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Abstract. Bose—Einstein condensation in an ideal (i.e. interactionless) boson gas can be studied
analytically, at university-level statistical and solid state physics, in any positive dimensionality
(d > 0)foridentical bosons with any positive-exponent (s > 0) energy-momentum (i.e. dispersion)
relation. Explicit formulae with arbitrary d /s are discussed for: the critical temperature (non-zero
only if d/s > 1); the condensate fraction; the internal energy; and the constant-volume specific
heat (found to possess a jump discontinuity only if d/s > 2). Classical results are recovered at
sufficiently high temperatures. Applications to ‘ordinary’ Bose-Einstein condensation, as well as
to photons, phonons, ferro- and antiferromagnetic magnons, and (very specially) to Cooper pairs
in superconductivity, are mentioned.

1. Introduction

Experimental observations [1] reported in 1995 of Bose—Einstein condensation (BEC) in ultra-
cold alkali-atom gas clouds, as well as the 1996 Nobel Prize [2] for the discovery of superfluid
phases in liquid helium-three, have spurred even greater interest [3] in this standard textbook
example of a phase transition.

In this paper we consider an ideal quantum gas of bosons which are either permanent
(i.e. number-conserving as, e.g., *‘He atoms) or ephemeral [4] (i.e. non-number-conserving as,
e.g., photons), each possessing an excitation energy as a function of the wavenumber £, i.e.
the bosonic ‘dispersion relation’

& =cs k' with s > 0 (H

ind > 0dimensions. For ordinary (non-relativistic) bosons of mass m in vacuo with quadratic
dispersion relation, s = 2 and ¢; = h%/2m. There exists a non-zero absolute temperature 7.
below which a macroscopic occupation emerges for one quantum state (of infinitely many),
only if d > 2 [5]. (The d = 2 case, in fact, displays the same (6] smooth, singularity-free,
temperature-dependent specific heat for either bosons or fermions). The Bose-Einstein (BE)
distribution function n = [efl&«—#M1 — 117! is by definition the average number of bosons in
a given state £,. When summed over all states it yields the total number of bosons N, each of
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mass m, of which, say No(T) are in the lowest state g, (— 0 as one takes the thermodynamic
limit). Explicitly, at any given absolute temperature T,

1

N = No(D)+ D m = No(T) + ) <o @
k0 k#£0

where B = 1/kgT and u(T) < O is the chemical potential. The latter inequality ensures
a non-negative summand, as by definition it must be. Einstein surmised that for T > T,
No(T) is negligible compared with N; while for T < T., No(T) is a sizeable fraction of
N. Atprecisely T = T, No(T.) >~ O and pu ~ 0, while at T = 0 the last term in 2)
vanishes so that N = Ny(0) (namely, the absence of any exclusion principle). Note that
t =0 forall T such that 0 < T < T, since from (2) No(T) = (¢~#* — 1)~! implies that
eft = No(T)/[No(T) + 1] < 1, and this quantity approaches 1~ over this entire temperature
range since No(T') on cooling grows to a sizeable fraction of N which in turn is macroscopic.

2. Transition temperature

Since No(T'), the number of bosons in the lowest energy state (with k = 0), just ceases to be
negligible (compared with N) at and below T, then Ny(7.)/No(0) = Oleads straightforwardly,
after some algebra, from (2) to the general T.-formula

- & [Sram oot ]”d o )
© " kp | 2m92T(d/5) gass (1)

where g4/;(1) are certain dimensionless numbers (see the appendix), I'(o) is the familiar
gamma function and n = N /L the d-dimensional boson number-density. Also using (3), the
condensate fraction then simplifies to

No(T)

No(0)
whichis 1 at T = O and O for T > T. The reason for these simple, closed-expression
results are the so-called Bose functions g, (z) (see the appendix) to which the summation in 2)
reduces. A somewhat different derivation of a similar, though not identical, result is found in
the PC-oriented textbook [8).

These formulae are valid foralld > Oand s > 0. Fors = 2, ¢, = R*2m and d = 3
dimensions, equations (3) and (4) become
hn?? 331072 q No(T)
*T mks LGP T mkg B )
since {(3/2) =~ 2.612. These are the familiar results for the ‘ordinary’ BEC in 3D observed
recently [1]. Note also that for 0 < d < s, T, = 0, since (A2) diverges for d/s < 1. This
behaviour of (A2) implies that BEC does not occur for s-dispersion-relation bosons ford < s
dimensions, which is consistent with the well known fact that BEC does not occur for free
space, quadratic-dispersion-relation (i.e. non-relativistic) bosons for dimensions equal to or
smaller than two. However, for s = 1 BEC can occur for all d > 1. In fact a linear dispersion
relation holds ([9, p 33], [10]) for a Cooper pair of electrons moving not in a vacuum but in the
Fermi sea. Such pairs can thus Bose—Einstein condense [11], fortuitously, in all dimensions
where actual superconductors have been found to exist, down to the quasi-one-dimensional
organics [12] consisting of parallel chains of molecules. Although the creation/annihilation
operators of Cooper pairs do not obey the usual Bose commutation rules [9, p 38), they do
satisfy BE statistics [11] since an indefinitely large number of pairs, each with fixed momenta
fik) and fik,, correspond to different relative momenta ik = (ki — k3)/2 but add vectorially
to the same total (centre-of-mass) momentum AK = fi(k; +k,). Antiferromagnetic magnons
also have s = 1, while ferromagnetic ones correspond to s = 2 [13, pp 458, 468], but neither
can BE condense as their number at any given T is indefinite.

=1—(T/T)Y" TLT, @

=1—(T/T.)*? 5)
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3. Internal energy

The internal energy U (L4, T') of an ideal many-boson system, where each boson has excitation
energy &, can be written as

d 7y _ - k :
UL, 1) = ;sknk = ij gy T (6)

and eventually leads to a general expression valid for all temperatures
U(LY, T) _ 9844 @) (s
NkgT s 8ass(1)

wheret = T/T, For T > T,, No(T) = 0, so using (3) we obtain the remarkably simple
relation

Q)

8ass(1)
s t>1. 8)

Thanks to (8), equation (7) simplifies for T > T; to

ULYLT) _dgasmi(@ 100
NkgT 5 gass(2)

84ys(2) =

d/s t>1 )]

where the limiting result follows from the fact (see equation (A2) below) that g, (z) I Z,
if o > 1. Equation (9) is a generalization of the ‘classical partition theorem’, more commonly
recalled ford =3 and s = 2.

ForT < T.,ort £ 1, z = 1, so equation (7) becomes

UL, T) _ dgasn(l) pdls
NkgT N gd/x(l)

o T4/, (10)

Ifd = 3and s = 1 as inaphoton gas, this is just the ‘Stefan-Boltzmann law’ U(T)/L? = ¢ T*
of ‘black-body’ radiation, with ¢ a constant. In this case, however, T, = 0o since u = 0 for
all T, as a consequence of the indefiniteness in the total number of particles.

Figure 1 shows the internal energy (in units of NkgT) as a function of temperature (in
units of T; as given by (3)) for (d, s) = (3,2), (2, 1) and (3, 1). Only the last case possesses
a slope discontinuity precisely at T;, while the first two cases merely change in curvature as
T increases, namely, from ‘concave up’ to ‘concave down.’” The asymptotes at U /NkgT = 3

2 k]
2 and 3 are just the respective classical (high-temperature) limits (9).

37-------- RS
U/NkgT N
2 S
21
44 3,2)
0
0 ; ; Figure 1. Internal energy U as a function of t = T/T for

d/s =3/2, 2/1 and 3/1. Only the latter case exhibits a slope
t=T/T, discontinuity (dashed circle).
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The pressure can also be determined for any d and s, though we omit details, and leads to
a generalization of the familiar relation PV = % U for an ideal gas of either bosons or fermions
in the non-relativistic limit and confined within a volume V, namely

)
PLY=_U . 11
7 (1

which is cited in [7, p 190].

4. Specific heat

The constant-volume specific heat Cy Jorall T is defined by Cy = (9 U/aT)yv.ForT < T,
# =07 and z = 17, and equation (10} leads to

d/s)(d/s +1 11 X

Co(T) = NkB( /)]s + 1) gasea1 (1) (/s

T, 12
8ays(1) . (12)

In three dimensions, Debye acoustic phonons (s = 1) correspond to d/s = 3 and hence the
familiar 73 behaviour; Bloch (ferromagnetic) magnons (s = 2) to d/s = %, [13,pp 124, 482],
and thus the well known T%2 law. However, for T > T, a result very different from (12)

emerges. After some simple algebra, the specific heat jump (if any) at T, will be

d/s)? (1
[ACy/Nkgly, = [Cy(T7) — Cy(TH))/Nkg = /)" 8ass(D). (13)
gd/s—l(l)

Because g, (1) = oo foro < 1 (see the appendix) there is no jump discontinuity in the specific
heat for all d/s < 2. The commonest instance of this is the 3D ideal Bose gas (with s = 2)
exhibiting merely a cusp in its temperature-dependent specific heat at T, i.e. a discontinuity
only in the slope but not in the value of Cy(T). Also, since g, (1) = ¢(o) if o > 1 (see the
appendix), for d/s > 1 one has the quantity (to be discussed further)

ACY(T) _ /5)5*(d/s)
Cy(IS) — (/s + Ded/s — DE(d/s +1)

At high temperatures (i.e. the classical regime) occupation in any given state k is expected
to be minute, so from equations (1) and (2) with each summand very small

N T_—’iﬁ ebu Ze—ﬂCSk‘ (15)
k

(14)

ultimately allows one to write

Cv/Nkg 223 as. (16)

This is the generalized Dulong—Petit law. Recalling that Cy = (dU/3T)y vy this checks
with (9).

Figure 2 depicts the constant-volume specific heat Cy (in units of Nkg) versus t = T/T..
Only for (d, s) = (3, 1) is there a jump discontinuity, while for (2, 1) and (3, 2) the singularity
is merely a ‘cusp’, all in keeping with the properties of the internal energy already mentioned
in connection with figure 1. Figure 3 illustrates how the specific-heat jump discontinuity
vanishes for all d/s < 2, as evident from (13), and how it rises for d /s > 2. Remarkably,
the BCS value of 0.588 (marked on the figure) associated [15] with an ideal gas of fermionic
excitations (called ‘bogolons’ or *bogoliubons’) is only slightly smaller than the value 0.609
marked by the dashed lines and which corresponds [11] to an ideal gas of bosonic Cooper pairs
with s = 1 in three dimensions. A bogolon ‘quasiparticle’ [16] is a linear combination of a
fermion particle and a fermion ‘hole’.
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Figure 2. Constant-volume specific heat Cy asafunction  Figure 3. Magnitude of jump discontinuity in the specific

oft =T/T.ford/s =3/2, 2/1,and3/1.Onlythelatter  heat as a function of d/s, the 3D bosonic value of

case exhibits a jump discontinuity (dashed vertical line). ~ 0.609 [11] being just above the BCS value of 0.588 [15]
corresponding to fermionic excitations.

5. Conclusions

We have presented a didactic discussion appropriate for university-level physics of the closed,
analytical forms assumed by several thermodynamic functions of an ideal gas of N bosons in
a ‘volume’ LY, ind > 0 dimensions, for bosons each of energy &, = c;k*, with s > 0, where
¢, is a constant and k the boson wavenumber. Bose-Einstein condensation occurs (i.e. with a
non-zero transition temperature T;) only if d/s > 1. Moreover, ifd/s > 1, T; « n*/4, where
n = N/L“, and the ‘condensate fraction’ No/N = 1 — (T/T.)*/*, where Ny is the number
of bosons in the lowest (k = 0) single-boson quantum state. The system internal energy
U = (d/s)PL?, where P is the thermodynamic pressure, and for T < T, U o« T%/**!. The
constant-volume specific heat has a jump discontinuity at T, only if d/s > 2. Finally, at high
temperatures the expected classical limits, such as ‘equipartition’ and the Dulong-Petit law,
are recovered.

Note added in proof. After this paper was completed, we learned that some of the results reported here previously
appeared in {17].
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Appendix. A word about Bose integrals

The volume V;(R) of a hypersphere of radius R in d > O dimensions is found to be
V,(R) = m%2R?/T(1 +d/2) [7,p 504]. Ford = 3 this is just 4w R*/3; ford = 2 it s
the area 7w R? of a circle of radius R; for d = 1 it is the ‘diameter’ 2R of a line of ‘radius’ R;
and for d = 0 it is unity. Using this for d > 0, and since the allowed states of a particle in
a ‘box’ with ‘sides’ L correspond to the sites in k-space of a simple-cubic lattice with lattice
spacing 27 /L, the summation in (2) over the d-dimensional vector k becomes an integral over
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positive k = |k|, which in the thermodynamic limit (where 277 /L becomes infinitesimally
small) is simply
2 d/2 L d a0
Y- (= / dk k4! (A1)
perrd r'd/2) \2n o .

with the first prefactor reducing as it should to 2, 27 and 47 ford = 1, 2 and 3, respectively.
The sum in (2) is then an elementary integral expressed in terms of the so-called Bose integrals
[7,pp 159, 506]:

[od] o—1

1 o0
80 (2) = ar ——— =Y (A2)

Fo) Jy z7ler — 1

where z = ¢#/*T is known as the ‘fugacity’. Forz = 1 and o > 1 equation (A2) coincides
with the Riemann zeta-function ¢ (o), which converges for 0 > 1 and diverges for o0 = 1
when it becomes the celebrated harmonic series g (1) = ¢(1) = 1+3+1+... Forz =1
and 0 < o < 1 the series (A2) clearly diverges even more severely than ¢(1).
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