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Abstract

The hole-pairing problem at the dilute limit on low-dimensional bipartite and non-bipartite lattices is studied by
means of the generalized Hubbard model, in which on-site (U), nearest-neighbor (V), and assisted-hopping (At) terms are
considered. The problem is addressed by mapping the original many-body problem onto a tight-binding one in
a higher-dimensional space. It is found that there is a small region around At/t, = 0.5, where the pairing of holes is
enhanced and non-pairing of electrons exists. Pairing phase diagrams are analyzed for linear, square and triangular
lattices, in comparison with those results obtained from the extended Hubbard model. © 1998 Elsevier Science B.V. All

rights reserved.
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For high-T, cuprate superconductors, the pairing of
holes (instead of electrons), the short coherence length of
these pairs, and the low dimensionality of the system
seem to be important elements to consider [1]. In recent
years the real-space electronic correlation has been ex-
tensively studied by using the Hubbard model [2], which
has the advantage of being simple and general, because it
does not depend explicitly on the nature of interactions
between particles. More recently, we have developed
a mapping method [3], which consists of mapping the
original many-body problem onto a tight-binding one
with some ordered impurities in an nd-dimensional
space, being n the number of electrons and d the dimen-
sionality of original system. In this hyper-space lattice,
the on-site (U) and the nearest-neighbor (V) interactions
of the original Hamiltonian {Eq. (1)) become the self-
energies of the impurities, whilst the assisted hopping
terms {Ar) enhance the hopping parameter between these
impurities, as shown in Fig. 1.

The single-band generalized Hubbard-Hamiltonian
(GHH) can be written as
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Fig. 1. Skeich of the mapping method for the 1D-GHH, where
B =2tcoslkaj2),t =ty — 2At,t' =t + At, kis the wave vector of
pairs, and a is the lattice parameter.
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where (i, j) denotes nearest-neighbor sites, ¢, (c; ) is the
creation (annihilation) operator with spin ¢ = | or T at
site 1, and n = n;y + ) being . =cly . When
a particle-hole transformation is made in the GHH, ie,
electron operators are mapped onto hole’s via ¢, — h; o,
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the Hamiltonian becomes
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where N is the total number of sites and Z is the lattice
coordination number. The first term in Eq. (2) only con-
tributes to a shift in the total energy, and then the holes
also interact via a Hubbard mode] but with an effective
hopping parameter (r; — 2At). It is worth mentioning
that U, ¥, and At are typically at about 20, 3, and 0.5 eV,
respectively [4, 5].

In Fig. 2 the binding energies (A = Eq — Eo(U =
V = At = 0) [6]) between two clectrons and between two
holes, for a linear chain (1D), a square and a triangular
lattice, are comparatively analyzed as a function of At/z,
for U = 0and ¥ = 0 and 3t,. The numerical calculations
were performed on the same lattices but with impurities
[6], obtained after a mapping procedure as shown in
Fig. 1 for a linear chain. Note that for 0 < At/tq < % there
is a strong hole-singlet pairing in all the three analyzed
lattices and the pairing of electrons arises only for
Atfty = 2, i.e, the pairing of holes requires a rather smal-
ler At.

Shown in Fig. 3 is a phase diagram for two holes on
the same three lattices of Fig. 2 for ¥V =0 and 31, We
can see that for a small region around At/ty = 0.5 the
pairs of holes survive even the on-site repulsion (U) is
extremely high when V' = 0. However, the pairing pro-
cess is easily affected by the nearest-neighbor repulsion
(V), in contrast with that occurring in the extended
Hubbard model [6]. Finally, for At/to =05 we
have a molecule-type problem and therefore, 4 =
LU=V +4Z12— U — V], since f = 0.

In summary, we have shown that within the GHH the
pairing of holes is suitable for small At. Furthermore,
these pairing states are not sensitive to the on-site repul-
sion. These two facts could be relevant for the hole-
pairing process in many real systems, in spite of
At< VU,
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Fig. 2. Pairing energies of electron singlets and hole singlets for
U=0.
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Fig. 3. Hole-singlet phase diagrams for ¥ =0 and 3¢, on the
same lattices as in Fig. 2.
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