or vary other parameters sufficiently
to make the maximum transverse energy greater than
the calculated T . For the value of values of c andB

a chosen for Figs. 1–3, this would only occur forT
Ž .values of M rM -1, but for smaller values of cT L

the transition occurs while M )M . This is illus-T L

trated in Fig. 4 where we show the ratio of k T toB B

the maximum transverse energy against M on aL

Ž .Fig. 4. Plot of maximum values with respect to n of k T r W ,T B B T
Ž .where W is the transverse bandwidth of Eq. 22 , againstT

Ž .M rM for cLs200 and other parameters except masses asL T

for Fig. 1. The figure shows most of a transition from a slope of
Ž .y1r2 to a slope of y1r3 as the ratio k T r W changes fromB B T

about 5.5 to 0.12. The dotted lines illustrate the change of the
average slope between the first two points and between the last
two points from y0.49 to y0.35.

Žlog–log plot for cLs200 i.e., ten times smaller
. Ž .than the value used for Figs. 1–3 , values of LraT

and n as before, and a value of n at which TL T B

reaches its maximum as a function of n . We do notT

use very large values of n in order to avoid theT

complications when s becomes small mentioned in
the previous paragraph. For values of parameters
used, n at which T is a maximum increases fromT B

Ž . y46 to about 220 as M rM increases from 10 toL T

1. In Fig. 4, we see most of a transition from a slope
Ž .of y1r2 to a slope of y1r3 as M rM in-L T

creases.

4. Conjectures about effects of disorder

Disorder can cause localisation of some states
near the bottom of a band either for fermions or

w xbosons 23,24 . The transition between localised and
delocalised states occurs at a mobility edge E .c

When Coulomb interactions between bosons are
taken into account, the bosons below the mobility

w xedge behave more like fermions 24 .
Let us consider the case for a filament array with

E -3E , the energy of the bottoms of the firstc T

excited bands with respect to transverse motion, and
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let us assume that the effects of disorder on states
above E are unimportant. Then the only alterationsc

of our previous calculations due to disorder will be
Ž . Ž .i to replace the lower limits in the sum in Eq. 10

Ž .and in the sum for is js1 in Eq. 3 by ksk ,c

where k is the smallest value of k for whichc
Ž 2 . Ž .E k y1 )E , and ii a generally small effect dueL c

to the fact that cLn2 on the right-hand-side of Eq.T
Ž . w 2 Ž .x3 will be replaced by cLn y k y1 , assumingT c

only one boson can go in each localised state. With
Ž .the change in the lower limit in Eq. 10 and the

assumption that k is large, the right-hand side ofm
Ž .Eq. 10 becomes approximately equal to

1 1r k y1 q1rk k T rE . Thus, as kŽ . Ž .� 4c c B B L c2

increases above 2, the contribution of the states with
Ž .minimum p to the overall sum of Eq. 3 becomesT

rapidly smaller, and so, in our approximate theory of
Section 3, does the first term in the brackets in Eq.
Ž .19 .

Since we are measuring our energies from a state
Ž .of energy E q2 E above the bottom of the bulkL T

band, it is probable that, for a given amount of
Ž .disorder, E qE q2 E rather than E is inde-c L T c

pendent of L. Thus, for a given channel width, D,
there will be threshold length L below which no
states will be localised. For L greater than this
threshold, E sKyE y2 E , where K is a con-c L T

stant. Hence, if K-5E , corresponding to our as-T

sumption that the mobility edge lies below the bot-
toms of the first excited subbands with respect to
transverse motion, then k is the first integer greaterc

wŽ . x1r2than z s KyE y2 E rE . If E <E ,c L T L L T

this implies that k is approximately proportional toc
w 2 xL KyCrn , where C is independent of L. ThusT

Ž 2 .the term proportional to 1rn in the brackets inT
Ž . Ž .Eq. 19 or in the denominator of Eq. 21 is approx-

Ž .imately proportional to 1rL for a given n . SinceT
Ž .the second term in the denominator of Eq. 21 is

Ž .also proportional to 1rL , this means that the value
of n to produce a given fractional reduction in TT B

below its large n value does not change much withT

L after some states become localised for this n .T

5. Conclusions

Numerical results for the Bose–Einstein conden-
sation temperature T of a non-interacting Bose gasB

in a square array of filaments on a square lattice
have been found for bosons characterised by masses
M and M parallel and perpendicular to the fila-L T

ment directions, with cut-off wave vectors related to
the lattice constant along a filament and to the
filament separation, respectively. For large numbers
of filaments, it has been shown that there is a gradual
crossover from a proportionality of T toB
Ž .1r2 Ž 2 .1r31rM M to a proportionality to 1rM ML T L T

as parameters are varied to make k T change fromB B

being larger than to smaller than the maximum trans-
verse boson energy, W . Approximate analytical ex-T

pressions for T have been found for the case whenB

W is small compared with k T . In the absence ofT B B

disorder, the number of filaments required to give a
condensation temperature equal to a given fraction of
the limiting value for a large number of filaments is

Ž .1r2approximately proportional to L M rM in thisL T

regime. It has been argued that disorder will act to
flatten off any length dependence of this number
above some length dependent on the amount of
disorder.
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