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Role of the second-order memory function on the dielectric relaxation
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In this paper the use of the second-order memory function to represent experimental results of
dielectric relaxation data of amorphous and glass forming materials is presented, and particularly, its
interpretation in terms of the frequency dependence of the complex shear modulus, shear viscosity,
and diffusion coefficient is pointed out. The method used for its evaluation is applied to consider the
experimental results for three ester substances, and their particular features are discussed. ©1998
American Institute of Physics.@S0021-9606~98!50843-4#
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I. INTRODUCTION

The role played by the memory function in the forma
ism of Mori–Zwanzig1 applied to the dielectric relaxatio
has been discussed in several papers considering rotat
Brownian particles2,3 and the fluctuation of the interactin
torques acting on dipole particles.4,5 The relevant paper o
Nee–Zwanzig6 studied the theory of dielectric relaxation o
the basis of Kubo’s technique to derive response coefficie
Nee–Zwanzig found an expression for the dielectric fricti
and its relation with the energy dissipation mechanism in
interaction between the electric field and the molecular
poles. Another paper by Fulton7 described the long-rang
character of the dipolar interactions, from which the anis
ropy character of the dielectric constant is derived. In
frame of the three variable model, the dielectric respons
accounted using the first- and second-order memory fu
tions related to the evolution of the angular velocity corre
tion function and the torque–torque correlation functio
respectively.8–10 Hubbard and Wolynes11 introduced the ro-
tational Smoluchowski equation with fluctuating dipol
torques and derived from it a generalized friction coefficie
Sparling et al.12 showed that the hydrodynamic memo
function is related to the generalized Stokes friction coe
cient for rotational polar molecules, and how this frictio
coefficient determines the form of the memory and affe
the response of the dielectric material.

In the present paper, we first consider that both the
drodynamic and the interaction dipole–dipole contributio
to the total friction are nonseparable from the dynamic fr
tion coefficient, which determines the dielectric respon
complex coefficient. In the second place, we consider
within the frequency domain of thea relaxation, there is no
contribution of any resonance process to the complex die
tric constant. Under these considerations, the general
friction coefficient is in fact the second-order memory fun
tion in the Mori–Zwanzig formalism, and it allows us t
discuss properly the properties of this memory kernel wit

a!To whom correspondence should be addressed.
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the context of the experimental data and model represe
tion. One of the direct antecedents of the present paper is
work by Douglas and Hubbard13 where they have considere
a two-parameter model to describe the first memory funct
in the formalism of Mori–Zwanzig. They showed that th
width of the loss peak of thea relaxation is a result of the
material inhomogeneity and cooperative molecular moti
and they modeled these effects in the memory function. F
thermore, the mode–mode coupling theory14,15 represents an
interesting model for thea relaxation in terms of the second
order memory function~SOMF! which assures the correc
width of the loss modulus of the complex dielectr
constant.16

Recently, Williams and Fournier17 have described the
first memory function in terms of the so-called appare
memory. They found the corresponding first-order mem
function for the Cole–Cole and the Kohlrausch represen
tion of the dielectric constant expression for polymers a
glass-forming liquids considering relaxation data. They a
emphasize that if the dynamic heterogeneity of Schm
Rohr and Spiess18 and Ciceroneet al.19 is considered for the
a relaxation in glass-forming materials, the physical mea
ing of the memory may change. The dynamic heterogen
point of view explains the relaxation function as an avera
of a series of parallel and independent decaying elemen
processes with a broad distribution of relaxation times. Fr
the interpretation of this point of view, the presence of t
first- and second-order memory function is only apparen

Following the lines of the validity of the fluctuating
dissipation theorem for the polarization correlation functi
for the a relaxation, we now propose as a further advan
the use of a semiempirical SOMF for general applications
order to describe dielectric relaxation data for amorpho
polymers and glass-forming liquids. The method we use
determine the SOMF is a variation of that described rece
by Williams and Fournier,17 which queried the values of th
first-order memory function.

The structure of this paper is as follows. In Sec. II w
present the definition of the SOMF and its interpretation c
sidering the absence of any contribution from inertial effec
7 © 1998 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ls
a

k–
o

o
ce

m

ua

d
d
n

o-

-
el
m
ke

d

oe

:

x
ed

-
ified

re

ro-

rm

g
er-
s

a-
t,

of
dy-
as

ing

are

be
r-

the
in
by

ird

9058 J. Chem. Phys., Vol. 109, No. 20, 22 November 1998 Dı́az-Calleja, Sanchis, and del Castillo
In Sec. III the explicit form of the SOMF for several mode
is presented. We give, in Sec. IV, the procedure to evalu
the SOMF from experimental data and from the Havrilia
Negami expression. Finally, we include a short discussion
the aspects of the imaginary and real parts of this mem
function for the experimental data of three ester substan

II. SECOND-ORDER MEMORY FUNCTION AND THE
DYNAMIC FRICTION COEFFICIENT

The normalized autocorrelation function for a syste
formed by a collection of molecular dipoles is given by

F~ t !5^m~0!–m~ t !&^m~0!–m~0!&21, ~2.1!

wherem(t) is the time-dependent dipole moment. The eq
tion that governs the time evolution ofF(t) is given by the
master equation,1

Ḟ52E
0

t

dt8 K1~ t2t8!F~ t8!. ~2.2!

K1(t) is the memory kernel of the relaxation process an
contains the full dynamics of theN bodies as it is prescribe
by the Liouville equation without any additional assumptio
According to Mori,20 it is possible to represent the time ev
lution of K1(t) in terms of the SOMFK2(t) by means of the
following relationship:

K̇152E
0

t

dt8 K2~ t2t8!K1~ t8!. ~2.3!

In Eq. ~2.3!, the kernelK2(t) accounts for the time lag ef
fects produced by the internal mechanism, which ultimat
represents the ensemble-average dynamics of the syste
To relate the SOMF with the correlation function, we ta
the Laplace transform of Eqs.~2.2! and ~2.3!

F~v!5F~0!@K1* ~v!1 iv#21, ~2.4!

K1* ~v!5K1~0!@ iv1K2* ~v!#21, ~2.5!

whereF(0) andK1(0) are the autocorrelation function an
the first-order memory function att50, respectively. By the
normalization conditionF(0)51.

The relation between the SOMF and the response c
ficient is given through the correlation function, namely,

R* ~v!5
e~v!2e`

e02e`
f ~v!512 ivF~v!, ~2.6!

where f (v) is the field correction factor.6 Using Eqs.~2.4!
and ~2.6! the response coefficient takes the following form

R* ~v!5R8~v!2 iR9~v!5F11 iv
iv1K2* ~v!

K1~0!
G21

.

~2.7!

If we compare Eq.~2.7! with the expression for the comple
dielectric function, including the inertial and the generaliz
friction terms,8,11

R* ~v!5F12
Iv2

2kBT
1

ivI

2kBT
j* ~v!G21

, ~2.8!
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we note thatK1(0)52kBT/I , which represents the reso
nance frequency squared, and the SOMF may be ident
directly by means of the generalized friction coefficient;

K2* ~v!5j* ~v!. ~2.9!

In Eq. ~2.8! kBT is Boltzmann’s constant times temperatu
and I is the relevant moment of inertia.

Now we consider that in the frequency domain of thea
relaxation there is no contribution of any resonance p
cesses. In fact, in the diffusive regime,11 the following con-
dition is fulfilled:

Iv2

2
!kBT and from here, it has

v2

K1~0!
!1.

In others words, it is essential to drop out the inertial te
from Eq. ~2.8!, since we are interested ine* (v) at frequen-
cies smaller than (2kBT/I )1/2 to take in consideration only
the diffusive regime. Therefore, the following equation:

R* ~v!5F11
iv

K1~0!
j* ~v!G21

~2.10!

and Eq.~2.9! allow us to evaluate the SOMF without takin
into consideration the first-order memory function. Furth
more, Eq. ~2.9! allows us a direct interpretation of thi
memory in terms of the internal frictional mechanism.
An alternative interpretation of the SOMF is obtained an
lyzing the frequency dependent diffusion coefficien
namely,

I j* ~v!

2kBT
5t* ~v!5

1

2D* ~v!
. ~2.11!

Furthermore, another consideration for the interpretation
this memory is considering the relationship between the
namic friction coefficient and the complex shear viscosity,
it was prescribed by Di Marzio and Bishop21

K2* ~v!

K1~0!
5t* ~v!5Ah* ~v!, ~2.12!

A is a parameter of the order of 1029. From Eq.~2.12! the
SOMF also can be related with the shear modulus by us

G* ~v!5G8~v!1 iG9~v!5 ivh* ~v!. ~2.13!

In terms of the real and imaginary parts ofK2* (v)5K28(v)
2 iK 29(v), the storage and loss parts of shear modulus
given by

G8~v!5
vK29~v!

K1~0!A
, ~2.14!

G9~v!5
vK28~v!

K1~0!A
. ~2.15!

Therefore, Eqs.~2.9!, ~2.11!, and~2.12! show that the results
of any experimental-dielectric relaxation observation can
explained by any of three ways. One is the frictional inte
pretation in which the energy is going to be dissipated by
internal mechanisms. A second view is the diffusion one
which the molecular-dipoles undergo diffusion processes
means of rotational Brownian molecular motion. The th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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view is the interpretation by considering generalized hyd
dynamics to describe the evolution of the shear viscos
Eqs.~2.14! and ~2.15! correspond to this last treatment.

III. SECOND-ORDER MEMORY FUNCTION FROM
THEORETICAL AND EMPIRICAL MODELS

We now analyze several models which give formal
sults for the SOMF.

A. The Havriliak–Negami and Cole–Cole models

Considering the Havriliak–Negami~HN! empirical
expression,22

R* ~v!5@11~ ivtD!12a#2b, ~3.1!

where the parametersa, b, andtD are constants, the SOM
is

K2* ~v!5j* ~v!5K1~0!H r b

v
sin~bu!

2
i

v
@r b cos~bu!21#J ~3.2!

with

r 25F11~vtD!12a sinS a
p

2 D G2

1F ~vtD!12a cosS a
p

2 D G2

~3.3!
and

tan u5

~vtD!12a cosS a
p

2 D
11~vtD!12a sinS a

p

2 D . ~3.4!

From this results, we can obtain two other empirical rep
sentations: The Cole–Cole whenb51 and the Davidson–
Cole whena50.
The Cole–Cole expression for the dielectric permitivity
given by

K2* ~v!5K1~0!v2at12aS cos
ap

2
2 i sin

ap

2 D . ~3.5!

Real and imaginary parts ofK2* (v) go to zero whenv in-
creases. Similar conclusion can be obtained for
Davidson–Cole case.

B. The biparabolic model

The biparabolic model23 was proposed as a generaliz
tion of the Cole–Cole expression. The correspondingt* (v)
is given by

t* ~v!5
K2* ~v!

K1~0!
5d~ ivt0!212n1~ ivt0!212h, ~3.6!

whered5t0
b , b512n, and 0,n, h,1.

In Eq. ~3.6! the real and imaginary parts of secondary-ord
memory function go to zero when the frequency increase
Downloaded 15 Aug 2001 to 132.248.12.227. Redistribution subject to A
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C. The BEL model

Considering that in amorphous materials and gla
forming materials, the molecular behavior of mechanical
laxation is the same as that involved in the memory of
dielectric relaxation, we take into account the expression
the complex relaxation time, presented by Barlowet al.24

~BEL!,

t* ~v!5
K2* ~v!

K1~0!
5t0~112AAivt01 ivt0!21. ~3.7!

The parameterA was estimated by computer simulatio
experiments25 to be of the order 0.1, andt0 is the Maxwell
relaxation time. Equation~3.7! was first proposed as an em
pirical one and afterwards, it was obtained within the the
retical frame of defect diffusion model.25

FIG. 1. Variation of the real part of the SOMF obtained from HN express
~dashed lines! and the experimental data for ib2g~n!, d2gf ~j!, and afedio
~d!, plotted logarithmically vs frequency.

FIG. 2. Variation of the imaginary part of the SOMF obtained from H
expression~dashed lines! and the experimental data for ib2g~n!, d2gf ~j!,
and afedio~d!, plotted logarithmically vs frequency.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 15 Au
TABLE I. Dielectric measurements parameters used to analyze the characteristics of the second-order
function for the three substances.T is the temperature~°C!, a, b, andtD are the parameters to represent t
experimental data with the HN expression,d is considered the correlation time of the torques interact
between dipoles.

Sample Ester T ~°C! a b tD (s21) d ~s21! e` De

d2gf bis~28-biphenyl! 2, 5 0.84 0.54 2.7131023 2.531023 2.511 1.183
4-dimethylglutarate

ib2g 2-biphenyl 250 0.81 0.62 2.0831023 1.531023 2.661 1.706
isobutyrate
acetate of cis/trans

afedio 2-phenyl 5 ethyl 240 0.88 0.57 1.5431022 6.331022 2.929 6.125
5-hydroxymethyl
1-3-dioxane
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D. The three-variable theory

The second-order memory function is related in t
three-variable theory with the correlation function for inte
molecular torques which decays exponentially.10,26,27 The
corresponding expression is given by

K2* ~v!

K1~0!
5t* ~v!5

t0

11 ivd
, ~3.8!

whered is the relaxation time of the decaying of the torqu
acting on the molecular dipoles. According to the evaluat
in the model of Maddem and Kivelson,9 d is a parameter of
the order of picoseconds for polar liquids.

Thanks to this model it is possible to get a microsco
interpretation of the second-order memory function. In fa
considering Mori’s theory of the continued fraction represe
tation of the correlation function, the first-order memo
function is directly related with the autocorrelation functio
of the angular velocity of the dipole particles.9 On the other
hand, the second-order memory function is directly relate
the evolution of the interacting dipole–dipole torques. A
cording to this molecular interpretation, the dielectric rela
ation is then governed by the decay of the libration of dipo
into the field produced by the neighbors. Additionally, t
molecules which the dipoles are attached produce viscoe

FIG. 3. Variation of the real part of the complex modulus for ib2g~n!, d2gf
~j!, and afedio~d!, plotted logarithmically vs frequency.
g 2001 to 132.248.12.227. Redistribution subject to A
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tic relaxation. Thus, the relaxation of dipole–dipole intera
tions might be coupled to the collective behavior of the su
stances. For example, for supercooled liquids or as a mat
becomes extremely viscous, the time scale separation
tween the decay of the torques and of the angular positio
the dipoles becomes too small to be distinguished, and in
~3.8! the parameterd should be of the same order of magn
tude oft0 .

On the other hand, it should be stressed, according
Eqs. ~3.4! and ~3.5!, that the behavior of the SOMF is no
necessarily a monotonically decreasing function of the f
quency. In fact, the imaginary part of Eq.~3.8! has a maxi-
mum at v051/d. This particular feature will be discusse
later in relation to the appearance of a relative maximum
the plot of the imaginary part of three substances analyze
the next section.

IV. SECOND-ORDER MEMORY FUNCTION
DETERMINED FROM EXPERIMENTAL DATA

We consider that the values ofR8(v) and R9(v) are
known from experimental measurements. Then, we are
to obtain the complex friction coefficient by means of E
~2.10!. In fact, the real and imaginary parts for the compl
friction coefficient are given by

FIG. 4. Variation of the imaginary part of the complex modulus for ib
~n!, d2gf ~j!, and afedio~d!, plotted logarithmically vs frequency.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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K28~v!5j8~v!5
K1~0!

v F R9

~R8!21~R9!2G , ~4.1!

K29~v!5j9~v!52
K1~0!

v F ~R8!21~R9!22R8

~R8!21~R9!2 G . ~4.2!

The frequency dependence of the real and imaginary par
the SOMF for three ester samples are shown in Figs. 1 a
considering for the sake of simplicityK1(0)51.

In these figures, the points marks correspond to
SOMF obtained from the experimental data using Eqs.~4.1!
and~4.2!. The dashed lines correspond to memories obtai
from the HN representation of the same experimental d
using Eqs.~3.2!, ~3.3!, and~3.4!. In Table I, the values of the
parameters of Eq.~3.2! for the three esters are listed.
should be noted that the HN representation does not a
over the whole range, the accuracy for the determination
the real and imaginary parts ofK2* (v) is not good for low
and medium frequencies.

In Figs. 1 and 2, the real part ofK2* (v) decreases as th
frequency increases, representing that the rotational fric
also decreases and the characteristic time of the ang
movement of the dipoles diminishes when the frequency
creases. On the other hand, the imaginary part ofK2* (v)
decreases when the frequencies increase, indicating tha
storage energy in the intermolecular torque–torque inte
tion decreases with the frequency. On the other hand,
notorious that in Fig. 1 there is a plateau in the first half
the plot. It corresponds, in Fig. 2, to the relative maximum
the imaginary part of SOMF. The position of this peak c
be determined by inspection, and this value related to
parameterd, following the model representation of this fun
tion according to Eq.~3.8!. In Table I, the obtained values o
this parameter and the corresponding parameters of the
perimental data of three substances are listed. Note tha
relaxation timetD andd are of the same order of magnitud
as it was discussed at the end of Sec. III. Therefore, if
consider the interpretation of these features of the SO
according to the three variable model, it suggests that
presence of the relative maximum in the imaginary part
this memory may be related to the relaxation of the autoc
relation function of the torques arising from the dipoles
teraction. The corresponding correlation time is given by
parameterd. On the other hand, the frequency dependenc
G8(v) andG9(v) obtained using Eqs.~2.14! and~2.15! for
the same three ester samples is shown in Figs. 3 and 4
again consider the factorK1(0)A equal to one, for the sak
of simplicity. Both functions,G8(v) and G9(v) increase
with the frequency and do not show any particular de
related with these features of the SOMF discussed bef
This point takes into consideration that the frequency fac
in Eqs.~2.14! and~2.15! is enough to modify the behavior a
it is presented in Figs. 1 and 2.

V. DISCUSSION

The second-order memory function~SOMF! has been
considered to describe the dielectric relaxation data for am
phous and glass forming materials, whereas the use of
first memory was already discussed in referenced paper
Downloaded 15 Aug 2001 to 132.248.12.227. Redistribution subject to A
of
2

e

d
ta

ly
of

n
lar
-

the
c-
is
f
f

e

x-
he

e
F
e
f
r-
-
e
of

e

il
e.
r

r-
he

Regarding to the interpretation of the SOMF, three d
ferent points of view might be adopted in terms of the ge
eralized frictional coefficient, the complex diffusion coeffi
cient, and the shear modulus of relaxation. The phys
meaning of these coefficients gives us an insight on the p
sible internal mechanism responsible of the deviation of
real and imaginary parts of the complex dielectric const
from ideal Debye’s model, both at low and high frequenci

We have considered how the SOMF can be evalua
from the knowledge of the complex permittivity data or fro
their equivalent representation of the Havriliak–Negami e
pression. This method was used to determine the real
imaginary parts of the SOMF for three different polymer
substances. The behavior of these functions were give
terms of frequencies, which are in qualitative agreement w
the prediction of some previous proposed models, as it
discussed in Sec. III. Particularly, the imaginary part of t
second-order memory for experimental data of the three e
substances analyzed here, shows a relative maximum, a
suggests that the presence of this peak might be related
the relaxation of the autocorrelation function of the torqu
arising from dipole–dipole interaction.
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