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Abstract

We present a generalized hydrodynamic model for dielectric relaxation to describe the e�ect of spatial inhomogene-

ities in the polarization ¯uctuations in viscoelastic ¯uids. The model is a generalization of the simple Debye relaxation

equation with the addition of the gradient of the total stress tensor. The two known modes of relaxation, N- and a-ab-

sorption can be incorporated in the model semiquantitatively, since we do not know the actual parameters involved.

The comparison between our results and the experimental response reported for the N- and a-modes in polymers,

shows that the predicted intensities of the loss peaks are well represented. However, at lower and higher frequencies

the predicted curves deviate from the experimental ones. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Molecular motions in dense amorphous poly-
mers or polymeric solutions control the rate of
the dielectric relaxation. Therefore, the response
of the material can be observed in several fre-
quency domains depending on the number of
molecules involved. The low frequency region
has a normal mode relaxation, in which ¯uctua-
tion dynamics of the long polymeric chains takes
place [1]. The intermediate region of the dielectric
relaxation frequency range has Brownian ¯uctua-
tions of segment of the chains. This relaxation is
identi®ed as the a-relaxation [2]. In the high fre-
quency region the dielectric relaxation response
involves internal rotations of side groups at-
tached to the polymeric chains, the b-relaxation,

and by the motion of subunit chains, the c-relax-
ation [3].

In this paper, we consider that related to the
molecular ¯uctuations of the normal and a-relax-
ations there is the e�ect of the polarization di�u-
sion, produced by local spatial variations in the
polarization caused by the dipole±dipole interac-
tion. Consequently, the di�usion of the polariza-
tion is an additional macroscopic mechanism of
the system towards the equilibrium state [4].

Along these lines, we will consider a polariza-
tion±di�usion model to explain some characteristic
details of the normal mode relaxation.

2. Contribution of the polarization di�usion e�ect to

the dielectric normal relaxation

From the macroscopic point of view, we consid-
er the following proposed equations [4±6] for the
polarization vector �~P � and the symmetric stress
tensor (Qs), which are given respectively by:
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where g0 is the shear viscosity and v0 the electric
susceptibility at equilibrium. The terms d1 and d2

are coupling parameters. Eqs. (1) and (2) represent
a set of coupled equations. For the normal mode
relaxation, ~P is the component of the polarization
aligned along of the backbone of the polymeric
chains [2]. We consider that the baricentric veloci-
ty,~v; is zero everywhere and that the system is in-
compressible. The Debye relaxation time, s1, is
given by the position of the maximum value of
the loss peak, s2 is the viscoelastic relaxation time
and is of the same order of magnitude as that given
by molecular models, as by Rouse or the reptatio-
nal models [7±9]. Regarding the retardation time,
s3, we assume that the corresponding e�ect does
not have an a�ect on the viscoelastic relaxation,
and it can be dropped from Eq. (2).

By considering the Laplace±Fourier transfor-
mation of Eqs. (1) and (2) and the relation for
transformed vectors ~P � v� ~k;x

� �
~E; we obtain

the following result for the complex dielectric con-
stant:

v� x;~k
� �
v0

�
e� x;~k
� �

ÿ e1

e0 ÿ e1
� 1

1ÿ ixs1 ÿ A1s1k2

1ÿixs2

; �3�

where x and~k are, respectively, the frequency and
the wave number. The presence of the term,
A1 � d1d2; in Eq. (3) is responsible for the contri-
bution of the polarization±di�usion e�ect. When
the parameter A1� 0 expression (3) reduces to
the well known Debye relaxation equation.

3. Contribution of the polarization±di�usion e�ect

to the dielectric a-relaxation

The proposed constitutive equations for the an-
tisymmetric stress tensor (Qa) and for the polariza-
tion vector are given respectively by [6]

1� s4

d

dt

� �
Qa � ÿn0~x� d3 1� s5

d

dt

� �
r~P
� �a

;

�4�

ÿ d~P
dt
� 1

s6

~P ÿ v0
~E

� �
� d4r �Qa; �5�

where ~x is the angular velocity and n0 is the rota-
tional viscosity. Up to this point, we stress that the
nature of the above equations involves macroscop-
ic quantities, and the angular velocity vector, in
Eq. (4), represents the angular movement of a
group of molecules produced by external mechan-
ical e�ects, which twists the material. Nevertheless,
we consider that, under actual experimental condi-
tions for dielectric tests, the simultaneous applica-
tion of any mechanical perturbation is absent, and
for the sake of simplicity this term will be consid-
ered equal to zero �~x � 0�. For a further discus-
sion of this sort of contributions see Ref. [10].

Taking the Laplace±Fourier transformation of
Eqs. (4) and (5), one obtains

e� x;~k
� �

ÿ e1

e0 ÿ e1
� 1

1ÿ ixs6 ÿ A2s6k2

1ÿixs4

; �6�

where A2 � d3d4 represents the polarization±di�u-
sion parameter. Again, if A2� 0, we obtain the De-
bye expression. A comparison of Eq. (6) with
experimental data for the a-relaxation has been re-
ported elsewhere [10].

4. A general expression for dielectric a and normal

mode relaxation

The frequency of the loss peak of the a-relax-
ation is usually separated from the loss peak of
the normal-mode relaxation by two or three fre-
quency decades [11]. To describe these two polar-
ization processes in a unique expression, we
assume that the e�ect of each stress tensor is inde-
pendent of the other, and the change of polariza-
tion is produced by the contribution of the two
processes with a new characteristic time given by

1

se

� 1

s1

� 1

s6

: �7�
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Therefore, the global constitutive equation for
the polarization is given by

ÿ d~P
dt
� 1

se

~P ÿ v0
~E

� �
� d2r �Qs � d4r �Qa: �8�

Considering the equations for Qs and Qa, the
new expression for the complex dielectric constant
is then

e� x;~k
� �

ÿ e1

e0 ÿ e1

� 1

1ÿ ixse 1ÿ A2k2

ix 1ÿixs4� �

h i
ÿ A1sek2

1ÿixs2

: �9�

It should be noted that Eq. (6) is a particular
case of Eq. (9) when A1� 0 and se� s6, and
Eq. (3) is also obtained when A2� 0 and se � s1:

5. Results

Fig. 1 shows the presence of two peaks, one at
the right associated with the dielectric a-relax-
ation. The one at the left is related to the dielectric
normal-mode relaxation. The position of the for-
mer peak is given by the parameter se when
A2� 0 in Eq. (9). The position of the left peak is
provided by the inverse of the Rouse relaxation
time s2, and is molecular weight dependent.

Fig. 1. Imaginary part of the complex dielectric constant versus log(x). The right-hand peak is the Debye description of the a-relax-

ation and is represented by Eq. (9) with A1k2� 0.8 sÿ1, A2k2� 2.21 ´ 105 sÿ1, s2� {7 ´ 10ÿ4 s, 7 ´ 10ÿ3 s, 7 ´ 10ÿ2 s, 7 ´ 10ÿ1 s, 7 s,

7 ´ 10 s}, s4� 9.86 ´ 10ÿ7 s and se� 6.22 ´ 10ÿ6 s. The position of the normal-mode relaxation moves toward the left when Rouse's

parameter s2 increases. According to the Rouse or tube models, this parameter is molecular weight dependent.
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Fig. 2 shows the ®tting of the experimental
data of liquid cis-polyisoprene at 273 K for di�er-
ent molecular weights, from Ref. [1]. In the ®tting
procedure a dispersion relation of the type
k2 � k2

0 x=x0� �n was considered, therefore A1k2 �
A10 x=x1� �n1 and A2k2 � A20 x=x2� �n2 ; where x1;
x2; n1 and n2 are unknown constants. The values
of the parameters used in Eq. (9) are given in Ta-
ble 1. In Fig. 2, the deviations of the ®tting curves
from the experimental data shows the range of va-
lidity of the present model.

6. Discussion

We have separated two contributions in the di-
electric relaxation expression, into translational
and rotational, according to the molecular move-

ment of the particle dipoles involved. The transla-
tion one, according to Rouse, is related to the
di�usion of polymeric chains and the relaxation
of the symmetric stress tensor. The rotational
one, according to Stockmayer is due to the Brown-
ian ¯uctuations of the segments of the polymeric
chains and is related to the relaxation of the

Fig. 2. The imaginary part of the complex dielectric constant versus log (x). The experimental data is from Adachi and Kotaka [8]. The

continuous lines were obtained using Eq. (9). The error bars have been obtained considering an estimated error of �2%, as reported by

the same authors in Ref. [12].

Table 1

Parameters used in Eq. (9) to ®t the experimental data from

Adachi and Kotaka [1] a

Curve A10 (cm2/s) s1 (s) x1 (Hz) n1

PI-53 0.29 4.22 0.29 0.71

PI-32 0.09 0.30 0.76 0.70

PI-14 0.06 0.01 7.77 0.69

PI-05 0.04 1.50 ´ 10ÿ3 20.14 0.59

PI-03 0.02 2.03 ´ 10ÿ4 63.06 0.64

a A20 � 16.95 ´ 106 cm2/s, s4� 8.64 ´ 10ÿ9 s, se� 189.57 ´ 10ÿ9

s, x2� 12.37 ´ 106 Hz, n2� 0.63
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antisymmetric stress tensor. These contributions
are respectively, in the normal and alpha modes.

To take into account the two polarization pro-
cesses in a unique expression, Eq. (9) is given in
terms of several unknown parameters, which may
be determined by a molecular model or by a com-
parison with experimental data. In the particular
comparison of Eq. (9) with measurement for the
cis-polyisoprene, we show that the use of Eq. (9),
with adequate values of these parameters, allows
the determination of the intensity and the position
of the maximum of the loss peaks (see Fig. 2).
However, the ®tting procedure fails to correctly
predict the bandwidths of the respective peaks.

7. Conclusions

A comparison of the proposed model with ex-
perimental data, suggests that the polarization±
di�usion formulation presented here may be a
good alternative description for the dielectric re-
laxation theory. In the near future, it may be pos-
sible to improve the model to provide a full
description of the dielectric relaxation response
in polymers.

Acknowledgements

Thanks are given to DGAPA-UNAM project
IN106797.

References

[1] K. Adachi, T. Kotaka, Prog. Polym. Sci. 18 (1993) 585.

[2] W.H. Stockmayer, Pure Appl. Chem. 15 (1967) 539.

[3] N.G. McCrum, B.E. Read, G. Williams, An Elastic and

Dielectric E�ects in Polymeric Solids, Wiley, London,

1967.

[4] L.F. del Castillo, L.A. D�avalos-Orozco, J. Chem. Phys. 93

(1990) 5147.

[5] L.A. D�avalos-Orozco, L.F. del Castillo, J. Nonequil.

Thermodyn. 15 (1990) 11.

[6] L.A. D�avalos-Orozco, L.F. del Castillo, J. Chem. Phys. 96

(1992) 9102.

[7] P.E. Rouse, J. Chem. Phys. 21 (1953) 1272.

[8] P.G. de Gennes, Scaling Concepts in Polymers Physics,

Cornell University, Ithaca, NY, 1980.

[9] M. Doi, S.F. Edwards, The Theory of Polymer Dynamics,

Clarendon, Oxford, 1986.

[10] L.F. del Castillo, R. D�õaz-Calleja (in preparation).

[11] A. Sch�onhals, F. Kremer, E. Sclosser, Phys. Rev. Lett. 67

(1991) 999.

[12] Y. Imanishi, K. Adachi, J. Kotaka, J. Chem. Phys. 89

(1988) 7585.

L.F. Del Castillo et al. / Journal of Non-Crystalline Solids 235±237 (1998) 677±681 681


