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The author’s previous work on the Rayleigh–Taylor instability is extended to
the Kelvin–Helmholtz instability, and the maximum growth rate of a
perturbation and an estimate of its upper bound is obtained for an infinite fluid
layer under horizontal rotation where the density, horizontal velocity (shear)
and magnetic field are continuously stratified in the direction of gravity.
Conclusions are drawn about the possibility of stability for some directions of
propagation of the perturbation, even in the case of unstably stratified density.
It is also shown that the new terms that appear owing to the interaction of the
horizontal shear flow, horizontal rotation and stratified magnetic field increase
the range of values that contribute to the estimate of the maximum growth rate
compared with previous work. Furthermore, a generalization of the sufficient
condition for stability under horizontal rotation alone obtained by Johnson is
calculated in the presence of density stratification. A new method is also given
to obtain a sufficient condition for stability when a magnetic field is present in
addition to rotation and density stratification.

1. Introduction

The Kelvin–Helmholtz instability (KHI) due to shear flow in stratified fluids
has attracted the attention of many researchers because of its determinant
influence on the stability of planetary and stellar atmospheres and in practical
applications. In particular, the effects of rotation and magnetic fields in KHI
of ideal incompressible fluids have been investigated (Chandrasekhar 1961).
The instability of a parallel shear flow in an inviscid homogeneous unbounded
rotating fluid was investigated by Johnson (1963). By means of a converse of
the Taylor–Proudman theorem, he showed that for an incompressible inviscid
fluid the rotation vector cannot be in the direction of velocity stratification. He
calculated the stability curves for the hyperbolic-tangent velocity profile. His
results showed that three-dimensional perturbations are stabilized in the
cyclonic case but destabilized in the anticyclonic case. More recently, Yanase et
al. (1993), supposing a viscous fluid, calculated the stability of the hyperbolic-
tangent (mixing) and Gaussian bell-shaped (wake) velocity profiles under
rotation perpendicular to the velocity field but in the same shear layer. They
found that cyclonic rotation and strong anticyclonic rotation tend to stabilize
the three-dimensional motions but that weak anticyclonic rotation destabilizes
these perturbations. In this sense, they corrected some results of Johnson
(1963). Shear-flow instabilities have also been investigated in stratified fluids.
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For example, Jones (1967) investigated the propagation of internal gravity
waves in fluids with shear flow and rotation but including density stratification
in the horizontal and vertical directions. This problem has also been
investigated by Teitelbaum et al. (1987). They made a comparison between the
results for over-reflection obtained from the Boussinesq and the hydrostatic
approximations. Sumathi and Raghavachar (1993) investigated a similar
system but with the goal of understanding the effects of three-dimensional
perturbations on the stability of a general vertically stratified velocity field.
The effect of a magnetic field on the stability of shear flows was investigated in
the absence of density stratification by Chen and Morrison (1991). In their
paper the shear flow was taken to be antisymmetric, with symmetric and
antisymmetric stratification of the magnetic field. They showed that a stable
Couette flow may be driven unstable by a symmetric magnetic field. For the
hyperbolic-tangent profile they showed that a strong magnetic-field strati-
fication may cause instability. The combined effect of density stratification,
rotation and magnetic field was investigated by Rudraiah and Venkatachalappa
(1972) and by El Mekki (1982). Rudraiah and Venkatachalappa (1972)
considered rotation to be vertical and the uniform magnetic field to be
horizontal in the shear flow layer. They found that there are seven singularities
(singular levels) in the hydromagnetic flow, in comparison with three in
hydrodynamic flow. They obtained asymptotic solutions of their wave equation
near the critical levels, and showed that the Lorentz force increases wave
absorption at the critical levels. El Mekki (1982), under the supposition of a
horizontal stratified magnetic field in the x direction and vertical rotation,
investigated the relation of zonal-magnetic shears and the amplitude of
hydromagnetic planetary gravity waves. El Mekki found that wind shear
destabilizes but that a magnetic field decreases the wave amplitude. An
interesting experiment with mercury by Amaguchi et al. (1991) included, in the
absence of density stratification, the ingredients of shear flow perpendicular
with respect to parallel rotation and magnetic fields. When the basic motion is
two-dimensional, they found that a vortex structure appears in a discontinuous
velocity field owing to KHI.

In the absence of main flow or shear, the Rayleigh–Taylor instability (RTI)
is left as the source of perturbation growth in the case of an unstably stratified
medium. Recently, new advances in RTI for non-dissipative incompressible
fluids have been made in which a continuously stratified fluid is subjected to a
general rotation field (Da! valos-Orozco and Aguilar-Rosas 1989a) and, more-
over, to a general stratified horizontal magnetic field (Da! valos-Orozco and
Aguilar-Rosas 1989a ; Da! valos-Orozco 1991). In those papers, the maximum
growth rate of the instability was obtained along with an estimate of the upper
bound of the growth rate. It was shown in Da! valos-Orozco and Aguilar-Rosas
(1989a) that the maximum growth rate in the presence of a general rotation
field depends on the wavenumber as well as on rotation, but that the upper
bound on the growth rate is independent of these parameters. When a
horizontal vertically stratified magnetic field is included, it was shown (Da! valos-
Orozco and Aguilar-Rosas 1989b ; Da! valos-Orozco 1991) that the maximum
growth rate reduces to that of general rotation alone when the direction of
propagation of the perturbation is perpendicular to the magnetic field. This is
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related to results previously obtained by Chandrasekhar (1961) for a two-layer
system. Calculations of the RTI of a two-fluid system under horizontal rotation
and magnetic field was calculated analytically and numerically by Da! valos-
Orozco (1993).

In this paper, adapting the method used by Da! valos-Orozco and Aguilar
Rosas (1989a, b), calculations are performed to obtain the maximum growth
rate of the perturbation and an estimate of its upper bound for the
Kelvin–Helmholtz instability of an infinite fluid layer under horizontal rotation
where the density, horizontal velocity and horizontal magnetic field are
continuously stratified in the direction of gravity. To the best of the author’s
knowledge, the problem with this system configuration has not previously been
investigated. Moreover, a generalization of the sufficient condition for stability
obtained by Johnson (1963) is calculated in the presence of density
stratification. Besides, a new method is presented to obtain a sufficient
condition for stability when a magnetic field is added to rotation and density
stratification. This problem corresponds physically to the KHI of an equatorial
section of a planetary magnetosphere or of a stellar atmosphere where shear,
rotation and magnetic field are perpendicular to gravity.

In the next section, the equations of motion of the perturbed flow are
obtained from the Euler equations in the Boussinesq approximation. These
equations are recovered in an integral form, from which the maximum growth
rate and its upper bound are obtained. In Sec. 3, a generalization of the
sufficient condition for stability obtained by Johnson (1963) is calculated in the
presence of density stratification, and a new method is presented to obtain a
sufficient condition for stability when a magnetic field is present together with
all the other effects. The conclusions are given in Sec. 4.

2. Equations of motion for the perturbation

The system is supposed to be a non-dissipative incompressible infinite
magnetofluid layer with density stratified in the z direction parallel to gravity.
Rotation, magnetic field and velocity are in a horizontal plane. The velocity
and magnetic field are stratified in the vertical direction. The system whose
stability is investigated is shown in Fig. 1. In what follows, the density, velocity
and magnetic field stratifications are arbitrary. The equations of motion in the
Boussinesq approximation are

ρ«
Du«
Dt

2ρ«Ω¬u«ρ«Ω¬(Ω¬r)¯®¡p«®ρ«gk# 
µ

4π
(¡¬H«)¬H«, (1)

¦H«
¦t

¯¡¬(u«¬H«), (2)

Dρ«
Dt

¯ 0, (3)

¡[u«¯ 0, (4)

¡[H«¯ 0 (5)
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Figure 1. The system whose stability is investigated. The density is stratified in the z
direction, parallel to gravity. Rotation is horizontal in an arbitrary direction, and the
horizontal velocity and horizontal magnetic fields are also stratified in the z direction.

where D}Dt is the Lagrange operator, k# ¯ (0, 0, 1), g is the acceleration due to
gravity and the variables are defined as follows:

u«¯U(z)u(x, y, z, t),

H«¯H
!
(z)h(x, y, z, t),

p«¯p(z)δp(x, y, z, t),

ρ«¯ ρ(z)δρ(x, y, z, t).

5

6

7

8

(6)

Here u«, H«, p« and ρ« are the velocity, the magnetic field, the pressure and the
density respectively. From the above equations, the hydrostatic equilibrium is
given by

2ρΩ¬UρΩ¬(Ω¬r)¯®¡p®ρgk# ®¡ 0 µ

8π
rH

!
r#1 , (7)

where Ω¯ (Ω
x
,Ω

y
, 0), H

!
¯ (H

!x
(z), H

!y
(z), 0) and U¯ (U(z), V(z), 0) are

the imposed rotation and magnetic fields and the velocity field. The functions
ρ¯ ρ(z) and p¯p(z) are the unperturbed density and pressure.

When a perturbation is applied to the system, u¯ (u, v,w), h¯ (h
x
, h

y
, h

z
), δp

and δρ are the perturbations of velocity, magnetic field, pressure and density
respectively, which satisfy the equations

ρ 0¦u

¦t
U

¦u

¦x
V

¦u

¦y
w

¦U

¦z 12ρΩ
y
w¯®

¦δp

¦x


µh
z

4π

¦H
!x

¦z
®

µH
!y

4π 0¦h
y

¦x
®

¦h
x

¦y 1 , (8)

ρ 0¦v

¦t
U

¦v

¦x
V

¦v

¦y
w

¦V

¦z1®2ρΩ
x
w¯®

¦δp

¦y


µh
z

4π

¦H
!y

¦z


µH
!x

4π 0¦h
y

¦x
®

¦h
x

¦y 1 , (9)

ρ 0¦w

¦t
U

¦w

¦x
V

¦w

¦y12ρ(Ω
x
v®Ω

y
u)¯®

¦δp

¦z
®gδρ®

µh
y

4π

¦H
!y

¦z
®

µh
x

4π

¦H
!x

¦z


µH

!y

4π 0¦h
z

¦y
®

¦h
y

¦z 1®µH
!x

4π 0¦h
x

¦z
®

¦h
z

¦x 1 , (10)
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¦δρ

¦t
U

¦δρ

¦x
V

¦δρ

¦y
w

¦ρ

¦z
¯ 0, (11)

¦u

¦x


¦v

¦y


¦w

¦z
¯ 0, (12)

¦h
x

¦x


¦h
y

¦y


¦h
z

¦z
¯ 0, (13)

¦h

¦t
U

¦h

¦x
V

¦h

¦y
w

¦H

¦z
¯H

!
[¡uh

z

¦U

¦z
. (14)

A solution of (8)–(14) in normal modes is assumed, varying as

exp[i(k
x
xk

y
x)nt], (15)

where k
x

and k
y

are the x and y components of the wavenumber and k¯
(k#

x
k#

y
)"/# is its magnitude. n is a complex number whose real and imaginary

parts are the growth factor and the frequency respectively.
After substitution of all variables in the form (15) is made into (8)–(14), a

combination of them leads to an equation for the vertical velocity component
w alone, namely

(k#ρ(nik[U)# 91
µH#

4πρ(nik[U)#:* w

nik[U

®²2iΩ−D[ρ(nik[U)]k#gDρ´
w

nik[U

9 4ρΩ+#

1µH#k#}4πρ(nik[U)#
®2ρk#(Ω

x
DV®Ω

y
DU): w

nik[U

®D (ρ(nik[U)# 91
µH#

4πρ(nik[U)#:D 0 w

nik[U1*¯ 0, (16)

where D¯ d}dz, and the following definitions have been used:

H¯ k
x
H

!x
k

y
H

!y
, (17)

Ω−¯ k
y
Ω

x
®k

x
Ω

y
, (18)

Ω+¯ k
x
Ω

x
k

y
Ω

y
. (19)

Then, after multiplying (16) by the complex conjugate of

w

nik[U
,

that is, by

wa
na ®ik[U

,
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where the overbar means complex conjugate, we integrate over the range of z
to arrive at

& k#ρ(nik[U)# 91
µH#k#

4πρ(nik[U)#: ) w

nik[U)# dz

®& ²2iΩ−D[ρ(nik[U)]k#gDρ´ ) w

nik[U)# dz

& 9 4ρΩ+#

1µH#k#}4πρ(nik[U)#
®2ρk#(Ω

x
DV®Ω

y
DU): ) w

nik[U)# dz

& (ρ(nik[U)# 91
µH#k#

4πρ(nik[U)#: )D 0 w

nik[U1 )#* dz¯ 0. (20)

Now, let us define the real and imaginary parts of n as

n¯RiI. (21)

Then two equations for R and I may be obtained: one by subtracting (20) from
its complex conjugate, and another by adding (20) to its complex conjugate.
They are

RI 0B#
4

k#

E#
"1R 0G®

Ω−

k#

C
4

k#

E
#1¯ 0, (22)

(R#®I#) 0B#
4

k#

E#
"1®2I 0G®

Ω−

k#

C
4

k#

E
#1

®J#σ#®gC2
Ω−

k#

A
4

k#

E#
$
®

4

k#

E#
%
¯ 0. (23)

Note that it is required that R1 0, in order for (22) be satisfied by I. Here the
following definitions of the integrals have been used:

A¯&Dρk[U ) w

nik[U)# dz, (24)

B#¯& ρ 0) w

nik[U)# 1

k#
)D 0 w

nik[U1)#1 dz& 0, (25)

C¯&Dρ ) w

nik[U)# dz, (26)

E#
"
¯Ω+#& ρ#

µH#

4π

1

rρ(nik[U)#µH#}4πr# ) w

nik[U)# dz

¯Ω+#E!#
"

& 0, (27)

E
#
¯Ω+#& ρ#k[U

µH#

4π

1

rρ(nik[U)#µH#}4πr# ) w

nik[U)# dz, (28)
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E#
$
¯Ω+#& ρ$ rnik[Ur%

1

rρ(nik[U)#µH#}4πr# ) w

nik[U)# dz

¯Ω+#E!#
$

& 0, (29)

E#
%
¯Ω+#& ρ#(k[U)#

µH#

4π

1

rρ(nik[U)#µH#}4πr# ) w

nik[U)# dz

¯Ω+#E!#
%

& 0, (30)

G¯& ρk[U 0) w

nik[U)# 1

k#
)D 0 w

nik[U1)#1 dz, (31)

J#¯& ρ(k[U)# 0) w

nik[U)# 1

k#
)D 0 w

nik[U1)#1 dz& 0, (32)

σ#¯&µH#

4π 0) w

nik[U)# 1

k#
)D 0 w

nik[U1)#1 dz& 0. (33)

Note that some integrals are positive or zero, depending on the magnitude of
one of their terms. This property will be important in determining the
maximum growth rate.

Now, if the solution for I in (22) is substituted into (23), we have0G®
Ω−

k#

C
4

k#

E
#1#

B#
4

k#

E#
"

σ#
#


4

k#

E#
$

¯®R# 0B#
4

k#

E#
"1J#®σ#

"
gC®

2

k#

Ω−A
4

k#

E#
%
& 0, (34)

where the definition of σ# in (3) has been split into the following:

σ#
"
¯&µH#

4π ) w

nik[U)# dz& 0, (35)

σ#
#
¯& µH#

4πk#
)D 0 w

nik[U1)# dz& 0. (36)

The left-hand side of (34) is positive or zero because all the terms in it have the
same property. Consequently, the right-hand side must be positive or zero.
Therefore the maximum growth rate of the perturbation is obtained from the
right-hand side of (34) as follows:

R#% 0J#
4

k#

E#
%
gC®

2

k#

Ω−A®σ#
"150B#

4

k#

E#
"1 . (37)

With this expression, an estimate of the upper bound of the growth rate may
be calculated, namely

R#%M
M

"

1Q
!MM

"
, (38)

where
M¯max(k[U)# (39)
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is used in the quotient

0J#
4

k#

E#
%150B#

4

k#

E#
"1

and

M
"
¯max 9ρ−" 0gDρ®

2

k#

Ω−Dρk[U®
µH#

4π 1: (40)

is used in the quotient 0gC®
2

k#

Ω−A®σ#
"15B#

"
.

The following definition has also been used:

Q¯
B#

#

B#
"


4

k#

E#
"

B#
"

" 0, (41)

where B# in (25) has been split into

B#
"
¯& ρ ) w

nik[U)# dz& 0, (42)

B#
#
¯& ρ

1

k#
)D 0 w

nik[U1)# dz& 0. (43)

Note that the magnitudes of the maxima M and M
"

depend not only on z
and the wavenumber but also on the relative angles between k, U, Ω amd H

!
.

2.1. Discussion of results

Here, a discussion of the maximum growth rate given in (37) is presented,
trying to find sufficient conditions for stability. The discussion will be separated
in different cases, starting with the more simple in order to understand the
general result.

Before discussing the case with shear flow, we note that (37) reduces to that
obtained for RTI in the absence of vertical rotation when the velocity is zero
(Da! valos-Orozco and Aguilar-Rosas 1989a, b ; Da! valos-Orozco 1991).

Case 1. It is supposed that

Ω
x
¯Ω

y
¯ 0, H

!x
¯H

!y
¯ 0, Dρ¯ 0,

There are no fields or density stratification. Then (37) reduces to

R#%
J#

B#

%M,

where
M¯max(k[U)#.

In the absence of shear flow, the system is stable (nothing happens). Note that
when the perturbation propagates perpendicularly to the shear flow, kvU, its
effect does not appear and the growth rate is zero in that direction. The
maximum growth rate will be attained at some value of z when the perturbation
propagates in the same direction of the shear flow.
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Case 2. The following conditions are given:

Ω
x
¯Ω

y
¯ 0. H

!x
¯H

!y
¯ 0, Dρ1 0.

There are no fields, and the fluid is stratified. Equation (37) becomes

R#%
J#gC

B#

%MM
"
,

where
M¯max(k[U)#, M

"
¯max[ρ−"(gDρ)].

Note that when the fluid is unstably stratified, the stratification slope Dρ" 0
also contributes to the growth rate. If the fluid is stably stratified, it may
contribute to decrease the growth rate and even to stabilize the shear flow in all
directions. When kvU, the stability is only governed by fluid density
stratification.

Case 3. Here horizontal rotation is allowed:

Ω
x
1 0, Ω

y
1 0, H

!x
¯H

!y
¯ 0, Dρ1 0.

There is no magnetic field, and the fluid is stratified. The growth rate is

R#%
J#gC®

2

k#

Ω−A

B#

%MM
"
,

where

M¯max(k[U)#, M
"
¯max 9ρ−"(gDρ)®

2

k#

Ω−Dρk[U: .
The horizontal component of rotation may stabilize the flow in the angular

region where ®(2}k#)Ω−Dρk[U! 0. This rotation term does not appear when
U¯ 0, as shown for RTI (Da! valos-Orozco and Aguilar-Rosas 1989a).
Moreover, it is zero if the perturbation propagates in the direction of rotation,
k sΩ ; that is, when Ω−¯ 0. Its strongest influence appears when the
perturbation propagates perpendicularly to rotation. Note that this term also
appears owing to density stratification, and it is not present in a homogeneous
fluid. The sign differences among Ω−, Dρ and k[U are important to determine
the stabilizing effect. These signs also depend on the relative directions among
the vectors k, U and Ω. Only when the sign product is negative may this term
stabilize the system, no matter which density stratification is present (stable or
unstable). For a given density gradient, the largest magnitude of this term
occurs when kvΩ and k sU.

Note that density plays a double role in the terms gC®(2}k#)Ω−A. That is,
when Dρ! 0, the term gC is negative and stabilizes, but if ®Ω−k[U! 0 at the
same time, the term (2}k#)Ω−A destabilizes.

Case 4. A horizontal magnetic field is allowed:

Ω
x
¯ 0, Ω

y
¯ 0, H

!x
1H

!y
1 0, Dρ1 0.

There is no rotation field, and the fluid is stratified. Now (37) is

R#%
J#gC®σ#

"

B#

%MM
"
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where

M¯max(k[U)# M
"
¯max 9ρ−"(gDρ)®

µH#

4π : .
The stabilizing effect of the horizontal magnetic field in the absence of shear

flow when Dρ" 0 has already been demonstrated (Chandrasekhar 1961;
Da! valos-Orozco and Aguilar-Rosas 1989b ; Da! valos-Orozco 1991). Here it
works to oppose the effects of shear and gravity in the terms J# and gC
respectively. However, it has no effect when the perturbation propagates
perpendicularly to the magnetic field; that is, when H¯ 0 by definition, or
kvH

!
. If U sH

!
and at the same time kvH

!
then the stability will only

depend on Dρ. When U and H
!
are not parallel, the effect of each will be null in

different regions with respect to the wave vector.

Case 5. Both horizontal rotation and magnetic fields are included:

Ω
x
1 0, Ω

y
1 0, H

!x
1H

!y
1 0, Dρ1 0

and the fluid is stratified. Now (37) is

R#%
J#

4Ω+#

k#

E!#
%
gC®

2

k#

Ω−A®σ#
"

B#
4Ω+#

k#

E!#
"

%MM
"

where

M¯max(k[U)#, M
"
¯max 9ρ−"(gDρ)®

2

k#

Ω−Dρk[U®
µH#

4π : .
Here the growth rate is presented in a different way to show explicitly the effect
of rotation in the new terms that only appear when both rotation and magnetic
field act simultaneously.

Note that the terms (4Ω+#}k#)E!#
%

and ®(2}k#)Ω−A become zero at angles
separated by 90° from each other; that is, the term Ω+¯ 0 when kvΩ, and the
term Ω−¯ 0 when k sΩ, but the former always has a destabilizing effect. Now,
the term σ#

"
always stabilizes except when H¯ 0, that is if kvH

!
.

Therefore the term (4Ω+#}k#)E!#
%

becomes zero in three directions defined by
Ω+¯ 0 when kvΩ, k[U¯ 0 when kvU, and H¯ 0 when kvH

!
.

The terms (4Ω+#}k#)E!#
%

and ®(2}k#)Ω−A show the dual role that horizontal
rotation plays in the presence of a horizontal magnetic field and shear flow. It
always destabilizes through the first term supported in some directions by the
second, and it may stabilize through the second term in other directions.

3. Generalization of Johnson’s sufficient condition for stability
including density stratification, and a new method to obtain a
sufficient condition for stability in the additional presence of a
magnetic field

In his paper, Johnson (1963) obtained a sufficient condition for stability of a
fluid under shear and horizontal rotation. The fluid was not stratified, and a
magnetic field was not taken into account. In this section, the results of
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calculations are given showing that in the present problem a more general
sufficient condition can be obtained for density stratification. However, we
show that the generalization of Johnson’s method to the case where a magnetic
field is present cannot determine the role played by that field with regard to
stability. Therefore a new method is developed to obtain a sufficient condition
for stability in the presence of all the fields and density stratification.

The procedure followed by Johnson starts by replacing, in (16), the complex
amplitude of the z component of velocity w by f(nik[U)"/#. After some
algebra, the resulting equation is

D (9ρ(nik[U)
µH#}4π

nik[U:Df*®"
#
ρik[D#Uf


1

4

ρ(k[DU)#

nik[U
f

®k# 9ρ(nik[U)
µH#}4π

nik[U: f® 4Ω+#ρ#(nik[U) f

ρ(nik[U)#µH#}4π

2ρΩ+D(k
x
V®k

y
U)

f

nik[U

[gk#2iΩ−(nik[U)]Dρ
f

nik[U

®
µ

4π
H#f 912 ik[D#U

(nik[U)#


3

4

(k[DU)#

(nik[U)$:¯ 0. (44)

Now, multiplication of the complex conjugate of f, that is, f*, and integration
of (44) over the full range of z lead us to

& 9ρ(nik[U)
µH#}4π

nik[U: (rDf r#k#r f r#) dz

& "
#
ρik[D#Ur f r# dz

& 9 4Ω+#ρ#(nik[U)#

ρ(nik[U)#µH#}4π
®2ρΩ+D(k

x
V®k

y
U):

¬) f

nik[U)# (n*®ik[U) dz

®& ²"
%
ρ(k[DU)#[gk#2iΩ−(nik[U)]Dρ´

¬) f

nik[U)# (n*®ik[U) dz

&µH#

4π 912 ik[D#U

(nik[U)


3

4

(k[DU)#

(nik[U)#:
¬) f

nik[U)# (n*®ik[U) dz¯ 0 (45)
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Let us suppose that the real and imaginary parts of n are R and I respectively.
Then, after dividing by R" 0, the real part of (45) is

& 9 ρ
µH#}4π

rnik[Ur#: 0rDf r#k#r f r#) dz

& 4Ω+#ρ#(ρrnik[Ur#µH#}4π)rnik[Ur#
rρ(nik[U)#µH#}4πr# ) f

nik[U)# dz

®& 2ρΩ+D(k
x
V®k

y
U) ) f

nik[U)# dz

®& ["
%
ρ(k[DU)#gk#Dρ] ) f

nik[U)# dz

&µH#

4π

(Ik[U)k[D#U

rnik[Ur# ) f

nik[U)# dz

&µH#

4π

3

4

[R#®3(Ik[U)#] (k[DU)#

rnik[Ur% ) f

nik[U)# dz¯ 0 (46)

Following the arguments given by Johnson (1963), this condition is satisfied
if the sum of the last five integrals on the left-hand side is negative. On the
contrary, if the sum is positive, this is not possible, and a sufficient condition
for stability is

4Ω+#ρ#(ρrnik[Ur#µH#}4π) rnik[Ur#
rρ(nik[U)#µH#}4πr#

®2ρΩ+D(k
x
V®k

y
U)®"

%
ρ(k[DU)#

®gk#DρµH#}4π 9(Ik[U)k[D#U

rnik[Ur#


3

4

[R#®3(Ik[U)#] (k[DU)#

rnik[U]% :& 0. (47)

It is clear from (47) that it is not possible to determine, in a definite way, the
correct sign of the last term on the left-hand side, corresponding to the
magnetic field effect. Moreover, it is not possible to know the relative
magnitude of R and I.

Therefore a new method has been developed in which we are able to
determine the effect of a horizontal magnetic field on the stability of a rotating
stratified fluid under shear flow.

We start by substituting the z component of velocity w by h(nik[U) in
(16). Then, after multiplying by the complex conjugate of h, h*, integrating
over the range of z, and some algebra, we are led to

& 9ρ(nik[U)#
µH#

4π : (rDhr#k#rhr#) dz& 4Ω+#ρ#(nik[U)#

ρ(nik[U)#µH#}4π
rhr# dz

®& 2ρΩ+D(k
x
V®k

y
U) rhr# dz®& [gk#2iΩ−(nik[U)]Dρrhr# dz¯ 0. (48)
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The corresponding real part is

R#

A

B

& ρ(rDhr#k# rhr#) dz& 4Ω+#µH#}4π)(nik[U)#
µ

4π

H#

ρ )# rhr# dz
C

D

®& ρ 9(Ik[U)#®
µ

4π

H#

ρ : (rDhr#k#rhr#) dz

& 4Ω+#ρ 9rnik[Ur%®
µ

4π

H#

ρ
(Ik[U)#:)(nik[U)#

µ

4π

H#

ρ )# rhr# dz

®& 2ρΩ+D(k
x
V®k

y
U) rhr# dz®& [gk#®2Ω−(Ik[U)]Dρrhr# dz¯ 0. (49)

In order to satisfy this equation, the last four integrals must add to give a
negative number. On the contrary, if the sum is positive, this is not possible,
and a sufficient condition for stability is

4Ω+#ρ 9rnik[Ur%®
µ

4π

H#

ρ
(Ik[U)#:)(nik[U)#

µ

4π

H#

ρ )#
2ρΩ+D(k

y
U®k

x
V)2Ω−(Ik[U)Dρ®gk#Dρ

®ρ 9(Ik[U)#®
µ

4π

H#

ρ : (γ#k#)& 0, (50)

where γ−" is a representative length scale along the z direction. This inequality
(50) will allow us to discuss the influence of the horizontal magnetic field. Note
that from the imaginary part of (48), an equation for I, the frequency of the
perturbation, may be obtained to determine the possible sign it may have for
different magnitudes of the fields and wavenumber. We omit these calculations
here.

3.1. Discussion of results related to the generalization of Johnson’s
approximation

When the horizontal stratified magnetic field is zero, the first three terms of the
left-hand side of (47) correspond to those obtained by Johnson (1963). The last
two terms of the left-hand side result from the density stratification and the
magnetic field. We cannot determine the effect of the magnetic field with this
inequality, as explained above. Then let us suppose that H is zero. Besides,
without loss of generality, suppose that only Ω

x
is different from zero, and

therefore Ω+¯ k
x
Ω

x
and Ω−¯ k

y
Ω

x
.
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The value of Ω
x
that gives a sufficient condition for stability can be found by

solving the quadratic inequality (47). Thus

4Ω
x
%

1

k
x

D(k
x
V®k

y
U)®

k

k
x

9(DU)#(DV)#
4gDρ

ρ :"/#, (51)

4Ω
x
&

1

k
x

D(k
x
V®k

y
U)

k

k
x

9(DU)#(DV)#
4gDρ

ρ :"/#. (52)

Note that
[D(k

x
V®k

y
U)]#(k[DU)#¯ k#[(DU)#(DV)#].

Now suppose that the velocity represents a Couette flow or has a hyperbolic-
tangent profile with a maximum for its derivative DU

max
¯ 1 and that the

density has an exponential stratification as ρ¯ ρ
b
eβz. Then a positive β

broadens the unstable region of Fig. 2 of Johnson (1963). A negative β narrows
this region until it becomes a line when (DU)#(DV)#¯ 4grβr. The magnitude
of the wavenumber is important to determine the size of the unstable region.
When k

y
is zero, the wavenumber disappears. If k

x
is negative, the inequalities

must be changed. When k
y
1 0, a small wavenumber k

x
" 0 increases the

unstable area.

3.2. Discussion of results obtained from the new method

Suppose again, without loss of generality, that only Ω
x

is different from zero.
Then, from the new method developed in this paper, the following solutions of
the quadratic inequality (50) for Ω

x
are obtained:

4Ω
x
%

®R
"

k#
x
B

"

®
1

k#
x
B

"

9R#
"
4k#

x
B

" 0B#


gk#Dρ

ρ 1:"/#, (53)

4Ω
x
&

®R
"

k#
x
B

"


1

k#
x
B

"

9R#
"
4k#

x
B

" 0B"


gk#Dρ

ρ 1*"/#, (54)

where

B
"
¯
9rnik[Ur%®

µ

4π

H#

ρ
(Ik[U)#:)(nik[U)#
µ

4π

H#

ρ )# , (55)

B
#
¯ 9(Ik[U)#®

µ

4π

H#

ρ : (γ#k#), (56)

R
"
¯ k

x
D(k

y
U®k

x
V)k

y
(Ik[U)

Dρ

ρ
. (57)

Before discussing these inequalities, we obtain from (50) the sufficient
condition for stability when rotation is zero, namely

®
gk#Dρ

ρ
®9(Ik[U)#®

µ

4π

H#

ρ : (γ#k#)& 0. (58)
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Note that this condition is similar to that of the two-fluid system presented by
Chandrasekhar (1961, chap. XI (204), p. 511 – see the radicand). Here we may
suppose that the density grows as eβz and the magnetic field as eβz/# and take a
representative value for the velocity (its maximum, for example, equal to one
in the case of a hyperbolic-tangent velocity profile). In this case, a positive β
counteracts the role played by the magnetic field in stabilizing by eliminating
the destabilizing effects of shear flow and the adverse density stratification.
When β is negative, a weaker magnetic field will be enough to stabilize the
system.

In order to understand the influence on stability of each of the terms in the
inequalities (53) and (54), we start again with rotation and stratification alone.
Suppose that D(k

y
U®k

x
V)" 0. In this case, B

"
¯ 1, B

#
¯ (Ik[U)# (γ#k#),

R
"

is the same, and the inequalities (53) and (54) reduce to

4Ω
x
%

®R
"

k#
x

®
1

k#
x

(R#
"
4k#

x 9(Ik[U)# (γ#k#)
gk#Dρ

ρ :*"/#, (59)

4Ω
x
&

®R
"

k#
x


1

k#
x

(R#
"
4k#

x 9(Ik[U)# (γ#k#)
gk#Dρ

ρ :*"/#. (60)

Here again we shall refer to the unstable area presented in Johnson (1963, Fig.
2). Note that the conclusions are the same as those obtained above for the
generalization of Johnson’s results in Sect. 3.1.

The behaviour of the magnetic field, when interacting with rotation, may
be better understood in the absence of density stratification. In this case,
R

"
¯ k

x
D(k

y
U®k

x
V), B

"
and B

#
are the same, and the inequalities (53) and (54)

become

4Ω
x
%

®D(k
y
U®k

x
V)

k
x
B

"

®
1

k
x
B

"

²[D(k
y
U®k

x
V)]#4B

"
B

#
´"/#, (61)

4Ω
x
&

®D(k
y
U®k

x
V)

k
x
B

"


1

k
x
B

"

²[D(k
y
U®k

x
V)]#4B

"
B

#
´"/#. (62)

Note first that if both are positive then B
"
"B

#
. Then, if the magnetic field is

increased to work against the destabilizing effect of shear flow, B
#
may become

zero before B
"
, and reduce the unstable area presented by Johnson. When

B
#
¯ 0, one of the roots becomes zero (see (50)). A further increase in the

magnetic field reduces the unstable area even more until B
"
¯ 0 and only one

root exists (see (50)), which is equal to:

Ω
x
&

®9 µ

4π

H#

ρ
®(Ik[U)#:

2k
x
D(k

y
U®k

x
V)

, (63)

where we have already supposed that the denominator is positive and, for this
magnitude of magnetic field, the numerator is negative. This means that the
unstable area of Johnson has grown infinitely to the left of this value and that
it is only possible to stabilize for values above this one.
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A further increase in the magnetic field makes both B
"
! 0 and B

#
! 0, and

the two roots are recovered, again reducing the unstable area from an infinitely
large one to a finite one. However, note that when this occurs, the inequalities
(61) and (62) interchange roles, because the denominator has already become
negative. Increasing the magnetic field even more increases the unstable area
by increasing the magnitude of the radicand.

The description given above does not change when density stratification is
included, as in (53) and (54). The difference is that we need to think about the
sign of B

"
gk#Dρ}ρ instead of the sign of B

#
alone. However, for large values

of β, it is possible for this term to become negative after B
"
does. For negative

β, it becomes negative for smaller magnetic fields.

4. Conclusions

We have investigated the KHI of a non-dissipative incompressible magnetofluid
under the action of horizontal rotation and a stratified horizontal magnetic
field. The maximum growth rate of the instability has been obtained, along
with an estimate of its upper bound. By means of the maximum growth rate,
we have given sufficient conditions for stability. We have shown that there are
terms that only appear in the presence of shear flow compared with the RTI.
One term with magnetic field, ®σ#

"
, already appears in RTI, while others

appear owing to the presence of shear flow. There is a term, 4Ω+#E!#
%
}k#, that

needs the simultaneous action of rotation, magnetic field and shear to be
present in the growth rate. Another term, ®2Ω−A}k#, discussed in Case 3 of Sec.
2, appears owing to the interaction of rotation, fluid stratification and shear.

A generalization of the sufficient condition for stability given by Johnson
(1963) has been presented in Sec. 3 for the case of horizontal rotation and
density stratification alone. We have shown how unstable density stratification
broadens the unstable area of figure 2 of the paper by Johnson. Stable density
stratification may reduce the unstable area to a straight line. We have also
shown that Johnson’s method is not adequate to understand the behaviour of
the magnetic field. Therefore a new method has been developed to show the role
played by the magnetic field when horizontal rotation, density stratification
and shear flow are present. We have found that an increase in the magnetic field
decreases the unstable area presented in figure 2 given by Johnson. A further
increase, instead of reducing this area, increases it infinitely to the left of the
figure, and it is only possible to stabilize for rotation values larger than the
calculated one. This situation occurs when the equation has only one root at a
specific magnitude of the magnetic field. If we increase the magnetic field even
further, the equation again has two roots, and the unstable region becomes
finite, but an increase in the magnetic field increases it once more. The inclusion
of density stratification does not change the qualitative nature of the above
results, but may only change the order at which B

"
becomes zero when the

magnetic field is increased.
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