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Abstract

In this paper the linear thermocapillar instability of a viscous liquid sheet in motion through a gas which has two
free deformable surfaces with different temperatures is investigated. This temperatures difference is supposed to be
due to a temperature gradient in the ambient gas. It is found that thermocapillar instability affects in an important
way the viscosity-enhanced instability investigated by Li and Tankin (J. Fluid Mech. 226, (1991) 425). For the sinuous
mode and small Weber numbers the viscosity destabilizes and thermocapillar effects destabilizes through the
Marangoni number coupled to the Ohnesorge number, representing Viscous effects. The thermocapillar instability has
growth rates far more larger than those of the pure viscosity-enhanced instability. For large Weber numbers Li and
Tankin showed that the viscosity stabilizes and that the aerodynamic instability is the more important, however
thermocapillarity destabilizes increasing the growth rates with the Ohnesorge number in such a way that for some
Marangoni numbers the thermocapillar instability is the more important. Plots of the maximum growth rate against
the Marangoni number are given in which new features of this maximum are observed such as a steep increase of its
magnitude in a relatively small range of Marangoni numbers due to the onset of thermocapillary convection. It is
shown that from the thermocapillar point of view the Weber number plays a stabilizing role. The varicose mode can
not be changed notably by thermocapillarity and the curves almost remain the same as those of the pure
viscosity-enhanced instability. For large enough values of the Marangoni and Ohnesorge numbers the sinuous mode
has the larger maximum growth rate. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The stability of liquid sheets in motion has
recently attracted the attention of researchers due

to its potential applications in, for example, swirl
nozzles in gas burners where a hollow cone is
formed by the thin liquid sheet. In general, the
stability of liquid sheets is important in applica-
tions where the formation of drops is necessary to
improve evaporation. This occurs after the break
up of the liquid sheet due to non saturated growth
of the perturbations.
The form of a non perturbed liquid sheet is
shown in Fig. 1A and two modes of the perturba-
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tion are shown in Fig. 1B. The sinuous (or anti-
symmetric) mode corresponds to the two inter-
faces deforming in phase. The varicose (or
symmetric) mode corresponds to the two surfaces
deforming out phase by 180°.

Investigation of the stability of liquid sheets in
motion were first made under the linear approxi-
mation of the equations of motion and suppos-
ing inviscid both the liquid sheet and the
surrounding gas. In this case, only the velocity of
the liquid and its interaction with that of the gas
are the source of instability and the surface ten-
sion and density of the gas are stabilizing.

The stability of moving inviscid liquid sheets
of uniform thickness was first investigated by
Squire [1] and Hagerty and Shea [2]. Squire
found that the sinuous disturbances are stable
when the liquid Weber number is below the
value We=1.

This problem was extended by Dombrowski
and Johns [3] to include the effects of viscosity
but with an additional approximation of large
Weber numbers. The complete stability calcula-

tion of the viscous sheet in motion, valid for any
Weber numbers, was first done by Li and Tankin
[4]. They obtained very interesting results con-
cerning also to the inviscid liquid sheet. They
show that the inviscid liquid sheet is more un-
stable for the varicose mode for small Weber
numbers. Furthermore, after certain value of the
Weber number the sinuous mode is the more
unstable. Including viscosity by means of the
Ohnesorge number Z two kinds of instabilities
appear, they are the aerodynamic, due to the
velocity difference between the liquid and the
gas, and the viscosity-enhanced, due to viscosity.
For the sinuous mode when We is small, but
above the critical, the viscosity-enhanced instabil-
ity has a larger maximum growth rate than the
aerodynamic instability for large values of Z.
When We is large the aerodynamic instability is
more important and viscosity stabilizes when Z
increases and, at the same time, the wavenumber
corresponding to the maximum growth rate de-
creases. For the varicose mode they found that
the aerodynamic instability is always the more
unstable and that viscosity is stabilizing for all
Weber numbers.

In this paper, the linear thermocapillar insta-
bility of a liquid sheet in motion which is sup-
posed to be in the presence of a temperature
gradient perpendicular to the sheet is investi-
gated. This condition may arise inside the gas in
burners of gas-turbine combustors where no con-
trol of the uniformity of temperature exist. Buoy-
ancy effects are ignored in the sheet and the gas.

Investigation of thermocapillar instability of
static liquid sheets with two deformable free sur-
faces has been done by Funada [5] and Oron et
al. [6]. Funada [5] calculated the lines of critical-
ity for non deformable and deformable free sur-
faces. Besides, he investigated the effect of the
deviation of surface tension from its mean value
due to a temperature gradient and the effects of
Biot number. Oron et al. [6] investigated, for
zero Biot number, the instability of the sinuous
mode when the Marangoni and crispation num-
bers are different at the cold and hot surfaces.
They obtain criticality curves for the stationary

Fig. 1. (A) The unperturbed liquid sheet of thickness 2a in
motion with velocity Uo and a difference in temperatures
between the upper and lower free surfaces. (B) Two modes of
instability possible in the perturbed liquid sheet, the sinuous
(or antisymmetric) mode and the varicose (or symmetric)
mode.
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and time dependent instabilities and their relation
with the Prandtl number.

In this paper a combination of both phenom-
ena, thermocapillarity and the motion of the liquid
sheet interacting with the gas will be investigated.
The number of parameters is too large and there-
fore calculations will be restricted to special cases.
Thus, the Biot number is supposed zero (the more
unstable situation) and the Prandtl number is set
to that of water, that is, Pr=7. Besides. as shown
later, it is found that the Crispation number is
related to the Ohnesorge and the Prandtl numbers.
The gas–liquid density ratio is fixed at r=0.1 in
order to compare results with those of Li and
Tankin [4]. To the author knowledge this problem
has not been investigated and is a first step to a
more general situation in which r, the Biot and
Prandtl numbers are arbitrary. Calculations of the
more general case are in progress.

Here, we must point out that the problems
investigated in papers [5] and [6] are not com-
pletely related to the present one when the velocity
of the liquid sheet is made zero (We=0). The
reason is that in those papers they are ignoring the
perturbation of the gas velocity which is transmit-
ted to the liquid sheet through the gas pressure
and do not take into account the gas–liquid
densities ratio r. Therefore, we are doing calcula-
tions for the thermocapillary convection of the
static liquid sheet under this new conditions. In
this paper, results will be restricted to the parame-
ters already selected.

The important effect of evaporation (see for
example Refs. [7] and [8]) at the free surfaces is not
included in our calculations. One reason is that the
main interest of this paper is to investigate the
purely thermocapillary effects in comparison
which viscous instabilities. Besides, the number of
parameters involved is so large that some of them
will already be fixed in this paper.

The structure of the paper is as follows. In
Section 2 the equations of motion of the one
component pure liquid sheet and the gas are
presented and the dispersion relation is obtained.
In Section 3 we give the results of the numerical
analysis of the dispersion relations. Section 4 cor-
responds to the discussion and conclusions.

2. Equations of motion and dispersion relations

The equations of motion and energy are given
for a one component pure liquid sheet in motion
in the x-direction with velocity Uo. The origin of
the coordinate system is supposed at the middle of
the sheet and the two non perturbed free surfaces
are set at y=9a, therefore the thickness of the
liquid sheet is 2a. One free surface has temperature
To and the other one has temperature To+DT, as
shown in Fig. 1A. This generates a temperature
gradient across the sheet which produces heat
transfer from the hotter to the colder one, chang-
ing at the same time the magnitude of the corre-
sponding surface tensions. The changes in surface
tensions produces surface shear influencing the
stability of the liquid sheet which may be already
stable or unstable independently of the tempera-
ture gradient [4], due to aerodynamic or viscosity-
enhanced instability.

The liquid sheet has density rl, kinematic viscos-
ity nl, thermal diffusivity k and satisfies the two
dimensional system of mass, momentum and en-
ergy balance equations:
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where the Laplacian is defined as:
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The velocity components of the viscous liquid are
separated into:

u=u1+u2

6=61+62 (6)

Following Li and Tankin (1991) the pair (u1, u2)
represents an inviscid irrotational flow and the
pair (61, 62) has the viscous effects, including the
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thermocapillar ones. Here, p is the pressure and T
is the temperature of the viscous liquid.

The gas of density rg is inviscid and satisfies the
Euler equations:
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The liquid and the gas are coupled by the
boundary conditions at y=9a. They are: Stresses
balance at y=9a :

(sl, ij−sg, ij)nj=skc(h)ni−gti

�
tj

(T
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�
(10)

Fixed heat flux H at y=9a :

H=const. (11)

Kinematic boundary condition at y=9a :

(h
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+Uo
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and for the gas velocity:

(h

(t
=6g (13)

The gas velocity at y=9�:

6g=0 (14)

where sl, ij is the stress tensor, sg, ij only represents
the gas pressure, s is the surface tension, kc(h) is
the surface curvature, h is the surface deformation
and

g= −
(s

(T
.

The vector nj is the normal vector to the surface and
tj is its tangent vector. H is the heat passing through
the liquid sheet which here will be considered fixed.
(In this case the Biot number will be zero).

The variables are made non dimensional as
follows. Lengths are scaled with a. time with
(rla

3/s)1/2, velocity with (s/rla)1/2, pressure with
s/a and temperature with ba=DT.

The temperature profile of the main flow is

Tm=
DT
2

(
y
a
+1)+T0

where Tm is the temperature in dimensional form.
A perturbation of the non dimensional variables in
normal modes of the form f(x, t)=F(y) exp(v+
imx) is used. Here, v=vr+ iviWe1/2 and m is the
wavenumber. vr and vi are, respectively, the
growth rate and wave velocity of the perturbation.
We=rlUo

2a/s is the Weber number of the liquid
which represents the ratio of inertial to capillary
forces. The equations of motion, heat diffusion and
boundary conditions become:

D2F−m2F=0 (15)

D2C−s2C=0 (16)

D2U−r2U=
Pr
Z

(DF− imC) (17)

D2Fg−m2Fg=0 (18)

The kinematic boundary condition:

DF− imC= (v+ imWe1/2)j0 at y=91
(19)

The normal stresses:

2Z(D2F− imDC)=P−m2j0−rvj0/m
at y=1 (20)

2Z(D2F− imDC)

=P−m2j0−rvj0e iu/m at y= −1 (21)

The tangential stresses:

−2m2DF+ im(D2C+m2C)

=m2ZM(U+j0)/Pr at y=1 (22)

−2m2DF+ im(D2C+m2C)

=m2ZM(U+j0e iu)/Pr at y= −1 (23)

The heat flux is fixed at the free surfaces:

DU=0 at y=91 (24)

The boundary conditions for the gas are:

DFg=vj0 at y=91 (25)

DFg=0 at y=9� (26)

Tgyy= −Pg=r
(Fg

(t
at y=91 (27)
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where s2=m2+ (v+ imWe1/2)/Z and r2=m2+
Pr(v+ imWe1/2)/Z and F, Fg, C, U, j0, P and Pg

are the amplitudes of the velocity potential, the
gas velocity potential, the current function, the
temperature, the surfaces deformation, liquid
pressure and the gas pressure, respectively. Tgyy

represents the gas normal stresses. The parameter
u is the phase difference between the upper free
surface and the lower free surface deformation.
Here, it will be u=0 (sinuous case) or p (varicose
case).The following non dimensional parameters
has also been used. Z=nl(rl/sa)1/2 is the Ohne-
sorge number (representing the ratio of viscous to
capillary forces), r=rg/rl is the gas-liquid density
ratio, Pr=nl/k is the Prandtl number, Ma=
gba2/rlnlk is the Marangoni number (which repre-
sents the ratio of thermocapillary to viscous
forces) and

b=
DT
2a

.

It was found that the Crispation number satisfies
the following relation Cr=Z2/Pr.

Applying to the boundary conditions the solu-
tions of the system of equations for the perturba-
tions and following the same procedure as Li and
Tankin [4], a set of six homogeneous equations
with six unknowns is obtained (in [4] they were 4).
As solution of this set the following eigenvalue
equations are obtained:

Sinuous case:

1
G1

[Q1 tanh m{(Br tanh r−CsE tanh s)X1

+Cmr tanh r}

−Q2 tanh s{(Ar tanh r−CDm tanh m)X1
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Varicose case:

1
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where the following symbology has been used
including non dimensional parameters:
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3. Results of numerical analysis

The dispersion relations Eq. (12) and Eq. (13)
are solved by the Muller method. The results of
numerical analysis will be done using the same
values of the parameters used by Li and Tankin
[4] in order to make a comparison easy to under-
stand. Except that, instead of Z=0.1, use is made
of Z=1. For the thermal problem the Biot num-
ber is set equal to zero and the Prandtl number is
Pr=7 corresponding to that of water. Instead of
the Weber number for the gas (used in [4]) use is
made of We, the Weber number of the liquid. The
gas Weber number is simply given by the product
rWe. Note that for the sake of comparison, the
gas–liquid density ratio is also supposed r=0.1,
as Li and Tankin [4], even though it is larger than
that of most practical systems.
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Fig. 2. Sinuous mode. Growth rate against wavenumber with
Ma=0.0001 and We=1.025. Comparison of the viscosity-en-
hanced instability (solid) curves with the thermocapillar insta-
bility (dashed) curves and the aerodynamic instability curve
(left hand side). The maximum growth rate increases consider-
ably for a very small Ma. Note the scales in the vertical axis.

the inviscid liquid [1]. The interpretation is that
the velocity is relatively small even though the
sheet is already unstable. This figure presents plots
of the growth rate against the wavenumber m. To
the left, it is found the aerodynamic stability
curve. To the right, the solid lines correspond to
the viscosity-enhanced instability. The dashed
lines correspond to thermocapillarity coupled to
the viscosity-enhanced instability. It is clear that
even a very small Marangoni number allows vis-
cosity to destabilize by means of the Ohnesorge
number to almost twice the magnitude of the
growth rate corresponding to that of the simple
viscosity-enhanced instability, when Z=10. In
this case a small Ma can not excite the small
viscous effect of Z=1. Here an increase of the
Ohnesorge number means that the viscous forces
become relatively more important than the capil-
lary forces. Therefore, the viscosity has a destabi-
lizing effect which is enhanced by thermo-
capillarity.

In Fig. 3 it is shown how the interaction of
viscous and thermocapillar effects can be very
effective at the same value of We. Note the scales
in each figure. In Fig. 3a it is shown that the
growth rate of the viscous curve (solid) for Z=1

In Fig. 2 results of the thermocapillary instabil-
ity of the sinuous mode are presented when We=
1.025, just above the critical value for instability in

Fig. 3. Sinuous mode. Growth rate against wavenumber with We=1.025. Comparison of the viscosity-enhanced instability (solid)
curves with the thermocapillar instability (dashed) curves and the aerodynamic instability curve (left hand side). Note the scale in
each figure. (a) For Ma=0.01. The viscosity-enhanced instability (solid) curve for Z=10 and the aerodynamic instability curve (left
hand side) are almost imperceptible. (b) Ma=1 (note scale×10−1 in dashed curves) and Ma=100 (large dashed curves).
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is already invisible and that the curve for Z=10
is almost imperceptible. Besides, it is shown that
the corresponding curve of aerodynamic instabil-
ity is visible only as a small spike. A change in
two orders of magnitude in Ma changes two
orders of magnitude the growth rate of Z=5 and
Z=10, as observed in Fig. 2 and Fig. 3a. How-
ever, this does not occur for the change from
Ma=1 to Ma=100 where only an increase of
one order of magnitude is observed in the growth
rate as shown in Fig. 3b. Here, the increase in
temperature gradient and its interaction with vis-
cous effects is not as effective as for small gradi-
ents. This will be discussed later from a different
stand point in a plot of the maximum growth rate
against Ma. Note in Fig. 3b that the magnitude of
the growth rate of the dashed curves must be
multiplied by 10−1 to have the correct value.

In the isothermal case, when the velocity in-
creases to give a large We the viscosity stabilizes
through Z, as shown in [4]. However, as shown
here for We=40, thermocapillarity allows viscos-
ity to destabilize in the same way as for small We.
These results are presented in Fig. 4 where it is
shown that the aerodynamic instability is the
more unstable for isothermal conditions or for
small Ma. Fig. 4a shows that Ma=1 is not
enough to make a great difference in the stability
but note that it already changed the order in
which the growth rate increases with Z in com-
parison with the isothermal case (solid lines). This
change in the order of the curves with respect to
Z shows that thermocapillar effects do not allow
the viscous ones to stabilize while they are inter-
acting. Hence, here a more viscous liquid sheet
(larger Z) is more unstable. Moreover, Fig. 4b for
Ma=40 shows that the interaction with thermo-
capillarity allows viscosity to reach the maximum
of the aerodynamic instability curve for Z=10.
In Fig. 4c for Ma=80 it is possible to surpass
notably the maximum of the aerodynamic insta-
bility curve. Therefore, if the fluid is relatively
highly viscous and the temperature gradient is
large enough, the coupling of thermocapillar and
viscous effects will be more relevant than inviscid
aerodynamic instabilities for large We.

Here, it should be noted that the increase in We
made it necessary to increase Ma considerably to

let thermocapillary instability interact with viscos-
ity effectively. Notice that the curve for Ma=80
and Z=10 in Fig. 4c attains almost the same
maximum as the corresponding large dashed
curve of Fig. 3b. This means that for small and
large velocities almost the same high temperature
gradient is required to attain these large growth
rates. This will be discussed further presently.

For the varicose mode only some results are
presented. The reason is that, as observed in Fig.
5, even for very large values of Ma the curves of
thermocapillarity do not invert in the order of
magnitude of Z as in the sinuous case. There is
almost no difference between curves for Ma=100
and Ma=1000, for example. Moreover, there is
almost no difference between the viscosity-en-
hanced and thermocapillarity curves for any value
of Ma. However, it was possible to increase the
growth rate of the thermocapillary curve decreas-
ing Z until the thermocapillary curve merged with
the aerodynamic one (non viscous effects). In
spite of all these properties of the varicose mode
we have shown in Fig. 4c that the aerodynamic
instability of the sinuous mode is more unstable
than this one and, moreover, that the thermocap-
illary instability is the most unstable if Ma\40
for Z=10 when both We=1.025 and 40 (Fig. 3b
and Fig. 4c).

The wave velocity, made non dimensional with
the liquid sheet velocity Uo, has interesting char-
acteristics for different values of Ma. Graphs of
the wave velocity against the wavenumber are
shown in Fig. 6. For We=1.025 and Ma=10−4

and Ma=10−2, Fig. 6 shows that the wave veloc-
ities have no difference with the thermocapillary
case for Z=1, 5, 10 (large dashed curve). The
aerodynamic wave velocity has not been included
because, as it is easily seen in Fig. 3a, its wave
number range is confined to values very near to
zero in comparison with those of thermocapillary
instability. For Ma=1, Fig. 6 shows the wave
velocities for two values of Z=1, 10 (large
dashed and stared curves, respectively). Notice
that there is no difference with respect to the
thermocapillary ones. The more viscous the liquid
is the more smoothly it tends to the maximum of
one. Therefore, the dimensional phase velocity is
always smaller than the liquid sheet velocity and
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Fig. 4. Sinuous mode. Growth rate against wavenumber with We=40 for different values of Z. Comparison of the viscosity-en-
hanced instability (solid) curves with the thermocapillar instability (dashed) curves and the aerodynamic instability curve. Viscosity
destabilizes due to thermocapillar instability, contrary to the results found for the viscosity-enhanced instability [4]. (a) Ma=1. (b)
Ma=40. The thermocapillar instability almost reaches the maximum growth rate of the aerodynamic instability which is surpassed
when (c) Ma=80.

tends to the later for large wavenumbers. It tends
to zero to very small wavenumbers. When We=
40 and Ma=80, Fig. 6 shows that, except for
Z=1, a difference exists between the wave veloc-
ities of the viscosity-enhanced and the thermocap-
illary instabilities (the thermocapillar dashed
curves are almost superposed for Z=5 and 10).

A more detailed understanding of the results
presented in this paper may be obtained by means

of graphs of the maximum growth rate and its
corresponding wavenumber against the
Marangoni number. Thus, Fig. 7 shows results for
the sinuous mode when We=1.025 and 40. A
log-log plot of the maximum growth rate against
Ma is presented. Here for We=1.025 (solid
curves), it is seen how the maximum growth rate
increases with Z and Ma. Note also that for the
values of Z, except Z=1, there is a Ma range at
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which an abrupt increase occurs. After this range
a plateau is reached from which the maximum
growth has almost no increase with Ma. It is
difficult to see but the curve for Z=1 has a
maximum near to log(Ma)=2.2. Related with this
abrupt increase in curves Z=5, 10 is an abrupt
increase of the corresponding wave number in the
same range of Ma, as shown in Fig. 8 for We=

Fig. 6. Sinuous mode. Wave velocities against wavenumber
with We=1.025 and different values of Z. The large dashed
curve is for We=1.025 and Ma=0, 10−4, 10−2 where the
thermocapillar and viscous curves are superposed. The large
dashed curve (Z=1) and the starred curve (Z=10) are for
We=1.025 and Ma=1 where also the thermocapillar and
viscous curves are superposed. For We=40 and Ma=80 the
dashed curves are thermocapillar and solid curves are viscous.

Fig. 5. Varicose mode. Growth rate against wavenumber with
We=40 for different values of Z. Comparison of the viscos-
ity-enhanced instability (solid) curves with the thermocapillar
instability (dashed) curves and the aerodynamic instability
curve. (a) Ma=1, (b) Ma=100. There is almost no change in
the curves with these relatively large Marangoni numbers.

1.025. It is interesting to observe in this figure that
the wavenumber also reaches a plateau at which it
increases very slowly with Ma. However, for Z=1,
the wavenumber does not tend to a constant value
but instead it decreases with Ma after attaining a
maximum. Notice how the curves cross to each
other at some values of Ma.

For the sinuous mode and We=40, Fig. 7 shows
plots (dashed curves) similar to those of We=1.025
for three values of Z. Observe the small difference
in the growth rates. In the figure the curves cross
each other at different values of Ma. In this case,
there is also a range of Ma at which an abrupt
increase in the maximum growth rate occurs, in the
same order of Z as in We=1.025, exception made
for Z=1. Note also that, for the tendency of the
curves, a crossing between them must also occur for
We=1.025, but for a much smaller value of Ma.
Fig. 8 shows the corresponding wavenumbers
(dashed curves for We=40) which cross to each
other for a larger magnitude of Ma and which also
have an abrupt increase in magnitude in the same
range as for the maximum growth rate.
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Fig. 7. Sinuous mode. Log–log plots of the maximum growth
rate against Ma. The continuous curves are for We=1.025
and different values of Z. The dashed curves are for We=40
and different values of Z.

in this paper). Results for Z=5 show that ther-
mocapillarity starts at Mac=0.465 and mc=
0.658, which corresponds to the Ma at which the
abrupt increase occurs, see Fig. 7 when the influ-
ence of We is not strong. Thus, the magnitude of
mc is that at which the liquid sheet tries to adjust
after thermocapillary convection occurs. How-
ever, the critical wavenumber mc is larger than the
plotted one meaning that a small liquid sheet
velocity, through We, is able to decrease the
wavenumber corresponding to the maximum
growth rate. The critical values for Z=10 are
Mac=0.0973 and mc=0.564.

After the abrupt jump thermocapillarity (Ma)
and viscosity (Z) work together to change the
slope of the curves of maximum growth. This is
also seen in Fig. 8 for the corresponding
wavenumber. However, large sheet velocities not
only delays thermocapillary instability to a larger
Mac (larger temperature gradients) but also make
it have smaller slops in the graphs of maximum
growth rate against Ma as shown in Fig. 7. From
this point of view, the We has stabilizing effects
on the liquid sheet.

For the We, Z and Ma used in Fig. 7 and Fig.
8, it was possible to obtain growth rates larger
than those of the aerodynamic instability. There-
fore, when We is large it is not possible for Ma or
Z alone to increase the growth rates. It is neces-
sary to increase both to a large enough magni-
tude. For example, for We=100 it is necessary to
have Z=40 and Ma=100 to let thermocapillar-
ity be the most unstable. There is almost no
change if, at Z=40, Ma is increased alone to, lets
say, 1000.

From a comparison of Fig. 2 and Fig. 3 with
Fig. 4 and of the results of Fig. 7 for We=1.025
and 40, we may say that an increase in Weber
number (or sheet velocity) smoothes out the im-
portant changes thermocapillary instability may
produce on the liquid sheet.

4. Conclusions

From the results presented above the following
important conclusions are drawn.

The abrupt increase of the maximum growth
rate is explained by thermocapillary convection.
Numerical analysis for We=0 (zero velocity)
shows that Z=1 is always thermocapillary stable
from Ma=10−4 to 106 (for the parameters used

Fig. 8. Sinuous mode. Graphs of the wavenumber against the
logarithm of Ma. The continuous curves are for We=1.025
and different values of Z. The dashed curves are for We=40
and different values of Z.



L.A. Dá6alos-Orozco / Colloids and Surfaces A: Physicochem. Eng. Aspects 157 (1999) 223–233 233

For the isothermal sheet the aerodynamic vari-
cose mode is the most unstable for small Weber
numbers, but we have shown that thermocapillar
effects in the sinuous mode may be more impor-
tant than the aerodynamic and viscous instabili-
ties in both the sinuous and varicose modes.
Increasing We in the varicose mode, the aerody-
namic instability remains as the more unstable
even in the presence of thermocapillarity. In this
mode thermocapillarity does not change consider-
ably the magnitude of the growth rate and the
curves are qualitatively the same as those of refer-
ence [4]. However, when We=40 and Ma\40
the thermocapillary sinuous mode is more un-
stable than the aerodynamic and viscosity en-
hanced varicose and sinuous modes. Therefore, it
is believed that the sinuous mode has more possi-
bilities to appear than the varicose mode under
large enough Ma and Z, even when the Weber
number is large.

For the sinuous mode, thermocapillar effects
produce a fast increase of both the maximum
growth rate and the corresponding wavenumber
in certain small range of values of the Marangoni
number. It is shown that the fast increase is due
to the onset of thermocapillary convection in the
liquid sheet and that it is delayed to larger Mac by
an increase of Weber number. In this sense, the
liquid sheet velocity, through We, plays a stabiliz-
ing role. The magnitude of Ma necessary for its
occurrence is smaller when Z decreases, that is,
for smaller viscous effects.

A possible experimental set up to check our
results could be a chamber, containing a gas like
air, with a heated upper wall and a cooled lower
wall which will set a stabilizing temperature gradi-
ent in order to avoid buoyancy effects in the gas.
A thin liquid sheet, ejected horizontally across the
chamber. will feel the temperature gradient and
show thermocapillar instability, destabilizing in a
different way in comparison to the isothermal
viscosity enhanced case.
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