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The pairing problem of a three electrons system has been studied by using
a real-space method and the generalized Hubbard Hamiltonian. This method
includes the correlated hopping interactions as an extension of the previously
proposed mapping method, and is based on mapping the correlated many-body
problem onto an equivalent site- and bond-impurity tight-binding one in a
higher dimensional space, where the problem was solved in a non-perturbative
way. In a linear chain, we analyzed the pairing phase diagram of three
correlated holes for different values of the Hamiltonian parameters. For some
values of the hopping parameters we obtain an analytical solution for all kind

of interactions.
PACS numbers: 71.10.fd, 71.28.+d, 71.10.-w.

1. INTRODUCTION

Investigations of high-T, superconductors suggest that the electronic
correlation may play a significant role in the formation of pairs {1]. Although
the main interest is on the physics of two-dimensional highly correlated elec-
tron systems, the one-dimensional models related to high temperature su-
perconductivity are very popular due to the conjecture [2] that properties
of the 1D and 2D variants of certain models have common aspects. Within
the models for correlated electron systems, that attempt to capture the es-
sential physics of high-temperature superconductors and parent compounds,
the Hubbard model is one of the simplest.

In this study, we will use the generalized Hubbard Hamiltonian (GHH)
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H= Y t{c zac,g+Uan,Tn,l+— > ning, (1)

<i,j>,0 <t,7>

where U and V are the on-site and the inter-site interaction respectively.
The generalized hopping amplitude for electrons, t7;, is given by

to; = ta(l—ni—o)(1—nj-0) +tBNi oMo+
taB[nj,—o(1 — ni,—o) + ni,—o (1 — n5-5)]. (2)

The three parameters t4, tg, and t4p are the hopping amplitudes from
a singly occupied to an empty site, from a doubly occupied to a singly site
and from a doubly occupied to an empty site, respectively. The special case
ty =tp =tap =t corresponds to the t — U — V model.

When a particle-hole transformation is made in the GHH, i.e. electron
operators are mapped into hole’s via c;fa — h; 5, the Hamiltonian becomes:

H=U+22V)(N =Y nl)— S 2 hf hig

1,0 <i,j>,0
+UZn1Tn1l+—Znn (3)
<1,7>

where N is the total number of sites, Z is the lattice coordination number,
h:fa(h,-,g) is the hole creation (annihilation) operator, and nl = n?,T + nf" |
with nf = h+ _h; 5. The first term in equation (3) only contributes to a shift
in the total energy and the second term belongs to the generalized hopping
parameter for holes (27" ) The expression for ¢ " is the following:

0 = tp(1- z_a)u 7 J)+tant_pn?_ o+ 4)

%,J
tAB[nj,—a'(l - ) + n, ——0'(1 —a)]'

The main differences with the electron hopping are the change of t4
by tp and the minus sign. In this paper, we analyzed the paring of three
electrons in a one-dimensional lattice using the GHH. The analysis has been
done by extending the mapping method previously reported (3] in order to
include the bond-charge interaction. "

2. RESULTS AND DISCUSSION

When the correlation hopping interaction is included, the previously
reported mapping method [3] is modified. Let us see how this modification
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takes place in the problem of three electrons, two with up-spin and one with
down-spin in a linear chain. In this case, the network of three-electron states
belongs to a three-dimensional lattice with site- and bond-impurities. For
example, let us consider the three electrons in a 4-site chain. The state
configuration is:

Fig. 1. Lattice of effective states for three electrons in a linear chain

1) = | £+400),2) = | £0+0),|3) =| £ 00+),[4) = | — + +0),
[5) = | = 4+0+),16) = | — 0+ +),|7) = |+ £00),[8) = | + — +0),
19) = |+ —0+),]10) = |0 £ +0),|11) = |0 £ 0+),|12) = |0 — ++),

|13) = |+ + —10),]14) = |+ 0+0),]15) = | +0 — +),]16) = |0 + £0),
|17) = |0+ —+),|18) = |00 & +),]19) = | + +0-),|20) = | + 0 + —),
|21) = | 4 00+),|22) = |0+ +-),]23) = |0 + 0%), |24) = |00 + =£).
Electrons with spin up and spin down are denoted by + and —, respec-
 tively, a doubly-occupied site is indicated by +, and 0 represents an empty
. site. In the GHH, a state with a site occupied by two electrons requires an
energy U and a state in which two electrons are situated in nearest-neighbor
sites, requires an energy V. Finally, states with a site occupied by two elec-
trons and an electron situated in a nearest-neighbor site requires an energy
U + 2V, the remaining states with electrons placed at distant sites do not
requires any energy. The amplitudes of the transition probability between
nearest-neighbor states will depend on the site occupation and are given by
ta, tp and t4p. As we already mentioned, the geometric representation of
the states belongs to a three-dimensional lattice, where taking advantage
of the translational symmetry in this network of states, it can be projected
onto a two-dimensional lattice of effective states.
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Fig. 2. Ground state energy versus V for U = 0. For V values larger than
—1.7|t] the linear chain has a dominant behavior.

The Fig. 1 shows the two-dimensional lattice of effective states for an
original system with three electrons in a five-site ck~in, where the effect’ve
projected hopping parameters are: 3% = tase'fe/ V3, By = tae Ko/ V3,
IBE — thiKa/\/ﬁ, By = tBe-—iKa/\‘/I;, ﬂXB — tABeiKa/\/g and B35 =
t gge~ K/ V3, Here, K is the wave vector and a is the lattice parameter.

Analyzing the network of states given in Fig. 1, one important limit is
observed; when the hopping amplitude from a doubly occupied to an empty
site is forbidden B4p = 0. In this case, we can see that there is a competition
between the linear chain of effective states with two site-impurities (shown in
Fig. 1 by double lines) and the triangular lattice of effective states (shown
in Fig. 1 by dash lines). The latter one is in fact the projected network
of states for the problem of three electrons with parallel spin (117) in a
linear chain. For 84 = (g the linear chain of effective states with two equal
nearest-neighbors site-impurities with energy 2V/, has an analytical solution
for the ground state energy given as follows:

1
D? —16V?
where D = |2zt]. In Eq. (5), Eimp gives the two energies of the localized
states for the two equal site-impurities. Using Eq. (5) the binding energy is
given by A = max(|Eimp|) — D-

In Fig. 2, numerical results of the ground state energy versus V (U = 0)
are shown for the linear chain (double lines in Fig. 1) and the triangular

Eimp = {-32v®+ D(8V* - DY}, (5)
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Fig. 3. Hole-singlet pairing phase diagram for three holes in a linear chain

lattice (dash lines in Fig. 1) for electrons and for holes. As we can see in
this figure, for V' values between 0.0 and —1.7|t| the dominant behavior is
the one for the triangular lattice associated to electrons, after those values
the linear chain has a dominant behavior, the parameter ¢ was equal 1. It
is worth mentioning that the energy of holes in the triangular lattices never
predominates. The peculiar behavior of the ground state energy for electrons
and for holes in the triangular lattices come because of the nonbipartite
nature of this lattice.

The essential difference between holes and electrons without electron-
electron interaction is that the hopping amplitude is ¢4 for electrons and
~1B for holes in the GHH.

Preliminary results of the hole-singlet phase diagram for different val-
ues of the hopping parameters and the on-site and inter-site interaction are
shown in Fig. 3.
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