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Phase transitions in ferrimagnetic and ferroelectric ceramics
by ac measurements
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Ac conductivity measurements were carried out on polycrystalline samples of a ferrimagnetic spinel
(Zng 4Mng s6,0,) and a ferroelectric perovskite (SBisTiz 201579, in the temperature range
20-160 and 20-660 °C, respectively, and in the frequency range 5 Hz—-13 MHz. The impedance
response in both cases could be resolved into two contributions, associated with tligraing

and the grain boundaries. An analysis by means of the ac conductivity power law showed evidence
of a critical temperature of 132 and 536 °C, for the ferrimagnetic and the ferroelectric samples,
respectively, which corresponds to the Curie temperature for each type of material. These results are
interpreted in terms of the disorder increase approaching the phase transitidit@98American
Institute of Physicg.S0003-695098)04640-3

Impedance spectroscap(lS) is a measuring technique ZnMn,_,Fe0, ferrites in the compositiorx=0.44
which is becoming a powerful characterization methodologywere prepared by the usual ceramic methods, from
for a wide range of materials. In the case of polycrystallinehigh-purity, reagent-grade (Johnson Matthey GmbH
ceramics, the electrical properties of grains can be separated Fe,0,, MnCO;, and ZnO. Samples of ferroelectric
from the other sources of impedance,. i.e., grain boundgriengBiJi3+x012+3x, with x=0.25 were prepared also from
and electrodes, by using the complex impedance formalismgigh-purity, reagent-grad@ohnson Matthey GmbHSrTiO;
and other related formalisms. In ferroelectric materials, aand B0, oxides, by the ceramic technique.
measurements can, therefore, separate the ferroelectric per- |mpedance measurements were carried out in the fre-
mittivity and provide an accurate image of polarization quency range 5 Hz—13 MHz in a system including a HP
phenomend.IS has also been used in polycrystalline ferrites41924 impedance analyzer controlled by a PC. The measur-
to study the effects of additivesfor instance, by analyzing ing software, created in our laboratory, allows the measure-
the changes introduced in the grain and grain-boundary imment of 94 discrete frequencies in about 3 min.
pedance response. To our knowledge, however, no direct |njtial magnetic permeability as a function of tempera-
evidence of the Curie transition has been observed in ac cofgre was measured in an apparatd$ where the sample,
ductivity experiments. _ . with a toroidal shape, is used as a transformer core.

A convenient formalism to investigate the frequency be- e first present the IS results for the Mnzn ferrite
havior of conductivity in a variety of materials is based onsample. Complex impedance plo&=f(Z,), wherez; and
the power relation proposed by Jonscher, Z, are the imaginary and real components of impedance,

o1(@)=a(0)+Aw®, (1) respectively, showed two weII—resoIveq semicircles over the

whole measured temperature range, Fig. 1. These results can
where o1 is the total conductivity,a(0) is the frequency-
independent conductivity, and the coefficiédnand exponent

s are temperature and material dependefhe termAw® 60 ' '

contains the ac dependence and characterizes all dispersic o

phenomena. The exponeshas been found to behave in a £ "

variety of forms®~° a constant, decreasing with temperature, G- "R .

increasing with temperature, etc., but always withir® 401 5. * gains e L

<1 o B grain boundaries : =
In this letter, a study of the thermal behavior of the & 22 24 26 24

power-law frequency dependence, of Zn—Mn ferrites and;\‘f_ 1000/T (K)"

Sr—Bi—Ti ferroelectrics is presented. It is found that both the™N 20t 4

coefficient A and the exponens exhibit a critical point(a I L “Oo....

minimum and a maximum, respectivghat the order— | * . o ]

disorder (from ferrimagnetic to paramagnetic in the first '-’\// grain boundaries e

case, and from ferroelectric to paraelectric, in the sefond ﬂrfalns . _ . ‘ .

transition temperature. An interpretation in terms of the dis- 00 20 40 60 ' 80
order involved in the phase change is proposed. Z (kQ)

30n leave from Facultad de'sica, University of Havana, Cuba. FIG. 1. Complex impedance plot at room temperature. Inset, the Arrhenius
PCorresponding author. Electronic mail: monjaras@servidor.unam.mx plot of grains and grain-boundary conductivity.
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FIG. 2. Dependence of imaginary impedance on frequency. Inset, th&lG. 4. Thermal behavior of the exponesfs(graing ands2 (grain bound-
equivalent circuit. aries in the modified power relation of Jonscher.

be modeled by an equivalent circuit formed by tR€ par- The variations ofot(w) with frequency, for selected
allel arms in series, inset of Fig. 2. The value of each equivatemperatures, are shown in Fig. 3 in log—log form. A
lent resistor can be extracted from the diameter of semifrequency-independent plateau appears for the low-
circles. A relaxation frequency is observed for each arm, Figfrequency range, associated with the ter(@). As frequency
2; at this frequency, the conditioi;=Z, occurs and it is increases, two dispersion regions appear for all temperatures.
possible to calculate the corresponding value of equivalentf the low-frequency dispersion is associated with grain
capacitors fromC=1/(wR), where w is the angular fre- boundariegsince it is associated with the larger capacitance
quency w=27f ). valug and the high-frequency one with graifemaller ca-
The values of capacitors provide a criterium to relatepacitance valug Eq. (1) can be modified a3
these semicircles with the pertinent microstructural feature at _ sl 2
the origin of specific impedance contributihOne of the o1(@)=0(0)+ Aro™+ Agw™, 3
arms, R,Cy, is, therefore, associated with the impedanceto describe these different contributions to conductivity. The
response of the bulkor graing, and the other oneRy,Cy,, behaviors ofA;, A,, s1, ands2 with temperature appear in
with the response of grain boundaries. As the measuringigs. 4 and 5.
temperature increase®; and Ry, decrease following a The exponentsl ands2 exhibit a quite different depen-
variation of Arrhenius type. A linear relationship is observeddence with temperature, Fig. €1, associated with the grain-
when these data are plotted in the form logs 1/T, where  boundary conductivity, shows a small decrease with tem-
o is the electrical conductivity, as shown in the inset of Fig.perature, with no particular feature. In contras2, which
1. depends on graiffior bulk) conductivity, shows a steep in-
The ac conductivity power law of Eql) can be used to crease and then a maximum at abdut 132 °C, followed
analyze the obtained resulis;(w) is obtained form the real by a decrease to values close to the room-temperature ones.
part of admittancey, as In the case of thé terms,A,, which is grain related, exhib-
B B ) ) its a clear minimum value for the same temperature whk2re
or(@)=gY,=9Z/[(Z,)"+(Z)7], (2 showed a maximumA,, on the other hand, shows a con-
tinuous increase, with no special feature for any temperature.
In order to obtain some insight about the critical behav-
ior of the A, ands2 parameters, the initial magnetic perme-

whereg is the geometrical factor.

T T T T
ok Mﬁf i -3 T T T T T
g °.<>

< o O —
o . 156°C W,MMM @p& " grain boundaries o ogt”

£ RNt s . 4t o ° i
? 144°Ch  smsamssssssis st s S &M o - og © .

E v WW e o *

5 1t 135°C e e | e o

= o ommmmenmowmros® __.—-' | o i
e 1% “__.-—"— o < a *

g /#. d:"-‘ign o o e .

= n cmm—— e @ ¢

2 79°C cesmreiiT 6 ° * b
= ot e E ’ * * grains

ol M@ﬂﬁ b
46°C
1 1 1 _7 1 1 1 1
0 2 4 6 8 40 80 120 160
log f (Hz) T(°C)

FIG. 3. Dependence of total conductiviy () with frequency for selected FIG. 5. Thermal variations of thé; (graing and A, (grain boundaries
temperatures. terms in the power relation.
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FIG. 7. Exponens and coefficienfA in the case of the ferroelectric sample.
FIG. 6. Thermal variations in the relative initial magnetic permeability of

the MnZn ferrite sample. . . o . .
increasing process, the proximity to the phase transition is

. ) ) associated with an increase in disorder. In the case of mag-
ability of the ferrite sample was measured as a function ofetic transitions, the significant increase in specific heat close

temperature, Fig. 6. This property shows an increase as thg the Curie temperature effectively appears to be consistent
temperature increases, and an almost vertical drop at the Cijth this view. An important point to note is that while most
rie temperaturdl;, where the sample changes from a long-ferroelectric—paraelectric transitions are considered first-
range ordered ferrimagnetic arrangement to a disorderegider transitions from a thermodynamic point of view,
paramagnetic structure. The observed value, Fig. 6lcis  ferrimagnetic—paramagnetic phase changes account for
=132 °C, which coincides quite well with the maximum in gecond-order transitions. Our results would, therefore, point
the s2 vs T plot (Fig. 4), and the minimum in the thermal {5 53 more general feature of conductivity behavior. Electri-

variations ofA;, Fig. 5. In other words, thenagneticphase  cally based methods can effectively lead to a detailed char-
change is associated with a critical behavior iné¢hectrical  5cterization of a wide range of materials.

conductivity parameterA ands.

In order to verify the generality of these results, a similar ~ This study was partially funded by DGAP-UNAM
methodology was followed on the ferroelectric sample. After(Grant No. IN 100996 One of the authorsA.P-B.) ac-
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