EDX analysis and microstructural properties of the YBa₂Cu₃O₇₋₈-Ba₂HoSbO₆ superconducting composites J. Albino Aguiar^{*}, C. C. de Souza Silva, Y. P. Yadava, D. A. Landinez Tellez, J. M. Ferreira, E. Montarroyos Depto. de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil ## J. Guzman and E. Chavira Instituto de Investigaciones en Materiales, Universidad Autonoma de Mexico, A. P. 70630, 04510 Mexico-DF, Mexico We have fabricated and characterized YBa₂Cu₃O_{7- δ}-Ba₂HoSbO_{δ} a realized high T_c superconductor ceramic insulator composite system in which particles of the superconductor and ceramic insulator could coexist with well defined separated phases left intact by stringent processing conditions. All the composites exhibit superconductivity at 92K. EDX analysis show that element% and atomic% of the composites are in a good agreement with those of their respective components. SEM studies show homogenous surface morphology and particle size distribution. There is no detectable interface interaction between component grains and Ba₂HoSbO_{δ} grains are distinguishably distributed in the YBa₂Cu₃O_{7- δ} matrix. ## PACS numbers: 74.60w,74,62bf,74.90.+m ## 1. INTRODUCTION High T_c superconductor (HTS)-insulator composites offer the attractive feature of improved chemical and physical stability for the application viability of these materials. Experimentally, fabrication of HTS-insulator composites is a difficult task due to chemical interaction between the component materials at the high processing temperatures which affects the superconducting properties drastically. In particular, YBa₂Cu₃O_{7-δ}, which are essentially line compounds in the phase diagram, offstoichiometric mixtures inevitably lead to multiphase samples with poor superconductivity or without superconductivity at all^{1,2}. We have successfully fabricated a realized HTS-ceramic insulator composite system YBa₂Cu₃O₇₋₅ -Ba₂HoSbO₆ in which particles of the superconductor and ceramic insulator could coexist with well defined separated phases left intact by stringent processing conditions³. In the present work we have studied structural and microstructural characteristics of the YBa₂Cu₃O₇₋₈-Ba₂HoSbO₆ composite system by X-ray diffraction (XRD), energy-dispersive x-ray (EDX) analysis and scanning electron microscopy (SEM). Superconducting properties of the composites were investigated by a. c. magnetization measurements. This article reports the fabrication processing, structural, microstructural characteristics and superconducting properties of the YBa₂Cu₃O₇₋₈-Ba₂HoSbO₆ composites. #### 2. EXPERIMENTAL DETAILS YBa₂Cu₃O₇₋₈ and Ba₂HoSbO₆ powder materials were prepared by solid state reaction process³. Quantitative elemental analysis of Ba₂HoHfO_{5.5} and YBa₂Cu₃O₇₋₈ was carried out by EDX technique. EDX spectra of the samples were recorded using X-ray OXFORD model PENTAFET detector with Bewindow and 128 eV resolution. The accelerating voltage used was 20KV, the beam current 200pA and the counting 100s. We have synthesized YBa₂Cu₃O₇₋₈. Ba₂HoSbO₆ composites with 0 to 50 wt% of Ba₂HoSbO₆ component in the respective composites. The component materials were mixed in desired wt% ratios and the mixture was pelletised as circular discs at a pressure of 2ton/cm². These discs were heat treated at 950 °C for 24h in flowing oxygen and cooled down slowly at a rate of 2°C/min to room temperature for proper oxygenation. Surface morphology and microstructure of sintered Ba₂HoSbO₆ and YBa₂Cu₃O₇₋₈ materials and YBa₂Cu₃O₇₋₈-Ba₂HoSbO₆ composites were studied by scanning electron microscopy, using both secondary and back-scattered electrons. SEM micrographs were recorded by a Leico-Cambridge model stereoscan 440 electron microscope. Chemical stability of YBa₂Cu₃O₇₋₈ with Ba₂HoSbO₆ was examined by x-ray diffractometry of YBa₂Cu₃O₇₋₈ - Ba₂HoSbO₆ composites. Powder x-ray diffraction spectra of the component materials and composite samples were recorded by a Siemens D-5000 x-ray diffractometer using nickel filtered Cu-K_{α} radiation ($\lambda = 1.5406$ Å). Superconducting properties of the $YBa_2Cu_3O_{7.8}$ - Ba_2HoSbO_6 composites and the effect of Ba_2HoSbO_6 addition on the superconductivity of $YBa_2Cu_3O_{7.8}$ superconductors was investigated by measuring a.c. magnetization of $YBa_2Cu_3O_{7.8}$ - Ba_2HoSbO_6 composites in the temperature range 5 to 300K at a frequency of 31Hz and with an ac field amplitude of 3 Oe, using a Quantum Design (MPMS-5S) SQUID magnetometer. # 3. RESULTS AND DISCUSSION Quantitative elemental analysis of the single phase $YBa_2Cu_3O_{7-\delta}$ and Ba_2HoSbO_6 component materials and $YBa_2Cu_3O_{7-\delta}$ - Ba_2HoSbO_6 composites was carried out by EDX analysis. The results of EDX analysis are presented in Tables 1 - 3. As seen from these Tables , there is no evidence of impurity traces in the component samples. The element% and atomic% of the composites are in a good agreement with those of their respective components. | Element | Element % | Atomic % | |---------|-----------|----------| | Ва | 41.08 | 13.58 | | Y | 12.24 | 6.25 | | Cu | 24.63 | 17.59 | | 0 | 22.06 | 62.58 | | Total | 100.00 | 100.00 | Table 1 Quantitative elemental analysis data of YBa₂Cu₃O_{7-δ} | Element | Element % | Atomic % | |---------|-----------|----------| | Ba | 40.35 | 16.19 | | Но | 20.14 | 7.05 | | Sb | 21.26 | 10.09 | | 0 | 18.26 | 65.90 | | Total | 100.00 | 100.00 | Table 2 Quantitative elemental analysis data of Ba₂HoSbO₆ | Element | Element % | Atomic % | |---------|-----------|----------| | Ba | 41.60 | 15.43 | | Y | 7.09 | 4.06 | | Cu | 18.71 | 15.00 | | 0 | 19.05 | 60.65 | | Но | 7.41 | 2.29 | | Sb | 6.13 | 2.57 | | Total | 100.00 | 100.00 | Table 3 Quantitative elemental analysis data of a representative YBa₂Cu₃O_{7-δ} - (20wt%) Ba₂HoSbO₆ composites X-ray diffraction spectrum of YBa₂Cu₃O_{7.8}, a representative YBa₂Cu₃O_{7.8}-Ba₂HoSbO₆ composite with 50 wt% component and Ba₂HoSbO₆, are shown in Figure 1. The XRD spectra of the composites contain XRD peaks corresponding to either YBa₂Cu₃O_{7.8} or Ba₂HoSbO₆ and there are no extra peaks due to any impurity phase. It establishes chemical stability of the two component materials in the composites. For the structural compatibility it is worth discussing the lattice matching YBa₂Cu₃O₇₋₈ and Ba₂HoSbO₆ materials, at this point. YBa₂Cu₃O₇₋₈ has a orthorhombic crystal structure with lattice parameters a=3.8214 Å, b=3.8877 Å and c=11.68 Å. Ba₂HoSbO₆ has a A₂BB'O₆ type ordered complex cubic perovskite structure, with lattice constant a=8.3712 Å. Based on the doubling of primitive ABO₃ simple cubic perovskite cell, (1/2 a=4.1856Å Ba₂HoSbO₆), the component materials have a lattice mismatch ~ 10%, which indicates reasonably good lattice matching. SEM micrographs of the YBa₂Cu₃O₇₋₈ and Ba₂HoSbO₆ materials are shown in Figure 2. Surfaces of the samples present a crystallinity, with that is typical of a polycrystalline ceramic materials with homogeneous surface morphology and particle size distribution. The average particle size of the YBa2Cu3O7.8 and Ba2HoSbO6 grains were estimated to be 10-20 µm and 1-2 µm, respectively. Back-scattered SEM has been used to study the interface interaction between YBa₂Cu₃O₇₋₈ and Ba₂HoSbO₆ grains. In backscattered electron scanning electron microscopy high energy incident electrons undergo Rutherford scattering from the surface atoms and reemerge from the surface. Figure 1. XRD spectra of $YBa_2Cu_3O_{7.6}$ (A) 1:1wt% $YBa_2Cu_3O_{7.6}$ - $HoBa_2SbO_6$ composite (B) and $HoBa_2SbO_6$ (C). The resulting image is in some way like the secondary electron image but there are a number of important differences. First, the back-scattered electron come from a greater depth in the sample, and because of the spreading of the electrons in the sample they represent a larger area. Also, since the back- Figure 3. (a) Secondary and (b) electron SEM micrographs of a YBa₂Cu₃O₇₋₅ - (20wt%) HoBa₂SbO₆ composite. scattered electrons come from deeper in the sample, they contain less information about the surface and more about the bulk material⁴. A representative back-scattered electron micrograph of a YBa₂Cu₃O₇₋₈-(20wt%)Ba₂HoSbO₆ composite is shown in Figure 3 along with a secondary electron SEM micrograph of the same composite. As seen from these micrographs, there is no detectable interface interaction between YBa₂Cu₃O₇₋₈ and Ba₂HoSbO₆ grain interfaces. Ba₂HoSbO₆ grains are distinguishably distributed in the Figure 2. Secondary electron SEM micrographs of (a) YBa₂Cu₃O₇₋₈ and (b) HoBa₂SbO₆ YBa₂Cu₃O₇₋₈ matrix. For the ceramic superconductor-insulator composites, a magnetization measurement is a effective tool in characterizing the superconducting properties because it can directly probe individual superconducting grains⁵. We have measured a.c. magnetization of YBa₂Cu₃O₇₋₈-Ba₂HoSbO₆ composites in the temperature range 5 to 300K at a frequency of 31Hz and with an ac field of 3 Oe. Figure 4 shows the representative a. c. magnetization versus temperature curves of a 1:1wt% $YBa_2Cu_3O_{7-\delta}$ - Ba_2HoSbO_6 composite and a pure $YBa_2Cu_3O_{7-\delta}$ superconductor. In all the composites, there is sharp superconducting transition at 92K, corresponding to the T_c of the pure $YBa_2Cu_3O_{7-\delta}$ superconductor sample. Ba_2HoSbO_6 addition did not have any deteriorating effect on the superconducting properties of $YBa_2Cu_3O_{7-\delta}$ superconductor. #### 4. CONCLUSIONS In conclusion, we have successfully fabricated YBa₂Cu₃O₇₋₅ - Ba₂HoSbO₆ a high T_c superconductor - ceramic insulator composite system in which particles of the superconductor and ceramic insulator could coexist with well defined separated phases left intact by stringent processing conditions. All the composites exhibit superconductivity at Figure 4. a.c. magnetization versus temperature curves of $YBa_2Cu_3O_{7-\delta}$ (A) and 1:1wt% $YBa_2Cu_3O_{7-\delta}$ - HoBa₂SbO₆ composite (B). 92K and the element% and atomic% of the composites are in a good agreement with those of their respective components. Composites present homogenous surface morphology and particle size distribution. Ba₂HoSbO₆ grains are distinguishably distributed in the YBa₂Cu₃O₇₋₈ matrix and there is no detectable interface interaction between the component grains. #### **ACKNOWLEDGEMENTS** This work is supported by Brazilian research agencies CAPES, CNPq, FINEP and FACEPE. #### REFERENCES - 1. G. Xiao et al., Phys.Rev. B 38, 776 (1988). - 2. K. Osamura (Ed.), Composite Superconductors, Marcel Dekker Inc. New York, (1994). - 3. J. Albino Aguiar et al., Physica C 307, 189 (1998). - 4. J. C. Russ in Systematic Materials Analysis, Vol.6, J. H. Richardson and R. V. Peterson (Eds.) Academic Press, London (1974). - 5. J. J. Lin, W. Y. Lin, and R. F. Tsui, Physica C 210, 455 (1993).