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We briefly review a simple statistical model of a boson-fermion mixture of unpaired fermions plus linear-dispersion-relation Cooper pairs
that leads to Bose-Einstein condensation (BEC) for all dimensions greater than unity. (The “dispersion relation” of a particle is its energy
vs. momentum relation.) This contrasts sharply with “ordinary” BEC for a many-boson assembly of non-interacting bosons each moving
in vacuum with a quadratic dispersion relation, which is well-known to occur only for dimensions greater than two. The BEC critical
temperatures T, are substantially higher than those of the BCS theory of superconductivity, for the same BCS model interaction between
the fermions that gives rise to the Cooper pairs, at both weak and strong couplings. However, these results hold with an ideal-fermi-gas
(IFG) density-of-states (DOS) for the underlying electron (or hole) carriers. We then show that even higher T, values are obtained in 2D
if a non-IFG DOS is employed which reflects the electronic band structure of the quasi-2D copper-oxygen planes characteristic of cuprate
superconductors. The non-IFG DOS used are both a so-called Van Hove scenario (VHS) with a logarithmic singularity in the DOS, and a
DOS with a power-law-singularity associated with an extended-saddle-point (ESP) in the energy-momentum curve.

Keywords: Superconductivity; Bose-Einstein condensation; electronic density of states

Recordamos brevemente un modelo estadfstico simple de una mezcla de fermiones desapareados mds pares de Cooper que satisfacen una
relacién de dispersi6n lineal que les permite condensarse a la Bose-Einstein (BEC) en dimensiones mayores que la unidad. (La relacién
de dispersién de un particula es su energfa en funcién de su momento.) Lo anterior contrasta notoriamente con la BEC “ordinaria” de un
conjunto de muchos bosones que no interactian entre sf, y moviéndose en el vacio con una relacién de dispersién cuadrética, la cual es bien
sabido se da sélo para dimensiones mayores que dos. Las temperaturas criticas T, de la BEC son sustancialmente més elevadas que las de
la teorfa de la superconductividad BCS, para el mismo modelo de interaccién BCS entre los fermiones que forman los pares de Cooper,
en ambos limites de acoplamiento débil y fuerte. Sin embargo, estos resultados son para electrones (1 hoyos) con una densidad de estados
(DOS) igual a la de un gas ideal de fermiones (IFG). Mostramos que T, m4s altas atin son obtenidas en 2D si empleamos una DOS diferente
de 1a IFG, que refieje la estructura de bandas electrénicas de los planos de cobre-oxigeno caracteristicos de los cupratos superconductores.
Las DOS diferentes de la IFG usadas aqui son la de el llamado escenario de Van Hove que contiene una singularidad logaritmica en la DOS
y, una DOS con una singularidad potencial asociada a con un punto silla extendido (ESP) en la curva de energia vs. momento.

Descriptores: Superconductividad; condensacién Bose-Einstein; densidad de estados electr6nicos

PACS: 05.30.J; 71.20; 74.70; 74.72

1. Introduction z = eP#B the fugacity)

Consider [1] first an ideal quantum gas in d dimensions of 90(2) = 1 / oo dzL
permanent (i.e., number-conserving) bosons with a general I(o) Jo z7le? 1
dispersion relation 0 L
, . =) = —((0). @
er = Cu k%, with s> 0. 68 = vz
For ordinary bosons of mass m in vacuum s = 2 and  The last identification holds when ¢ > 1, where (o) is the
C, = h%/2m, while for a Cooper pair in the Fermi sea  Riemann Zeta-function of order . The function ¢(o) <

s = 1 as discussed below. The boson number density ng
in a “box” of length L in d dimensions is defined as np =
Ng /L% where the total number of bosons Ng = Np o(T) +
Y ieol€?*7#8) —1]71, with p, < 0 the chemical potential,
B = 1/kgT, kg the Boltzmann constant and T is the absolute
temperature. The summation implies an elementary integral
easily evaluated in terms of the usual Bose integrals 2] (with

for o > 1, while the series g, (1) divergesforo < 1. As T is
lowered down to T, below which Ng o(T') just ceases to be
negligible compared with N and simultaneously p; ~ 0.
The condensate fraction for 0 < T < T, in d dimensions
is the fractional number N o(T)/Np,0(0) of bosons in the
k = 0 state. Note that 4 ~ 0~ over the entire tempera-
ture range 0 < T < T, since Npo(T) = (e~Prs — 1)-1
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implies that e##8 = Npo(T)/[Np,o(T) + 1] < 1, and
approaches 1~ over this entire temperature range because
Np o(T') on cooling grows to a sizeable fraction of Np which
is macroscopic. Since Ng = Npo(T) + Np k>o(T) while
Np = Ng(0), for d > 0 one can write the fractional num-

ber as
-1
Npo(T) _ 1— [2d—17rd/21-\(g)n8]
gk kd-!
X/O BCE 1’ (3)

Np,0(0)
where the sum-to-integral conversion [2]

d—1
27r /dkk

was employed. Using (2) to evaluate the integral in (3) gives

27Td/2

,;, T(d/2) 2)

Npo(T) _ - d -1

Voo =1 [ (5]
I'(d/s) gass(1)
A

Since this is negligible at T = T, setting the rhs of (4) to
zero gives a simple algebraic equation whose solution yields
the general T, formula
s/d
) n B] . (5)

Cs
T, = —
=2
The most familiar special case is for d = 3 and s = 2 which
gives the well-known formula for the Bose-Einstein conden-
sation (BEC) transition temperature

s (27)4T(d/2)
2md/2 F(d/s) gd/s(l

T = 27rhznzB/3
© mks[((3/2)P/3
where in the last step we used {(3/2) ~ 2.612.

2/3
3.314%n%
mkg

) (6

2. Ideal fermion gas density of states

Consider now a many-fermion system with attractive in-
teractions capable of pairing at least some of the fermions into
Cooper pairs (or “pairons”); these are considered as “bosons”
even through they do not obey Bose commutation relations
since they do obey a Bose-Einstein distribution [8] if these
pairs are of definite center-of-mass (but not definite relative)
momenta.

2.1. BCS Theory T,

The BCS T, formula is the solution of A(T,) = 0, where
A(T) is the BCS energy gap, which in turn is the solution of
the BCS gap equation [3]. The well-known results is

T, —s 1.130pe /2 %)
A0

where O p = hw, /kp is the Debye temperature, the dimen-
sionless coupling constant A = g(Er)V. Here g(EF) is the
density of one-spin, electronic states (DOS) at the Fermi sur-
face with energy Er, and V is the attractive strength of the
BCS model interaction,

h2k2
-V if Ep-hwp < '
m

K2k 8
om S EF + hwn ( )

0 otherwise

Vi =

where Vi i is the double Fourier transform of the space-
dependent pair interaction between fermions, and k, k' are
relative wavevectors. The positive coupling constant V' rep-
resents the net attractive effect of the electron-phonon inter-
action which overwhelms the repulsive Coulomb interaction.

2.2. BEC theory T for linear-dispersion-relation Cooper
pairs

In d dimensions the number of fermionsis N = 25", 0(kr—
k), where 8(z) is the Heaviside step function, so that us-
ing the sum-to-integral conversion again the fermion number
density n becomes

_N k
"=Td T 24727424 T(d/2) ©

On the other hand, the number of bosons Ng (0) actually
formed at T = 0 through the BCS model interaction in the
fermion gas is precisely Np 0(0) = g(EF)hwp, where [4]

ddk m* d/2 Ldgd/2-1
g(e) = = 3 , (10)
27r de 2rh I'(d/2)
since g(¢) is the number of up-spin fermion states per unit
energy. If all fermions were imagined paired, then ng/n =

1/2. However, since ng = Npo(0)/L? = g(Er)hwy/L*,
(9) and (10) show that in fact

(11)

a fraction much less than 1/2 since typically fiwp, < EF or
v < 1. This allows writing (5) with s = 1 as

g ]”“
)

T. _a(d)hvr [

Tr ks [T(%)ga(1
v 1/
= 2a(d) [W] : (12)

for a pure unbreakable-pairon gas. In particular, for d = 2
and 3, with a(2) = 2/7 and a(3) = 1/2 [5], and np/n =
v /2 and 3v /4, respectively, (12) gives
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FIGURE 1. Scaled critical BEC temperature T./Tr vs. ©p/Tr
for the simple boson-fermion model in 2D and 3D, Eq. (13)
.and - as.discpssed in text. Also shown is the maximal BCS re-
sult T. = 1.136pe~Y/*, as well as the “maximal” Van Hove
scenario (VHS) result obtained using (16) for a logarithmically-
singular DOS, both for A = 1/2. Both BCS and VHS T, values
vanish as A — 0, albeit at exponentially different rates. The rectan-
gle comprises empirical data for the 2D-like cuprate superconduc-

tors [7].
4 4\/6
()2
- (4”@) VP ~07027  (2D)
—£ = (13)
Tr (nB/n)l/s B
[3¢(3)/3
\ [24(3)]1/ ’~ 0592043 (3D).

“These results hold for arbitrarily weak coupling, but are re-
markably insensitive for higher coupling [9], increasing by
only about 4% for X as large as 1/2, in either 2D and 3D for
v = 0.05 and 0.001, respectively, see Fig. 1.

It is a fact [6] that Cooper pairs break up beyond a certain
center-of-mass momentum (CMM). For breakable pairons
T, — oo as A — 0 [8] since the (finite) upper limit in (3)
turns out to be proportional to the Cooper-pair binding energy
which vanishes when A — 0, meaning that all bosons are in
the K = 0 at any temperature. It is a remarkable result that
mixing into this ideal gas of breakable bosons the unpaired
fermions then gives a finite T with very minor corrections to

13y [91.
3. Van Hove Scénario Density of States

3.1. Exact BCS T. formula in VHS scenario

We first recall the BCS T, formula within the VHS appro-
ach to superconductivity. The finite-temperature gap-energy
A(T) equation in BCS theory with a general density-of-states

10
9(e)
Oieale) 8
6 -
VHS
4 —
1 ESP
2] o=1/2
__________________ IFG ___.
0
0.95 1
T=¢fe;

FIGURE 2. VHS and ESP DOS, normalized to the IFG DOS, as
explained in text, is the vicinity of x just below 1 relevant to the
v = 0.05 cuprate typical value of ©p /Tr.

(DOS) ¢(¢), namely
2 _ / Brthon g(e)de
V' Jee-tun /(e — Er)? + A2(T)

V(e - Ep)* + AX(T)
2kpTe '

X tanh

(14)

By (8) V is nonzero only in a narrow shell of thickness 2hw,,
centered about the Fermi energy Er. Assuming a Van Hove
singularity (VHS) DOS of the form

Er
E—Ep

9(e) = g(Er)In . (15)

see Fig. 2, Tsuei et al. [10] obtain an approximate BCS T,-
formula from (14) and (15) from the condition A(T,) = 0,
by approximating tanhz ~ z (2 < 1), tanhz ~ 1 (z > 1)
in the gap equation. However, an exact T,, formula was de-
rived [11] as the solution of the transcendental equation

T. 1 [ [(_1 Op Tr
E"fxp{ [(g(EF)V"LD(zTc’zTC))

where
z w1
D(Z,W) = / da [ln:c In— + §1n2ac] sech?z. (17)
A !

This was found to give T, values roughly 15% smaller
than (3) of [10], for given A = g(EFr)V, ©p and Tr. Fig.
1 shows a plot of (16) for A = 1/2, marked VHS; an en-
hancement of about tenfold over the BCS result (7) is evident.
Both BCS T, values, with IFG and VHS DOS results vanish
as A — 0 at different rates.
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3.2. BEC T, in the VHS

Recalling (13) for 2D, as well as (9) and np =
Npo(0)/L¢ = g(Ep)hwp/L?, if Nao(0) = 2Np,(0),
where N o(0) is the number of paired fermions at T’ = 0,
the number of pairable fermions N2 (T)vas becomes

pthwp  In ;—_Eﬁ
2(T)vus = 29(EF) /#_MD €8 11 (18)

where the VHS DOS has been substituted in the last equa-
tion. Letting x = ¢/Ep, i = p/Er, B = BEF and since
v = hwp [ EF, (18) reduces to

Injz-1

gemsl P

p+v
NZ(T)VHS = —zg(EF)EF/- dz
—-v
Introducing the new integration variable y = x — 1, we have
Na(T)vus = — 29(Er)Er
fi+v—-1
Jrs ®
f—-v-1
When T — 0, 3 — oo and pu = Ep, or ji = 1, so that (20)
becomes

In |y|

—_—. 2
eBy+1~i) 41 (20)

Na(T)vns = 0

v
Nao(O)vis = —29(Er) Er / dyb(a - y) In]y|

bt 4

= ~29(Er)Er [ 0” dylnly| @
= 2é(EF)EF(u —vinv) =2Npo(0). (22)
Consequently
np = Npo(0)/L2 = LEDEEL VAT - gy
so that recalling (9) and (10) this gives
np _ mL?Ep(v — vinv)2n 24)

n 2mh?k% L2
where k% =2mEp/ 12, which substituted into (24) leaves

ng Vv-—vinv

=L 2
n 2 . (25)
Finally, using (13) we have
. VHS IFG
T =v1-In V T (26)

i.e., an enhancement of roughly two for v = 0.05 which is
typical for cuprates.

4. Extended-saddle-point singularity DOS

We now consider an ESP energy dispersion curve suggest-

ing a power-law (as opposed to a logarithmic) singularity

DOS [12]. These dispersion curves have actually been ob-

served in angle-resolved photoemission experiments [13] in

such superconductors like YBa;Cu3Og.9 and YBayCuyOs.
Since z = ¢/ Er, we write this DOS as

N
g(e) = ﬁ;f(w) 27
with the dimensionless function f(z) defined by
flx) = (l—x) ———0(1 -z —1x)
+ fob(z + zo — 1)0(1 — z), >0, (28)

where f(y) = 0ify < 0,=1ify > 0and = 1/2ify = 0.
The curve f(z) rises linearly from zero at x = 0 and would
diverge at z = 1 with a power-o-singularity; this rise is then
interrupted at z = 1 — o beyond which it flattens out into a
“plateau” of height fo and width zo. The value of fp is deter-
mined by

1 1—xzg T 1
/0 f(:c)d:c:/o ————(1_x)ada:+ e

which is a (normalization) condition ensuring that the total
number of fermionsat 7 = 0is N = f0°°de g(e)0(Er — €).
Note that from (29) fo is expressible solely in terms of g
and o, specifically

f0 dr =1, (29)

1 (@) +3(l-0)+(0—2)
(2-30+0%)xg '

fo=1, (30)

Further, as ¢ — oo and ©¢ — 1, fo — 1 and one recovers
the IFG case. However, as ¢ — 0 we find that there is a min-
imum value omin ~ 0.3819 beyond which o ceases to be
real. The exponent 0 = 1/2 is suggested in [12] on physical
grounds.

4.1. BCS T, in ESP singularity

Consider the gap equation for the finite-temperature energy
gap A(T') (14) but with an ESP DOS of the form (27), where
the dimensionless function f(z) satisfies (28) through (30),
except that (28) is modified to be left-right symmetric about
z = 1 as appropriate if T > 0. See Fig. 2 for case
o = 1/2. Thus the BCS gap equation becomes, where again
rT=E€ / E F

2 vl f(z)

4 =N 1-v d VI[Er(z - 1)]2 + AX(T)

VIEr(z — 1) + AX(T)
2k T,

x tanh » B
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where we have used the symmetry of the integrand about Ep.
To determine T, one must solve A(T,) = 0; this reduces (31)

to
2 _ N [ (=) z—1
Y/'- = -E-;/ dxm tanh z Z—TC, (32)

with T, = T./Tr and (as before) v = hw,/Er being di-
mensionless. The DOS rises from zero energy, and becomes
a plateau at  equals 1 — zg; this plateau for o = 1/2'is
exhibited in Fig. 2 in the vicinity just below EF.

For o > v, f(z) = fo, the constant given by (30). In-
troducing the new variable z = (z — 1)/2T. we are then left
with

Er v/2Tc tanh 2
= d 33
NV, /0 2 (33)
since the integrand is even. Integrating by parts gives
EF v v/ 271': 2
=Iln— - dzl h®z.
NV, n oF, / zIn z sech®z (34)

Assuming Tr >> T, the upper limit can be replaced by infin-
ity making the integral exact and equal to — In 4e" /= [14]. In

this case
NEVFfo =In (%Tc) +In (3;—7) (35)

Since girc(Er) = Lzm/27"h2 A = Vgwo(Er), EFr =
h?k%/2m and n = N/L? = k% /2m, one finally obtains

-
T, = 22 =1/Mo = 1.13pe~1/ o, (36)
revealing only a slight enhancement in T, for the ESP over
that for the IFG DQOS, since fp > 1 with equality in the IFG
case.

4.2. BEC T, in ESP singularity

We now determine the critical temperature T, associated with
BEC assuming a DOS resulting from an extended-saddle-
point (ESP). For this we must recalculate ng/n as in (11)
and then insert this into the 2D version of (13). The number
of pairable fermions is
pt+hwp
g(€)

Ma@pse =2 [ e, G7)

2( ) p—hwp expﬁ(s—'#’)'*'l
where g(¢) is defined by (27) and (28). Since for zo > v the
DOS g(e) is a constant over the entire integration range, one
has

u+hwp 1

_ Nfo/
No(Dese = - utwp XD — p) + 1

patv
——ee—d 8
f/ —v expﬂ(:c— i) +1 ©y . O8)

where 3 = BEr, ji = p/Ep, and as before z = ¢/ Er while
v=hwp/Ep. IfT =0, i = 1 and (38) becomes

1+v
No(O)mse = N fo / 8(1 - z)dz

1-v

1
= Nfo/ dzr = Nfol/, (39)
1—v
so that the boson number at T" = 0 is just
1 1
Np(0) = §N2(0)ESP = '2'NfoV~ (40)

Since ng = Npg(0)/L?, while n = N/L?, the first member
on the rhs of (13) for 2D finally gives

TESP
% = Vfo(4V3/n*)Vv
F

TIFG

fo

(zo > v), 41

or an enhancement by a factor \/75 of T, with the ESP DOS
over that with the IFG DOS. On the other hand, if z¢g < v,

then g{e) consists of two parts, since (27) and (28) in (37) for

T = 0 gives

I—Io T
=N —
1—v (1 - x)o’
Thus, (40) and (42) leave

1
N2(0) dz + Nfo / dz. (42)
1—zg

np _ Np(0)
n N
1 fi==e z :
= 5/1_” mdx"l'fo.’l:o/z. 43)
Finally, substituting (43) into (13) gives
TESP 2 4/3
=IO @)
_ [72\ /npNTI¥G
VE)E) T w<n @

with enhancement factor 1/(2/v)(ng/n), where ng /n must
be determined by (43).

In Table I are listed several values of z¢ and f, for dif-
ferent o values. In the last column we give TFSP /TIFG the
resulting enhancement factor for the ESP DOS. This is plot-
ted in Fig. 3 for several values of the exponent o, with the
exponent ¢ = 1/2 proposed in [12] being marked in the fig-
ure.
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TABLE I. The corresponding ESP DOS g(¢) paraneters in (27) and
(28), zo, fo, for some choices of o.

. = o TETE
0.3819 0.0 o0 2.23245
0.4 0.009754 6.31065 2.14177
0.5 0.1038 2.7816 1.66784
1.5 0.486122 1.51615 1.23132
10 0.82775 1.14071 1.06804

5. Conclusions

Enhancement factors for the superconducting transition tem-
perature T, in a Bose-Einstein condensation (BEC) picture
can be as high as about 32 for a strongly-coupled (A = 1/2)
Bardeen-Cooper-Schrieffer (BCS) model interaction, over
that of the familiar BCS theory. Indeed, for weak coupling
(A = 0) this enhancement diverges, meaning that BEC
can arise even for arbitrarily-weakly-coupled Cooper pairs,
which are bosons.

SP FG
Te TS
2.0
o=1/2
1.5
1.0
0.1 1 10 100 1000

G

FIGURE 3. Enhancement of the BEC T using the ESP DOS, over
that with the IFG DOS, for several values of the exponent o in (27)
and (28), the value 0 = 1/2 being that suggested in [12].

Much more moderate enhancements obtain in either
the BCS or the BEC pictures when non-ideal-Fermi-gas
(IFG) electronic-density-of-states (DOS) characteristic of
the electronic-band-structure of quasi-2D systems like the
cuprate superconductors are employed. Two such DOS’s
are the Van Hove scenario (VHS) logarithmically-divergent
DOS, as well as the extended-saddle-point (ESP) power-law-
divergence DOS.
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