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Abstract

Bose—Einstein condensation temperatures Tg for non-interacting bosons in square arrays of finite-length filaments
arranged on a square lattice are calculated both by numerical methods and by use of a simple approximate theory which is
appropriate in certain parameter ranges. It is assumed that both longitudinal and transverse motion can be described by
constant effective masses M, and M, but maximum wave vectors are introduced related to the filament lattice constant or
to the filament separation. For large numbers of filaments a gradual crossover from Tg o (1/M, Mp)Y? to Ty
(1/M_ M2)Y/3 isfound as parameters are varied to make kgTg change from being larger than to smaller than the maximum
transverse boson energy, W;y. For kgTg > W it is shown that, in the absence of disorder, the number of filaments required
to bring Ty up to a given fraction of its value for large numbers of filaments is approximately proportional to the filament
lengths and to (M, /M;)*/2. It is argued that disorder will act to flatten off any length dependence of this number above

some length dependent on the amount of disorder. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is no Bose—Einstein condensation of non-
interacting bosons with a quadratic dispersion rela-
tion in a one-dimensional system in the limit of
infinite lengths [1]. However, as will be verified by
calculations in this paper, condensation in the weak
sense [2] of a temperature below which the occupa-
tion number of the ground state starts to become
macroscopic, i.e., of the same order as the number of
bosons, can occur in a finite-length one-dimensional
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system because of finite separations between succes-
sive energy levels, particularly between the states
with the lowest and next-lowest energies.

In this paper we use the word filament to denote a
quasi one-dimensional region in which current carri-
ers can move along the region’s length in a one-di-
mensional band, but are in the lowest-energy quan-
tum state for transverse motion at all temperatures of
interest. If pairs of electrons in such a filament are
strongly bound, then a first approximate way to treat
such a system could be to regard it as an ideal Bose
gas in one dimension, athough any interaction be-
tween pairs may have more serious conseguences
than in bulk material. This is certainly the case for
fermions in one-dimensiona systems [3].
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The main calculations of this paper are concerned
with the problem of what happens in a square array
of finite-length filaments on a simple square lattice,
with the effect of overlaps of wave functions of
different filaments approximated by inclusion of a
transverse boson mass. Wave vectors in the longitu-
dinad and transverse directions are assumed to be
limited by (7/a, ) and (w/a;), where a_ is the
lattice constant in the direction of the filament length,
and a; is the separation between nearest-neighbour
filaments. A particular case where longitudina and
transverse masses are equal and a, and a; tend to
zero is equivalent to the problem of bosons in a
rectangular box with infinite wall heights studied
previously by other authors [4].

First we present numerical results for the conden-
sation temperature Ty as a function of numbers of
filaments for a few representative cases. These cases
cover a range of ratios of longitudina to transverse
masses between 10~* and 10~ 3. Transverse boson
masses can be expected to be fairly heavy if adjacent
filaments are not too close.

After presentation of the numerical results, we
show how these may be obtained approximately in
some parameter ranges by analytical calculations
which approximate the Bose—Einstein occupation
factor by a term inversely proportional to the differ-
ence in energy between those excited states which
play a significant part in the problem and the ground
state, and then approximate sums over longitudina
wave vectors by integrals except for the case of the
states with lowest energy with respect to transverse
motion.

The work presented here could be applicable to
arrays of quantum wires of doped semiconductors if
they become superconducting. If so, then at low
carrier concentrations, a Bose-gas model may be
appropriate. Superconducting transition temperatures
as high as about 50 K for plasmon-induced pairing
have been predicted for quantum wellsin CdS at an
optimum carrier concentration [5].

Another semiconductor of interest in this connec-
tion is SITiO;, since it is superconducting at lower
carrier concentrations than other known supercon-
ducting semiconductors. In SITiO; with 3% of Ti
replaced by Zr, there are strong indications that
superconductivity on the Bose-gas side of the BCS—
Bose gas transition has been seen in one ceramic

sample with a very low carrier concentration [6—8]
of the order of 10 cm™3. This observation gave
qualitative confirmation of predictions made many
years earlier for this material, although the pairing
temperature inferred from experiments is about
twenty times smaller than was predicted with the
model used before [9].

The most promising way to make suitably ori-
ented arrays of conducting filaments would be to use
very narrow ion beams travelling paralel to a [111]
direction of athin SITiO; sample. lon beams which
can be focused on areas with dimensions as small as
8 nm with a half angle of 0.15 mrad were reported
several years ago [10]. Even for such a small beam
angle it would probably be necessary to work with
films in order to get filaments with a fairly uniform
diameter. For a filament of diameter 8 nm, the
largest carrier concentration which will permit al
carriers to be in the lowest quantum state with
respect to transverse motion can be calculated [11],
for a three-valley model for the conduction band, to
be 2x 10 cm~3, implying a linear concentration
per filament of about 1.3 X 10”7 cm™!. Probably,
considerably lower carrier concentrations would be
needed for the ratio of pair diameters in the filaments
to the pair separation to become smaller than unity
so that the Bose-gas regime could be approached.

Another use of the results presented here may be
connected with assessment of the validity of a high-
drift-velocity model developed by the present author
[12-15] to give a possible explanation of claims of
room-temperature superconductivity in narrow chan-
nels through films of oxidised atactic polypropylene
[16-21] and polydimethylsiloxane [21]. It is ex-
pected that further discussion of this topic will be
presented in a later paper.

Some numerical results for square arrays of fila-
ments are shown in Section 2, and a simplified
approximate theory for some ranges of parameters of
interest is presented in Section 3. Conjectures about
effects of disorder are made in Section 4.

2. Basic equations and numerical calculations for
sguare arrays

We consider non-interacting bosons on a square
array of filaments of length L on a simple square
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lattice, with the sides of the sguare of length D. We
measure the length L and the transverse dimension
D from points half a lattice constant a, beyond the
end lattice points of a filament, and half the nearest-
neighbour interfilament distance a; beyond the out-
ermost filament rows. We suppose that the bosons
have masses M, and My in the filament direction
and perpendicular to this, and call these longitudinal
and transverse masses. We assume boundary condi-
tions such that the boson wave functions vanish at
the ends of the filaments and at the sides of the
square. The boson states can be characterised by
integers i,j,k, where i,j run from 1 to n;, with
n;=D/a;, and k runs from 1 to n_, with n, =
L/a . The wave functions are proportional to
urOJu(Yu (sin(iar x / D)sin( jary / D)sin(kar z

/D), where u; and u, are periodic functions with
periods a; and a, . The energy Eg(i,j,k) of the state
(i,j,k) measured from the lowest energy state (1,1,1)
is given by

Eo(i,j k) = Er(i2+j2—2) +E (K2 —1), (1)

where

Er = (h2/2M;)(7/D)?,
E = (#%/2M_)(7/L)°.

Condensation into the lowest-energy state cannot
take place if the sum of the boson occupation factors
over al states except the lowest for a chemical
potential situated at the energy of the lowest state is
greater than the total number of bosons, Ng. Below
the temperature at which this sum is equal to Ng, the
occupation of the ground state will start to become
macroscopic, i.e., of the order of Ng, and so the
equality of the sum with Ng determines the conden-
sation temperature T in this weak sense [2]. For an
average linear concentration ¢ of bosons per fila
ment, this criterion can be written as

(2)

Nt ng 1

)Y — =cLnZ,
21 Kok, ©XP[ Es(i1].K) /KeTg] =1 !

(3
where k, =2 if i =j =1 and k, =1 otherwise, and
n-|—=D/aT, n|_=|—/a|_ (4)

are the numbers of different wave numbers in the
transverse and longitudinal directions, respectively.

We have written a computer programme to calcu-
late the ratio (kgTg/E, cL) with input required be-
ing values of: (i) cL, the average number of bosons
per filament; (ii) the ratio r given by

r=(#%/2Maf)/(h%/2M_L?), (5)
representing the ratio of the maximum transverse
energy to the small characteristic longitudina energy
E, depending on the filament length; (iii) n;, the
number of filaments in each row of the array; and
(iv) n,, the number of lattice constants per filament.
The results are insensitive to n_ provided that it is
large.

In Figs. 1-3, we plot the ratio (kT /E, cL) as a
function of n; on a log—log scale for cL = 2000,
(L/a;) = 1000, n, = 4000, and values of (M;/M,)
varying from 10° to 10.

For values of cL and n_ used for the numerical
work for Figs. 1-3, the condensation temperature for
a single filament satisfies kgTg = 1.38 E, cL, with
E, given by Eg. (2), and it is found that, for
maximum transverse boson energies small compared
with kgTg, the enhancement factor for large arrays
is approximately 0.3r'/2. The single-filament con-
densation temperature is proportional to (c/M, L),
and the enhancement factor for large arrays is ap-
proximately proportional to [(M, /M) 2(L/a;)].
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Fig. 1. Ratio (kgTg /cLE, ) plotted against n; for (M /M, )=
108, cL = 2000, (L /a;)=1000 and n, = 4000. Solid circles—
numerical results from Eq. (3). Open circles—approximate results
from Eq. (21).
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Fig. 2. Asfor Fig. 1, but with (M /M, ) =102,

Under the same condition that the maximum trans-
verse boson energy is small compared with kgTg,
and if aso E; and E_ of Eq. (2) satisfy E; > E_,
the characteristic number of filaments nZ at which
Ty reaches half its value for large n; is also approx-
imately equal to 0.3r¥2. As an example, if L=2
um, cL=2000, M_ =m,, M;=100m,, a; =2 nm
(giving r =10%), and n_= 4000, we find that the
single-filament T; = 3.0 K, the enhancement factor
at large n; is about 32(= 0.32r%/?), and the value
of n; a which the enhancement is about half this
value is such that n? = 25 = 0.25r/2,

In Section 3, an approximate theory will be given
which gives fair agreement with the numerical re-
sults in some parameter ranges. This approximate
theory gives more insight into why the above state-
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Fig. 3. Asfor Fig. 1, but with(M; /M ) =10.

ments about enhancement factors and their depen-
dence on n; are valid.

3. An approximate theory for small maximum
transverse energies

For energies E; smaller than about 0.5k Ty it is
a fair first approximation to replace the Bose—Ein-
stein occupation number in Eg. (3) by

1
exp( Eg/kgTg) — 1

=~ (KgTg/Eg), (6)

and we shall find empirically by comparison with
numerical results that in many circumstances consid-
eration of only those states for which this inverse
linear approximation can be used in the sum of Eg.
(3) gives a fair approximation to the sum.

For a given dimensionless transverse quantum
number p; defined by

pr = (i2+i%)"", (7)
we take the sum over k up to k. ( p;y), where

Ky =min(ng k), (8)
with k, given by

Er(pF—2) +E (kp— 1) = bkyTs, (9)

where b~ 05. If p; =22, then the sum can be
performed exactly. We find the sum, S(2V/2?) is
given by

kn@Y®  q

I(BTB
s@/%)=-° ¥

E /=, K-1

keTg (3 1 1 3 Ky Ty
T2 2 k, k,+1] 4 E
(10)

if k,(2%/?) islarge. Hence, from Eq. (3), we see that
kg Ty for the case of one filament is given by
keTs = (4/3)E, cL. (11)
If p; > 22, then the sum S p;) for agiven p;
is given by
kBTB km( pT)

S(pr) = >

EL o1 K—1+s(pi-2)°

(12)
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where
s=E;/E =r/n%, (13)

and r is defined by Eq. (5).
If s>1/3, asis probable for L > D, then

kgTg *mlPr) 1

S( pT) B EL kgl k2 + q2 , (14)
where
a=[s(pt-2)-1]"* (15)

is real. If we approximate the sum by an integra
from 0.5 to [k,,( p;) + 0.5], we find

kg T
S(pr) = %[(Uq)arctan( X/q)]g.r%(pT)Jro.s
L

1 kT [ 7 1
:——[——arctan(—q” (16)

if k,, islarge. This further reduces to

1kgTg 7 17
S(pr) = 4 E 2 (17)
if gislarge

The integer k,,( py) will belargeif n_ > 1 and if
Er(pi—2)<[b—nm?(E_/keTp)|ksTs,  (18)

with b~ 0.5 [see Eq. (9)] and n is some large
number. If this inequality is satisfied for the maxi-
mum p;(=2%2n;), andif n, > 1 and s> 1, then
the approximation of Eq. (16) can be used for al p;
except for p; =22 for which we can use the
right-hand approximation of Eq. (10). We shall also
make the further approximation that g of Eq. (15) is
large for most values of p;, and hence use Eq. (17)
for p; # 2%/2. Hence, we find

kgTg | 3 T
cL = — +——=(1-1/n)av,.,
E, {4n$ ps (L 1/m) s o)
S (19)
X .
(i2+j2—2)1/2

For values of n; which are greater than about 10 it
isafair approximation toignorethe 2in (i +j2 — 2)
and replace the average in Eq. (19) by an integral
average of (1/p) over a square with sides of length
(n; + 0.5) with a small square with sides of length
0.5 removed from one corner, where p is the dis-
tance from that corner. With these approximations
we find

1
av (IZT—Z)VZ] ~ (m/2ny) /{In[tan(37/8)]}

=1.782/n;. (20)

From Egs. (19) and (20), after ignoring the term
(1/n2) in (1—1/n2) in Eq. (19), we deduce that
1
(1/n2 +3.73/r2) |’
(21)

kg Tg = (4/3)(cLE,)

with r given by Eq. (5). Since the second term in the
denominator of Eq. (21) is only correct to first order
in (1/n;), the equation will be a poor approximation
for smal n; unless r/2(=n;sY?) is large. For
n; =1 the earlier expression of Eqg. (11) is more
appropriate to use.

We see from Eq. (21) that the maximum enhance-
ment factor of Ty from the one-filament case is
0.27r/2, and that the value of n? to reduce the
enhancement to a half of its maximum value is also
0.27r/2, Results approximately the same as these
were mentioned in the previous section. Since the
single-filament Tg o (1/L), and r*? a L, Eq. (21)
implies that Ty for large arrays is independent of L,
provided n, is large, but the number of filaments
required to reach a given fraction of the maximum
Tg is proportiond to L.

From our numerical results in Figs. 1-3, we find
that the enhancement factors at large n; compared
with the case n; = 1 are equal to r'/? multiplied by
about 0.30, 0.32, and 0.36 respectively, compared
with the factor 0.27 predicted by Eq. (21). Defining
a transverse bandwidth W, by

W, = 2(h2/2M; )(m2/a2), (22)

we find that the maximum value of (kgTg/W;)
decreases from about 14 to 1.6 as we pass from
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parameters of Fig. 1 to those of Fig. 3. Thus we see
that Eq. (21) is a better approximation for large n;
for larger values of this ratio, as we expected from
our derivation [see Eq. (18)]. On the other hand the
departure of the predictions of Eq. (21) below nu-
merical values for small n; is slightly larger for the
parameters of Fig. 1, reaching 29.5% for ny =4 or 5
for these parameters, but only reaching 17% for
n; < 5 for the parameters of Fig. 3. This is presum-
ably because of the relatively small value of rl/2
(= 32) for the parameters of Fig. 1, which makes the
approximations in deriving Eg. (20) have a bigger
fractional effect on final results for any given small
value of n;.

According to Eq. (21), kgT, saturates to a con-
stant value for large n; for given values of the other
parameters. However, the numerical results of Figs.
1-3 show a dight fall for large n; after a maximum
is passed. We think this fall arises because, for L not
sufficiently large compared with D, the quantity s of
Eqg. (13) will not be large, and so q of Eq. (15) will
not be large for some small values of p;. Then, for
some p;, the second term in the brackets of Eq. (16)
will not be negligible. Hence, the sum will be lower
than that found in the approximations appropriate for
large length-to-width ratios, and so Tg will be low-
ered.

Now cLE, o« (¢/M L) and r'/2=
(M_/Mp)Y2(L/as). Thus, for large n;, Eq. (21)
implies Ty a (c/a;)[1/(M;M)Y2]. This differs
from the result that T, o n?/3(1/M2M,)*3, which
occurs for anisotropic masses (for anisotropy which
is not too extreme) [22] when bandwidths in all
directions are large compared with kgTg; in this
formula n is the three-dimensional carrier concentra-
tion, which is equivalent to (c/a2) for our filament
arrays. Presumably this difference arises because of
our assumption that W; << kgTg. In our numerical
work we find a transition to this second type of
dependence on masses when we decrease carrier
concentrations or vary other parameters sufficiently
to make the maximum transverse energy greater than
the calculated Tg. For the value of values of ¢ and
a; chosen for Figs. 1-3, this would only occur for
values of (M;/M, ) <1, but for smaller values of c
the transition occurs while M > M. This is illus-
trated in Fig. 4 where we show the ratio of kgTg to
the maximum transverse energy against M, on a
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Fig. 4. Plot of maximum valueswith respect to ny of (kgTg / Wy),
where W, is the transverse bandwidth of Eg. (22), against
(M_ /M;) for cL =200 and other parameters except masses as
for Fig. 1. The figure shows most of a transition from a slope of
—1/2toaslopeof —1/3astheratio (kgTg / W) changes from
about 5.5 to 0.12. The dotted lines illustrate the change of the
average slope between the first two points and between the last
two points from —0.49 to —0.35.

log—log plot for cL =200 (i.e., ten times smaller
than the value used for Figs. 1-3), values of (L /a;)
and n_ as before, and a value of n; at which Tg
reaches its maximum as a function of n;. We do not
use very large values of n; in order to avoid the
complications when s becomes small mentioned in
the previous paragraph. For values of parameters
used, n; at which Tg is a maximum increases from
6 to about 220 as (M, /M;) increases from 10~ * to
1. In Fig. 4, we see most of a transition from a slope
of —1/2 to a dope of —1/3 as (M, /M) in-
creases.

4. Conjectures about effects of disorder

Disorder can cause localisation of some states
near the bottom of a band either for fermions or
bosons [23,24]. The transition between localised and
delocalised states occurs at a mobility edge E..
When Coulomb interactions between bosons are
taken into account, the bosons below the mobility
edge behave more like fermions [24].

Let us consider the case for a filament array with
E. <3E;, the energy of the bottoms of the first
excited bands with respect to transverse motion, and
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let us assume that the effects of disorder on states
above E; are unimportant. Then the only alterations
of our previous calculations due to disorder will be
(i) to replace the lower limits in the sum in Eq. (10)
and in the sum for i=j=1in Eq. (3) by k=k_,
where k. is the smallest value of k for which
E (k? — 1) > E,, and (ii) a generally small effect due
to the fact that cLn? on the right-hand-side of Eq.
(3) will be replaced by [cLnZ — (k. — 1)], assuming
only one boson can go in each localised state. With
the change in the lower limit in Eg. (10) and the
assumption that k., is large, the right-hand side of
Eg. (10) becomes approximately equal to
{(3[1/(ke—1) + 1/k ] (kg Tg/EL)}. Thus, as k.
increases above 2, the contribution of the states with
minimum p; to the overall sum of Eq. (3) becomes
rapidly smaller, and so, in our approximate theory of
Section 3, does the first term in the brackets in Eq.
(19).

Since we are measuring our energies from a state
of energy (E, + 2E;) above the bottom of the bulk
band, it is probable that, for a given amount of
disorder, (E,+ E_ + 2E;) rather than E; is inde-
pendent of L. Thus, for a given channel width, D,
there will be threshold length L below which no
states will be localised. For L greater than this
threshold, E,= K — E, — 2E;, where K is a con-
stant. Hence, if K <5E;, corresponding to our as-
sumption that the mobility edge lies below the bot-
toms of the first excited subbands with respect to
transverse motion, then k. is the first integer greater
than z =[(K—-E_-2E;)/E 12 If E <E,
this implies that k. is approximately proportional to
L[K — C/n2], where C is independent of L. Thus
the term proportional to (1/n2) in the brackets in
Eq. (19) or in the denominator of Eq. (21) is approx-
imately proportional to (1/L) for a given n;. Since
the second term in the denominator of Eg. (21) is
also proportional to (1/L), this means that the value
of n; to produce a given fractional reduction in Tg
below its large n; value does not change much with
L after some states become localised for this n;.

5. Conclusions

Numerical results for the Bose—Einstein conden-
sation temperature T, of a non-interacting Bose gas

in a square array of filaments on a square lattice
have been found for bosons characterised by masses
M, and M; pardlel and perpendicular to the fila-
ment directions, with cut-off wave vectors related to
the lattice constant along a filament and to the
filament separation, respectively. For large numbers
of filaments, it has been shown that there is a gradual
crossover from a proportionality of Tg to
(1/M_ M;)¥? to a proportionality to (1/M, M2)*/3
as parameters are varied to make kg Ty change from
being larger than to smaller than the maximum trans-
verse boson energy, W;. Approximate analytical ex-
pressions for T, have been found for the case when
W, is small compared with kgTg. In the absence of
disorder, the number of filaments required to give a
condensation temperature equal to a given fraction of
the limiting value for a large number of filamentsis
approximately proportional to L(M, /M;)*?2 in this
regime. It has been argued that disorder will act to
flatten off any length dependence of this number
above some length dependent on the amount of
disorder.
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