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Role of the second-order memory function on the dielectric relaxation
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In this paper the use of the second-order memory function to represent experimental results of
dielectric relaxation data of amorphous and glass forming materials is presented, and particularly, its
interpretation in terms of the frequency dependence of the complex shear modulus, shear viscosity,
and diffusion coefficient is pointed out. The method used for its evaluation is applied to consider the
experimental results for three ester substances, and their particular features are discuss#@B ©
American Institute of Physic§S0021-96068)50843-4

I. INTRODUCTION the context of the experimental data and model representa-
o tion. One of the direct antecedents of the present paper is the
_ The role played by the memory function in the formal- 4 by Douglas and Hubbatdwhere they have considered
ism of Morl.—Zwanzuj. applied to the dielectric relaxation 5 yyo-parameter model to describe the first memory function
has been discussed in several papers considering rotationgl the formalism of Mori—Zwanzig. They showed that the
Brownian particle$® and the fluctuation of the interacting width of the loss peak of the relaxation is a result of the
torques acting on dipole partlclé’é.Th_e relevant paper of -y aterial inhomogeneity and cooperative molecular motion,
Nee—Zwanzi§ studied the theory of dielectric relaxation on and they modeled these effects in the memory function. Fur-
the basis of Kubo’s technique to derive response coefficientqhermore, the mode—mode coupling thédfy represents an
Nee—Zwanzig found an expression for the dielectric friction;nteresting model for the relaxation in terms of the second-

and its relation with the energy dissipation mechanism in the, o, memory functio(SOMF) which assures the correct
interaction between the electric field and the molecular di'width of the loss modulus of the complex dielectric

poles. Another paper by Fultbrdescribed the long-range constanté
character of the dipolar interactions, from which the anisot- Recently, Williams and Fournigt have described the

ropy character of the dielectric constant is derived. In they o memory function in terms of the so-called apparent
frame of the three variable model, the dielectric response iﬁwemory. They found the corresponding first-order memory
accounted using the first- and second-order memory funGg,ction for the Cole—Cole and the Kohlrausch representa-
tions related to the evolution of the angular velocity correla-jg, of the dielectric constant expression for polymers and
tion f“nCt'O”_l%”d the torque—torquéz correlation function, giass forming liquids considering relaxation data. They also
respectively’™” Hubbard and Wolynés introduced the ro- emphasize that if the dynamic heterogeneity of Schmith-
tational Smoluchowski equation with fluctuating dipole- ponr and Spied€ and Ciceronest al® is considered for the
torques and derived from it a generalized friction coefficient. , (ajaxation in glass-forming materials, the physical mean-
. 12 . L]
Sparling et al: showed that the hydrodynamic memory jnq of the memory may change. The dynamic heterogeneity
function is related to the generalized Stokes friction Coeff"point of view explains the relaxation function as an average
C|ent_fpr rotatlona_l polar molecules, and how this friction ;¢ 5 series of parallel and independent decaying elementary
coefficient determines the form of the memory and affects, ocesses with a broad distribution of relaxation times. From
the response of the dielectric material. the interpretation of this point of view, the presence of the
In the present paper, we first consider that both the hyfgt ang second-order memory function is only apparent.
drodynamic and the interaction dipole—dipole contributions Following the lines of the validity of the fluctuating-

to the total friction are nonseparable from the dynamic fric-gissination theorem for the polarization correlation function
tion coefficient, which determines the dielectric responsgq; the « relaxation. we now propose as a further advance
complex coefficient. In the second place, we consider thafye yse of a semiempirical SOMF for general applications in
within the frequency domain of the relaxation, there is N0 ,rqer 1o describe dielectric relaxation data for amorphous
C(_)ntrlbutlon of any resonance process t_o the complex d'e_le‘bolymers and glass-forming liquids. The method we use to
tric constant. Under these considerations, the generalizeghermine the SOMF is a variation of that described recently

friction coefficient is in fact the second-order memory func- by Williams and Fourniet? which queried the values of the
tion in the Mori—Zwanzig formalism, and it allows us t0 frst_order memory functién.

discuss properly the properties of this memory kernel within - tha structure of this paper is as follows. In Sec. Il we
present the definition of the SOMF and its interpretation con-
3To whom correspondence should be addressed. sidering the absence of any contribution from inertial effects.
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In Sec. Il the explicit form of the SOMF for several models we note thatK,;(0)=2kgT/I, which represents the reso-
is presented. We give, in Sec. IV, the procedure to evaluataance frequency squared, and the SOMF may be identified
the SOMF from experimental data and from the Havriliak—directly by means of the generalized friction coefficient;
Negami expression. Finally, we include a short discussion on * .
the aspects of the imaginary and real parts of this memory <2(®)=§ (@). (2.9
function for the experimental data of three ester substancesn Eq. (2.9) kgT is Boltzmann’s constant times temperature
and| is the relevant moment of inertia.
Now we consider that in the frequency domain of the

Il. SECOND-ORDER MEMORY FUNCTION AND THE relaxation there is no contribution of any resonance pro-
DYNAMIC FRICTION COEFFICIENT cesses. In fact, in the diffusive regirﬁ]el;he following con-
dition is fulfilled:
The normalized autocorrelation function for a system 2 2
formed by a collection of molecular dipoles is given by <kgT and from here, it has @

<1.
K1(0)

D(t)=(p(0)- p(t)){(p(0)-p(0)) ", 2.1 . _ .
) ) ) In others words, it is essential to drop out the inertial term
where(t) is the time-dependent dipole moment. The equafom Eq. (2.8), since we are interested it (w) at frequen-
tion that governs the time evolution df(t) is given by the  Gjes smaller than (@sT/1)¥2 to take in consideration only

master equatioh, the diffusive regime. Therefore, the following equation:
) t . _1
c1>=—f dt’ Ky(t—t")d(t"). (2.2 (o) @
o R*(w)=|1+ K1(0) & (w) (2.10

Ky(t) is the memory kernel of the relaxation process and itang Eq.(2.9) allow us to evaluate the SOMF without taking
contains the full dynamics of th bodies as it is prescribed jnto consideration the first-order memory function. Further-
by the Liouville equation without any additional assumption. jre, Eq. (2.9 allows us a direct interpretation of this
According to Mori:° it is possible to represent the time evo- memory in terms of the internal frictional mechanism.

lution of K4(t) in terms of the SOMHK(t) by means of the A alternative interpretation of the SOMF is obtained ana-

following relationship: lyzing the frequency dependent diffusion coefficient,
) t namely,
Ki=— ] dt’ Ky(t—t")K(t"). 2.3
== [ dt -ty EE T )
=" (w)= (2.11

In Eq. (2.3), the kernelK,(t) accounts for the time lag ef- 2kgT 2D* (@)’
fects produced by the internal mechanism, which ultimatelyryrthermore, another consideration for the interpretation of
represents the ensemble-average dynamics of the system. this memory is considering the relationship between the dy-
To relate the SOMF with the correlation function, we takenamic friction coefficient and the complex shear viscosity, as

the Laplace transform of Eq&2.2) and (2.3 it was prescribed by Di Marzio and Bishdp
P (w)=P(0)[K] (0)+iw] (2.4 S0) . .
K¥(0)=K1(0)[io+K} ()], 2.5 K 0) 7 (@=An (), (2.12

where®(0) andK,(0) are the autocorrelation function and A iS @ parameter of the order of 18 From Eq.(2.12 the _
the first-order memory function at=0, respectively. By the SOMF also can be related with the shear modulus by using
normalization_ conditionp(0)=1. G*(0)=G'(0)+iG"(0)=i07* (v). (2.13

The relation between the SOMF and the response coef-

ficient is given through the correlation function, namely, ~ In terms of the real and imaginary parts K () =Kj(w)
—iK%(w), the storage and loss parts of shear modulus are

R*(w)=6(:))_—_;°°f(w)=1—iwq>(w), (2.6 9ivenby
o == ) wK5(w)
wheref(w) is the field correction factdt.Using Egs.(2.4) G'(w)= K.OA"’ (2.149
and (2.6) the response coefficient takes the following form: .
; - Kz(w)
io+K:(w)] ! oy P02
R*(0)=R’(0)—iR"(0)=|1+iw —Kl(é) G =K 0A" 19

(2.7 Therefore, Eqs(2.9), (2.11), and(2.12 show that the results
If we compare Eq(2.7) with the expression for the complex Of @any experimental-dielectric relaxation observation can be

dielectric function, including the inertial and the generalized®*Plained by any of three ways. One is the frictional inter-
friction terms®1! pretation in which the energy is going to be dissipated by the

’ internal mechanisms. A second view is the diffusion one in
which the molecular-dipoles undergo diffusion processes by
means of rotational Brownian molecular motion. The third

-1
: (2.9

2 iwl

* 11 *
RA@)= 1= g7t okt & (@)
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view is the interpretation by considering generalized hydro- o
dynamics to describe the evolution of the shear viscosity. 20d Ve,
Egs.(2.14 and(2.15 correspond to this last treatment. ‘ .4 “m.\
.
2.5 P .
n i\l i‘!\»‘ ‘\\
Il. SECOND-ORDER MEMORY FUNCTION FROM 3.0 !l“’\«u\ * e
THEORETICAL AND EMPIRICAL MODELS ) “;A '\\
g S P
. . = 354 N |
We now analyze several models which give formal re- 3.3 YRS .
sults for the SOMF. \ "=
-4.04 N L)
A. The Havriliak—Negami and Cole—Cole models J‘:,.A
Considering the Havriliak—NegamiHN) empirical 4.5
expressiort? UM LN I
B ()= [ 1 (i 1-a—g - 10" 10 100 100 100 100 10
(@)=[1+(iw7p) "] "%, (3.1 i)

where the parametees B, and rp are constants, the SOMF
is
B

K’zk(w)=§*(w)=K1(0)(; sin(B6)

—Ia[rﬁ cos{Ba)—l]] (3.2
with
12 )12
r’=1+(wmp)t ¢ Sin(a 5 +|(wrp)t @ COS(oz E)
(3.3
and
(wrp)t @ COS(a g)
tan 6= pl (3.9
1+ (wmp)t @ Sin(a E)

FIG. 1. Variation of the real part of the SOMF obtained from HN expression
(dashed linesand the experimental data for ib24.), d2gf (W), and afedio
(@), plotted logarithmically vs frequency.

C. The BEL model

Considering that in amorphous materials and glass-
forming materials, the molecular behavior of mechanical re-
laxation is the same as that involved in the memory of the
dielectric relaxation, we take into account the expression for
the complex relaxation time, presented by Barlewal
(BEL),

K3 (w)

=———=r1y(1+2AViwry+iwry) L.
Kl(o) O( 0 O)

™ (w) (3.7

The parameterA was estimated by computer simulation
experiment® to be of the order 0.1, and, is the Maxwell

From this results, we can obtain two other empirical reprefélaxation time. Equatiof8.7) was first proposed as an em-

sentations: The Cole—Cole wheg8=1 and the Davidson—
Cole whena=0.

The Cole—Cole expression for the dielectric permitivity is

given by

amT AT 3

cos 5 i sin 5 - (3.5
Real and imaginary parts &€ (w) go to zero whenw in-
creases. Similar
Davidson—Cole case.

K;(w)=K1(0)w“Tla(

B. The biparabolic model

The biparabolic modét was proposed as a generaliza-
tion of the Cole—Cole expression. The correspondififw)
is given by
Ki(w)
K1(0)

whered=75, B=1-n, and 0<n, h<1.

™ () =8(wr) T "+(iwTy) ", (3.6

conclusion can be obtained for the

pirical one and afterwards, it was obtained within the theo-
retical frame of defect diffusion modét.

1.5
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FIG. 2. Variation of the imaginary part of the SOMF obtained from HN

In Eq. (3.6) the real and imaginary parts of SecondarY'Orderexpressior(dashed linesand the experimental data for ib2g.), d2gf (W),

memory function go to zero when the frequency increases.

and afedio(@®), plotted logarithmically vs frequency.
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TABLE I. Dielectric measurements parameters used to analyze the characteristics of the second-order memory
function for the three substancekis the temperatur€’C), «, B, and 7p are the parameters to represent the
experimental data with the HN expressiofiis considered the correlation time of the torques interaction
between dipoles.

Sample Ester T (°C) a B 5 (57Y) 5(s™h €, Ae
d2gf big2’-bipheny) 2, 5 084 054 27%10° 25x10° 2511 1.183
4-dimethylglutarate
ib2g 2-biphenyl -50 0.81 062 20810° 15x10°° 2661 1.706
isobutyrate
acetate of cis/trans
afedio  2-phenyl 5 ethyl —40 088 057 154102 6.3x102 2929 6.125
5-hydroxymethyl
1-3-dioxane
D. The three-variable theory tic relaxation. Thus, the relaxation of dipole—dipole interac-

tions might be coupled to the collective behavior of the sub-

The second-order memory function is related in thet E . f led liauid terial
three-variable theory with the correlation function for inter- stances. -or example, for supercooled liquids or as a materia

molecular torques which decays exponentidli§®2” The becomes extremely viscous, the time scale separation be-
- PR ' tween the decay of the torques and of the angular position of
corresponding expression is given b : T .
P g exp g y the dipoles becomes too small to be distinguished, and in Eq.
K3 (w) 7 28 (3.8 the parametes should be of the same order of magni-
K. (0) T 1+iws’ B8 tude of .

i . , On the other hand, it should be stressed, according to
where§ is the relaxation time of the decaying of the torquesEqs_(3_4) and (3.5), that the behavior of the SOMF is not

acting on the molecular dipoles. Accgrdi.ng to the evaluation, o .o ssarily a monotonically decreasing function of the fre-
in the model of Maddem and Kivelsong is a parameter of quency. In fact, the imaginary part of E(.8 has a maxi-

the order of picoseconds for polar liquids. _ _mum atwy=1/8. This particular feature will be discussed
Thanks to this model it is possible to get a MiCroscopiCiyeer i relation to the appearance of a relative maximum in

interpretgtion of_the second-order memory fun_ction. In faCt*the plot of the imaginary part of three substances analyzed in
considering Mori’s theory of the continued fraction represeNsha next section

tation of the correlation function, the first-order memory

function is directly related with the autocorrelation function

of the angular vel):)city of the dipole particl2©n the other IV. SECOND-ORDER MEMORY FUNCTION
L DETERMINED FROM EXPERIMENTAL DATA

hand, the second-order memory function is directly related to

the evolution of the interacting dipole—dipole torques. Ac-  We consider that the values &'(w) and R"(w) are

cording to this molecular interpretation, the dielectric relax-known from experimental measurements. Then, we are able

ation is then governed by the decay of the libration of dipolego obtain the complex friction coefficient by means of Eq.

into the field produced by the neighbors. Additionally, the(2.10. In fact, the real and imaginary parts for the complex

molecules which the dipoles are attached produce viscoela#siction coefficient are given by

™(w)

3.0
2.0 1
)
2.0 . PN
. ] hd 2
«® z.é n 1.0 . b & m
1.0 . 8 . . an .
& [+
N a" . 001 ¢ am
ED 0.0 L4 [} O [ ] d
o 7] L4 B. %0 1 ) !.ﬂ
) ° 2
o s -1.04 °* n
1.0 o ® WP * _n
-1.04 o .
2 2.0 : 20]e® &
20444 05 @ noe®
.
u °
~3.0 =y T T — T T T 30 ! . ! 0- ! , T 2I ' 3 '”"I 4' o 5
10" 10° 10 10° 10° 10° 10° 10 10 10 10 10 10 10
f(Hz) 1 f (Hz)

FIG. 3. Variation of the real part of the complex modulus for i§2g, d2gf FIG. 4. Variation of the imaginary part of the complex modulus for ib2g
(M), and afedio(®), plotted logarithmically vs frequency. (A), d2gf (W), and afedio(®), plotted logarithmically vs frequency.
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K,(0) R" Regarding to the interpretation of the SOMF, three dif-
Ka(w)=¢"(w)= o | (RVZF (R } (4.D)  ferent points of view might be adopted in terms of the gen-
eralized frictional coefficient, the complex diffusion coeffi-
, , K1(0) [(R")?+(R")?=R’ cient, and the shear modulus of relaxation. The physical
Ka(w)=¢"(w)=—-—— (R)Z+(R")? } (4.2) meaning of these coefficients gives us an insight on the pos-

The f d q fth land i . séble internal mechanism responsible of the deviation of the
e frequency dependence of the real and imaginary parts gl 54 imaginary parts of the complex dielectric constant

the SOMF for three ester samples are shown in Figs. 1 and g - qaq Debye’s model, both at low and high frequencies.

considering for the sake of simplicitf,(0)=1. We have considered how the SOMF can be evaluated

In thesg figures, the point_s marks corre_spond to theI"rom the knowledge of the complex permittivity data or from
SOMF obtained from the experimental data using E4<l) E‘”

. ; ) eir equivalent representation of the Havriliak—Negami ex-
and(4.2). The dashed lines correspond to memories obtaine d P g

f he HN : f th . | d ression. This method was used to determine the real and
rom the representation of the same experimental dat aginary parts of the SOMF for three different polymeric
using Egs(3.2), (3.3), and(3.4). In Table I, the values of the

¢ Ea(3.2) for the th listed. | substances. The behavior of these functions were given in
parameters of Eq(3.2) for the three esters are listed. It terms of frequencies, which are in qualitative agreement with

should be noted that the HN representation does.not. app%«_‘e prediction of some previous proposed models, as it was
over the whole range, the accuracy for the determination o iscussed in Sec. lll. Particularly, the imaginary part of the

. . * )
thed realdgnd 'fmag'”af}’ parts &f; () is not good for low second-order memory for experimental data of the three ester
and medium requencr:es. | - h substances analyzed here, shows a relative maximum, and it

In Figs. 1 and 2, the real part 6f; () decreases as the g, nqacts that the presence of this peak might be related with

frequency increases, representing that the rotational frictiof,e reaxation of the autocorrelation function of the torques
also decreases and the characteristic time of the angulgrr-

movement of the dipoles diminishes when the frequency in- Ising from dipole—dipole interaction.
creases. On the other hand, the imaginary parkKdfw)
decreases when the frequencies increase, indicating that tA&KNOWLEDGMENT
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