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Electronic correlation in the generalized Hubbard model: the diluted case
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We have solved the generalized Hubbard Hamiltonian for a system with few correlated electrons, using a real-space method. This method
is based on mapping the many-body Hubbard problem onto an equivalent tight-binding problem in a higher dimensional space, where the
problem can be solved in an exact way. We have obtained a solution for three non-parallel electrons in a linear chain. The correlation is
studied by examining the ground state binding energy, for different values of the hopping parameters as well as the on-site and the inter-site
interactions.
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Se resuelve el hamiltoniano de Hubbard generalizado para un sistema de pocos electrones que estan correlacionados, usando un método en
el espacio real. Este método se basa en mapear el problema de Hubbard de muchos cuerpos, hacia un problema equivalente de amarre fuerte
en un espacio de mayor dimensién, donde el problema puede resolverse en forma exacta. Hemos obtenido una solucién para un problema
de tres electrones con espines anti-paralelos en una cadena lineal. La correlacién se estudia examinando la energfa de amarre del estado base
para diferentes valores de los pardmetros de salto, asi como de los pardmetros de interaccién tanto en el mismo sitio como en sitios distintos.

Descriptores: Modelo de Hubbard; sistemas de banda angosta; sistemas de muchos electrones

PACS: 71.10.Fd; 71.28.4d; 71.10.-w

1. Introduction

Within the models for correlated electron systems that at-
tempt to capture the essential physics of high-T, supercon-
ductors [1], the Hubbard model [2] is certainly one of the
simplest models that include electronic interactions between
band-electrons, by retaining only the on-site interaction U.
This model also assigns the same hopping rate ¢ to three dif-
ferent hopping processes regardless of the occupation of the
two sites involved. Besides the on-site interaction, other con-
tributions of the electron-electron interaction are required (3],
such as the nearest-neighbor interactions and the bond-charge
interaction term. The Hamiltonian that includes these inte-
ractions is often called the generalized Hubbard Hamiltonian
and has been studied previously by several authors [4-7]. This
Hamiltonian can be written as

H= Z t;"j(c;fgcj_a + h.c.)
<i,j>,0

Vv
+U g tNi,y + — nng, (1
Zi: i+ g ;ﬁ i (D
where < 1,7 > denotes nearest-neighbor sites, c;f, (cio)is
the creation (annihilation) operator with spin ¢ =/ or 1 at site
i,n; = ngp+n;, wheren; ; = ¢ ci -, and the occupation-
dependent hopping amplitude, t ., is given by
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The parameters t4, ¢, and t 4 are the hopping ampli-
tudes from a singly occupied to an empty site, from a dou-
bly occupied to a singly site and from a doubly occupied to
an empty site, respectively. The special case t4 = tg =
tap = t corresponds to the t-U-V extended Hubbard model.
In this paper, we analyzed the pairing of three electrons in
a one-dimensional lattice using the generalized Hubbard Ha-
miltonian. The analysis has been done following a mapping
method previously reported [8].

In Sect. II we introduce briefly the mapping method and
we present an analyze of the results. Finally, in Sect. III a
summary is presented.

2. Results and discusion

In this section, we study the correlation of three electrons by
using the mapping method explained in Ref. 8 for different
lattices topologies. In order to present a brief explanation of
this mapping method, let us consider the case of two elec-
trons with opposite spins in an NN-gite chain; the number of
states is given by N2. THese states form a square lattice with
(3N — 2) “impurities”, which can be described by a single-
body tight-binding Hamiltonian. N of these impurities, are
localized along the principal diagonal of the square lattice
with a self-energy U and the other 2(N — 1), are localized
on the two next-diagonals with a self-energy V. A simple
way to obtain the solution is taking advantage of the tran-
slational symmetry of the impurities and projecting the two-
dimensional lattice of states onto a linear chain of effective:
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FIGURE 1. Lattice of effective states for three electrons with non-parallel spin in a linear chain. This effective states are represented by a
ellipses and the self-energy for each of them is indicated inside. There are six different effective-hopping parameters ,Bj{, B, ﬂg, Bz, ,BZB,

and B g, with values given in the text.

states, similar to the procedure introduced by Falicov and
Yndurain [9]. In general, this method will map the original
many-body problem onto a tight-binding one with some or-
dered impurities in an nd-dimensional lattice, being n the
number of electrons and d the dimensionality of the original
system. In this hyper-space lattice, the on-site (U) and the
nearest-neighbor (V') interactions from the original Hubbard
Hamiltonian become the self-energies of the impurities.

For the case of three electrons [10], two with up-spin and
one with down-spin in a linear chain, the network of states
belongs to a three-dimensional state lattice. For exampie, let
us consider these three electrons in a 4-site chain. The state
configuration is:

1) =+ 400), [2)=]£0+0), [3)==£00+),
[4)=|—++0), |5 =]|—+0+), 16)=|-0++),
|7) =+ £00), [8)=|+—+0), [9)=]|+-04),
[10) = | 0+ +0), [11) =]0£0+), |12) =0 —-++),
13) = | ++—0), [14) = [+ 0£0), [15) = | +0~+),

116) = | 0+ £0), [17) =] 0+ —+), |18) =| 00+ +),
[19) = | + +0-), [20) =]+ 0+ —), |21) = |+ 00%),
122) = | 0+ +-), [23) = | 0+ 0%), [24) =| 00+ ).

Spin up and down are denoted by + and —, respectively,
a doubly-occupied site by =, and a hole by 0. A site occupied
by two electrons requires an energy U, and the amplitudes of
. the transition probability for nearest-neighbor states will be
ta, tp and tap. As we already mentioned, the geometric
representation of these states belongs to a three-dimensional
lattice, where taking advantage of the translational symme-
try in this network of states, it can be projected onto a two-
dimensional lattice of effective states.

In Fig. 1 we show the two-dimensional lattice of effective
states for an original system with three electrons in a five-site
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FIGURE 2. Binding energy (A) as a function of the nearest-
neighbor atractive interaction (—V'), for three non-parallel elec-
trons in a linear chain. In this plot we made some variations of
the t 45 hopping parameter for differents values of the on-site re-
pulsion interaction term (U).

chain, where the hopping parameters 8%, 83, 83, B3, Bl 5,
and 37 g are given by

ﬁj — tAe“"“/‘/E, B; = tAe—iKa/\/I?,
6; — tBeiKa/\/g, [35 — tBe—iKa/\/i;’
ﬁij: tABeiKa/%1 ﬁ;B — tABe_iKa/\/g.

Here, K is the wave vector and a is the lattice parameter. The
two-dimensional results must also be integrated with respect
to I{ within the first Brillouin zone.

The binding energy (A) as a function of the nearest-
neighbor attractive interaction, is shown in Fig. 2 for the case
of three non-parallel electrons (1}1) on a one-dimensional
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infinite lattice. The binding energy has been calculated from
the energy difference between the lowest correlated state
(K = 0), and the original lower band edge when there is not
an electron-electron interaction. The final numerical diago-
nalization were carried out for a truncated triangular lattice
of 551 effective states. The matrix sizes for numerical dia-
gonalizations were chosen as the minimum size so that the
physical quantities, such as the binding energy, have not an
important variation with the matrix size.

In Fig. 2, the binding energy was calculated for the case
ta = tp = to, using different values of the hopping para-
meter ¢ 4p and the on-site repulsive interaction (U). In this
figure, we observed that the on-site interactions change the
slope of A and that the variations of the ¢t 4 p parameter shift
the binding energy. A linear behavior of A, for large values
of the nearest-neighbor interaction, can also be observed.

3. Summary

We have studied a generalized Hubbard model with hopping
depending on the occupation, using a simple mapping met-
hod. This study has been carried out in a real space for a
system with three-correlated electrons in a one-dimensional
lattice, where an exact solution has been obtained for this
problem. In particular, we got the behavior of the binding
energy for three non-parallel electrons with different values
of U and tp.
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