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Abstract

Viscoelastic materials like amorphous polymers or organic glasses show a complex relaxation behavior
in the softening dispersion region, i.e. from glass transition to the a relaxation zone. It is known that a
uni-dimensional Maxwell model, modi®ed within the conceptual framework of fractional calculus, has
been found to predict experimental data in this range of temperatures. After developing a fully objective
constitutive relation for an incompressible ¯uid, it is shown here that the fractional derivative Maxwell
model results from the linearization of this objective equation about the state of rest, when some
assumptions about the memory kernels are made. Next, it is demonstrated that the three dimensional,
linearized version of the frame indi�erent equation exhibits anomalous stability characteristics, namely
that the rest state is neither stable nor unstable under exponential disturbances. Also, the material
cannot support purely harmonic excitations either. Consequently, it appears that fractional derivative
constitutive equations may be used to study a very limited category of ¯ows in rheology rather than the
whole spectrum. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fractional derivative models are used quite often to describe viscoelastic behavior of
polymers in the glass transition and the glassy state. The starting point is usually a classical
di�erential equation which is modi®ed by replacing the classical, time derivatives of an integer
order by the so called left-hand Liouville, or the Riemann-Liouville di�erintegral operators.
This generalisation allows one to de®ne precisely non-integer order integrals or derivatives
(Miller and Ross [1], Samko et al. [2]). Fractional derivative constitutive equations have been
found to be quite ¯exible in describing linear viscoelastic behavior of polymers from glass
transition to the main or a relaxation in the glassy state (Bagley and Torvick [3], Friedrich and
Brown [4], Palade et al. [5, 6]). The last mentioned authors have shown that a fractional
modi®ed two-term self-similar relaxation spectrum, initially proposed by Winter and his co-
workers [7], gives excellent predictions for the linear viscoelastic behavior of narrow molecular
weight distribution polybutadienes. The ®rst term, of a power law type, accounts for the
terminal and rubbery zones, whereas the second one, implied by a fractional derivative
Maxwell model, accounts for the glass transition and a relaxation zones.
In addition to the above references, we note that Schiessel and Blumen [8], Eldred et al. [9],

Friedrich [10, 11], Nonnenmacher and Metzler [12], Baker et al. [13], Fenander [14], Liebst and
Torvik [15], Enelund et al. [16], and Rossikhin and Shitikova [17, 18] among others, have also
used uni-dimensional laws for modelling either small oscillations in shear or creeping ¯ows, or
for damped oscillation phenomena in structural mechanics. Despite these successful attempts, it
must be emphasized that a constitutive relation should be expressed in a three dimensional
setting such that it is also frame indi�erent (Noll [19]). An examination of the literature shows
that Lion [20] and Makris [21] have discussed three dimensional equations. However, these
papers depend on the use of the linearized strain tensor of classical elasticity and cannot be
considered to be objective.
Given that VanArsdale [22] has shown how to formulate objective constitutive relations

based on frame indi�erent fractional rates of deformation, it is surprising that the post-1985
literature in this ®eld has ignored this important aspect. Naturally, the research reported here
is intended to produce constitutive relations, which are objective; indeed, we shall exhibit two
separate formsÐsee (16) and (18). While there are some similarities between our work and that
in [22] for, in both instances, integrals of fractional order are used, di�erences arise because we
propose two tensorial formulations of a fractional derivative Maxwell model and prove that
they satisfy the objectivity condition, whereas VanArsdale [22] has discussed fractional
derivative ¯uids of the Rivlin±Ericksen type [23] only. Secondly, in Van Arsdale's work [22],
¯uid or solid like behavior arises if the fractional derivatives turn into classical derivatives.
Here, we shall show that the two constitutive relations are appropriate for describing an
incompressible ¯uid [19, 24] or an isotropic solid, even if fractional derivatives are present.
However, we shall prove that the new constitutive relation, relevant for an incompressible

¯uid, exhibits poor stability characteristics. To be speci®c, when the constitutive equation is
examined under an initial value problem leading to the study of the stability of the rest state
(Joseph [25]), it is found that it cannot support exponentially decreasing modes. While this
would indicate that the rest state is unstable, we show that the model can sustain neither
exponentially increasing modes nor purely oscillatory modes. Hence, we believe that the use of
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fractional derivative models in rheology is highly problematic. Of course, if one wishes to study
uni-dimensional behavior only, then it would appear that these models are successful.

2. The fractional derivative Maxwell model

First, we begin by recalling the de®nition of a fractional integral of order ÿp of a function
f(�). This is given by the left-hand Liouville integral operator [1, 2]:

ÿ1D
ÿp
t f�t� � 1

G�p�
�t
ÿ1
�tÿ t�pÿ1f�t� dt; �1�

where G(�) is the Gamma function. Next, the fractional derivative of order 1 ÿ p is de®ned
through

ÿ1D
1ÿp
t f�t� � d

dt

�
ÿ1D

ÿp
t f�t�

�
; �2�

i.e. it is the ordinary derivative of the fractional integral of order ÿ p.
Now, following Schiessel et al. [26], we shall use the shorthand notation

ÿ1D
q
t f � dqf=dtq �3�

for the fractional, integral or di�erential operation of order q on any function f. Using this
notation, we observe from [1, 2] that the composition rule for integration and di�erentiation
obeys the simple form

dp

dtp
dq

dtq
� dp�q

dtp�q
�4�

for all numbers p and q, whether they be positive or negative.
We shall now examine the fractional derivative Maxwell model [5, 6, 26, 27] for the shear

stress s, which is given by

s� la
das
dta
� Glb

dbg
dtb

; �5�

where l is a `relaxation time', G is a `shear modulus', and g is the shear strain. Also, a and b
are constants such that 0 < a < b < 1. These restrictions on the constants a and b have
been accepted by all workers in the ®eld; for a thermodynamical justi®cation see Friedrich [28].
We shall interpret the derivative on the left side of (5) as a fractional integral of order a ÿ 1

of the ordinary derivative of s, i.e. as

das
dta
� daÿ1

dtaÿ1
ds
dt

� �
: �6�

Similarly, we interpret the fractional derivative on the right side of (5) as
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dbg
dtb
� dbÿ1

dtbÿ1
dg
dt

� �
� dbÿ1 _g

dtbÿ1
; �7�

where gÇ is the shear rate. Thus, using the de®nition of the fractional integral in (1), we can
write (5) above as an integral model:

s� la
1

G�1ÿ a�
�t
ÿ1
�tÿ t�ÿa ds�t�

dt
dt

� Glb
1

G�1ÿ b�
�t
ÿ1
�tÿ t�ÿb _g�t� dt: �8�

We see from (8) that it involves the time derivatives of the shear stress and the shear strain,
along with two memory kernels. In order to obtain a truly invariant model which satis®es the
objectivity condition, we must replace the two time derivatives by objective quantities. We shall
discuss these aspects next.

3. The properly invariant constitutive relation

In order to obtain a properly invariant constitutive relation, we shall replace the time
derivative of the shear stress in (8) by a convected derivative of the extra stress tensor S, where
S is the Cauchy stress tensor. Since we are dealing with a fractional derivative Maxwell model,
we shall use the upper convected derivative of Oldroyd [29]:

S
r
� dS

dt
ÿ LSÿ SLT; �9�

where L is the velocity gradient, the superscript T denotes the transpose, and dS/dt is the
material derivative of the stress tensor. It is known that the stress tensor S is objective [30].
That is, under a change of reference frames, it transforms as

S* � QSQT; �10�
where Q = Q(t) is an orthogonal tensor function of time t. Using the above and the way the
velocity gradient is changed, i.e.

L* � QLQT � _QQT; �11�
it is easily proved that the convected derivative is objective, or

�S*�r � Q S
r
QT: �12�

Next, we recall that the deformation gradient tensor F transforms as F*=QF. Using the fact
that QT=Qÿ1, one ®nds that the expression
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Fÿ1 S
r
�Fÿ1�T �13�

is unchanged in an objective motion. That is,

Fÿ1
�
S
r �
�Fÿ1�T � F�ÿ1�S*�r�F*-1�T: �14�

On the right side of (8), we shall replace the time derivative of the shear strain by the ®rst
Rivlin-Ericksen tensor A1 [23]. Then, it is easily shown that in an objective motion, the
following expression

Fÿ1A1�Fÿ1�T �15�
is also invariant.

Hence, we propose the equation below as a properly invariant constitutive relation [24]:

S�t��laF�t�
�t
ÿ1

m1�tÿ t�F�t�ÿ1 S
r
�t� �F�t�ÿ1�T dt

( )
F�t�T

� GlbF�t�
�t
ÿ1

m2�tÿ t�F�t�ÿ1A1�t� �F�t�ÿ1�T dt
� �

F�t�T: �16�

In (16), there are two memory kernels, m1 and m2, whose explicit forms are not needed at this
stage. Now, it is easily seen that (16) de®nes a truly objective relation; note that the presence of
the deformation gradient tensor F(t) and its transpose ensures that this is indeed the case. That
is, we use two integrals which are de®ned in some ®xed reference con®guration, and convert
them to the current con®guration in such a way that the resulting constitutive equation for the
Cauchy stress tensor is objective.

In order to prove that the above equation is applicable to an incompressible ¯uid, we must
verify that it remains invariant when F(t) is replaced by F(t)H, where the tensor H is
unimodular, i.e. its determinant is equal to 1. Now, because F(t)F(t)ÿ 1 is unchanged under this
substitution, it is easily seen that the two integrals remain unaltered. Hence, (16) is an objective
law which characterises an incompressible ¯uid [19].

Next, it is possible to replace the expression in (13) by

FT S
r
F �17�

to obtain another invariant form. Using this and the corresponding form involving A1, we can
examine the following constitutive relation:

S�t��laF�t�
�t
ÿ1

m1�tÿ t�F�t�T S
r
�t� F�t� dt

( )
F�t�T

� GlbF�t�
�t
ÿ1

m2�tÿ t�F�t�TA1�t�F�t� dt
� �

F�t�T: �18�
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Here, if we replace F by FQ, where Q is a proper orthogonal tensor, it is seen that F(t)F(t)T is
invariant. Thus, (18) describes an isotropic solid for the symmetry group consists of all proper
orthogonal tensors [19], at least with respect to a ®xed reference con®guration.

4. Reduction to the fractional derivative Maxwell model

We shall now show that under linearization and the choice of special memory kernels, the
constitutive relations in (16) or (18) reduce to the fractional integral Maxwell model exhibited
in (8).
First, we assume that the stress tensor S = O(E), and that the deformation gradient tensor is

of the form

F�t� � 1� EJ�t� �O�E2�: �19�
Then, the velocity gradient tensor L = O(E), because it is known that [30] L= _FFÿ 1. Hence, the
velocity v = O(E), and the ®rst Rivlin-Ericksen tensor A1=O(E) as well. Therefore, by keeping
terms of O(E) only, the constitutive relations in (16) or (18) can be reduced to the following:

S�t� � la
�t
ÿ1

m1�tÿ t� @S�t�
@t

dt � Glb
�t
ÿ1

m2�tÿ t�A1�t� dt: �20�

It must be noted that the convected derivative of the stress tensor has degenerated into the partial
derivative, because of the approximations being invoked. Moreover, (20) is the result of
linearization about a state of rest rather than that due to a retarded motion integral expansion.
Let us now choose the two memory kernels in (20) to be given by

m1�tÿ t� � 1

G�1ÿ a� �tÿ t�ÿa; m2�tÿ t� � 1

G�1ÿ b� �tÿ t�ÿb: �21�

Then, the one-dimensional form of (20) and (21) is exactly that in (8) above. Before
considering the stability of the rest state, it must be emphasized that the formulation of that
problem is more appropriate for a ¯uid like material. Thus, from here on, we shall consider
(20) and (21) as arising from (16), rather than from (18) describing a solid like response.
Now, the exponents a and b in (21) may be determined from the experimental data as follows.

It has been shown previously [5] that b represents, on a log-log plot, the slope of G0 for low
frequencies in the glass transition range, whereas b ÿ a governs the slopes of the dynamic moduli
G 0 and G0 for the high frequency region. The `modulus' G is taken to be the glassy value of about
109 units, while l is a mean glassy `relaxation time' of the order of 10ÿ11 s.

5. Stability of the rest state

In this section, we shall examine the stability of the rest state of the material de®ned by (20)
above, using the linearized theory. That is, we assume that the material contained in a
bounded volume O has been set in motion, at time t = 0, by an imposed disturbance in the
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stress and velocity ®elds. Consequently, the constitutive equation takes the form

S�t� � la
�t
0

m1�tÿ t� @S�t�
@t

dt � Glb
�t
0

m2�tÿ t�A1�t�dt: �22�

Following Joseph [25], let the domain O be a bounded set with a su�ciently smooth boundary

@O, and the velocity ®eld be given by

v�x; t� � v̂�x�eÿst; r � v � 0; �x; t� 2 O� �0;1�;

v � 0; �x; t� 2 @O� �0;1�: �23�
Assuming the pressure ®eld to be given by [25, pp. 460±461]

p�x; t� � p̂�x�eÿst; �24�
the linearised stability of the rest state is analysed by studying the equations of motion

�ÿrsv̂� rp̂�eÿst � r � SL; �25�
where SL is the linearised stress, i.e. the extra stress S is linear in the amplitude vÃ of the

velocity ®eld. Since (22) is already linear, SL=S in our case. To proceed further, we shall

assume that the pressure disturbance pÃ=0 and that

S�x; t� � Ŝ�x�eÿst: �26�
Using (22), we now ®nd that

Ŝ�x� eÿst ÿ sla
�t
0

m1�tÿ t�eÿstdt
� �

� GlbÂ1�x�
�t
0

m2�tÿ t�eÿstdt: �27�

Next, by the property of convolutions,�t
0

f�tÿ t�g�t�dt �
�t
0

f�t�g�tÿ t� dt: �28�

Using this, one may cancel out the term eÿst from both sides of (27) and rewrite it as

Ŝ�x� 1ÿ sla
�t
0

m1�t�est dt
� �

� GlbÂ1�x�
�t
0

m2�t�est dt: �29�

Now, we wish to determine the value of the constant s to examine the stability of the rest

state. Thus, let us de®ne [25, pp. 461]:

k�s� � Glb
�1
0 m2�t�est dt

1ÿ sla
�1
0 m1�t�est dt

; �30�

where the denominator is assumed to be non-zero. Indeed, if the denominator vanishes, the

constitutive relation in (29) makes no sense.
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Consequently, by letting t41 in (29) and using (30), we ®nd that

r � Ŝ � k�s�Dv̂; �31�
where D is the Laplacian.

Now, let us assume that r = 1, without loss of generality. Then, we can reduce the problem
(25) to the solution of the following equation for s:

xk�s� � s; �32�
where x is an eigenvalue of the boundary value problem [25, pp. 461]:

Dv̂� xv̂ � 0; �33�
with vÃ =0 on the boundary. Regarding these eigenvalues x1, x2, . . . , it is well known that

0 < x1Rx2R � � � ; �34�
and that x n41 as n 41.

We shall now examine the solution of (30) for s in detail. For this purpose, it is convenient
to rewrite it as

xGlb
�1
0

m2�t�est dt � s 1ÿ sla
�1
0

m1�t�est dt
� �

: �35�

We shall now show that the above equation does not have a solution for s, with Re s>0,
where Re denotes the real part. The signi®cance of this is that the absence of such a solution
means that the rest state does not sustain exponentially decreasing disturbancesÐsee (23)±(26)
above.

Let us recall from (5) and (21) that m1(t) = t ÿa/G(1 ÿ a), m2(t) = t ÿb/G(1 ÿ b), where
0 < a < b < 1. Thus, both integrals in (35) are unbounded if Re s>0. Hence, we may omit
the term s in (35) and examine the existence of a solution s to the following equation

A

�1
0

m2�t�est dt � ÿs2B
�1
0

m1�t�est dt; �36�

where A and B are positive constants. Equivalently, we examine

A
�1
0 m2�t�est dt

B
�1
0 m1�t�est dt

� ÿs2: �37�

From (A16) in the Appendix, it follows that

lim
t41

A
� t
0 m2�t�est dt

B
� t
0 m1�t�est dt

� 0: �38�

Thus, we ®nd that (37) becomes ÿs 2=0. That is, there is no solution to (35) with Re s>0.
In conclusion, the rest state of the ¯uid described by the constitutive relation (20) cannot
support exponentialy decreasing modes.
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Let us now return to (35) and show that it does not possess a root for s, with Re s < 0

either. Here, both the integrals in (35) are bounded and for convenience, let us put s = ÿ s,

with Re s>0. Then, by the de®niton of the Laplace transform [31], we ®nd that�1
0

tÿpeÿst dt � spÿ1G�1ÿ p�; p < 1: �39�

Using this, (35) now becomes

C1s
bÿ1 � ÿsÿ C2s

1�a; �40�
where C1 and C2 are positive constants. Here, the fractional powers of s are interpreted as the

respective primary branches. We can rewrite the above equation as

C1s
bÿ2 � C2s

a � ÿ1: �41�
Put s = r exp(if), where by assumption that the real part of s is positive means that

ÿp/2 < f < p/2. Without loss of generality, we may take that f>0. Thus,

C1rbÿ2 cos��bÿ 2�f� � C2ra cos�af� � ÿ1; �42�
and

C1rbÿ2 sin��bÿ 2�f� � C2ra sin�af� � 0: �43�
Elimination of C2 r

a and a slight rearrangement leads to

C1rbÿ2 sin��2ÿ b� a�� � ÿ sin�af�: �44�
For this equation to hold, we need

sin��2ÿ b� a�f� < 0; �45�
because sin(af)>0, which follows from 0 < af < f < p/2. Now, using 0 < a < b < 1, it

is easily seen that

1 < 2� aÿ b < 2: �46�
Consequently, the inequality in (45) cannot hold, and the material described by (20) above

cannot sustain exponentially increasing modes in the initial value problem described by (22)±

(27) above.

Thus, we are left to examine whether (35) has a solution with s = io, where without loss of

generality we may take o>0. From the de®nition of Fourier cosine and sine transforms [31],

it is known that�1
0

tpÿ1 cosot dt �
���
2

p

r
oÿpG�p� cos�pp=2�; 0 < p < 1 �47�

and
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�1
0

tpÿ1 sinot dt �
���
2

p

r
oÿpG�p� sin�pp=2�; 0 < p < 1: �48�

Employing the above in (35) and separating the real and imaginary parts, we obtain

K1obÿ1 cos�p�1ÿ b�=2� � K2o1�a cos�p�1ÿ a�=2�; �49�
and

K1obÿ1 sin�p�1ÿ b�=2� � o� K2o1�a sin�p�1ÿ a�=2�; �50�
where K1 and K2 are positive constants. Dividing the terms in (50) by those in (49), we ®nd
that

tan�p�1ÿ b�=2� ÿ tan�p�1ÿ a�=2� � 1

K2oa cos�p�1ÿ a�=2� : �51�

Now, since 0 < 1ÿ b< 1ÿ a< 1, we ®nd that the left side is negative while the right side,
by the assumption that o>0 must be positive. Hence, there is no solution to (35) with
s = io either.
In conclusion, the model described by (20) has anomalous stability properties as far as the

stability of its rest state is concerned.
We shall now examine the consequences of relaxing the condition that a< b. So, let us now

put 0 < a = b < 1 in (37). We obtain

A

B
� ÿs2; �52�

which does not possess a solution for s, with Re s>0. The corresponding situation for (45)
shows that one must have sin(2f) < 0, while sin(af)>0. Clearly, this is impossible. Finally, in
(51), the left side becomes zero, while the right side is not so. Thus, the anomalous stability
properties persist even if a = b.
We shall now show that the situation regarding this behavior is unchanged if the constant

b = 1, while 0 < a < 1. As is well known, in this case, the constitutive relation (16) now
becomes [27]

S�t� � laF�t�
�t
ÿ1

m1�tÿ t�F�t�ÿ1 S
r
�t� �F�t�ÿ1�Tdt

( )
F�t�T � GlA1�t�: �53�

That is, the right side is simply the Newtonian viscous term. If we examine the stability of the
rest state of this ¯uid, we obtain [cf. (32)]

xk�s� � s; �54�
where

k�s� � Gl
1ÿ sla

�1
0 m1�t�est dt

: �55�
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This leads to [cf. (35)]

xGl � s 1ÿ sla
�1
0

m1�t�est dt
� �

: �56�

Once again, if Re s>0, the right side of (56) would be unbounded as before, and a root for s
cannot exist. In a similar manner, one can show that the analogs of (45) and (51) do not have
any solutions either.

6. Concluding remarks

We shall now make a number of remarks arising from the nature of fractional derivatives
and their use in formulating constitutive equations of relevance to rheology.
First of all, there are two ways of de®ning fractional derivatives. In Section 2, we have

chosen the form in (2), drawing upon the earlier work in [26]. This de®nition, based on the
left-hand Liouville operator, has the drawback that the derivative of a constant function is not
zero. Against this, there is the positive aspect that the fractional derivative of a function f(t)
exists whether f(0) = 0 or not. The second method of de®ning a fractional derivative, based
on the Riemann±Liouville operator and used by Friedrich [10] and VanArsdale [22], for
example, predicts that the derivative of a constant function is zero. However, depending on the
order of a fractional derivative being de®ned, it may require that the function f(t) obeys
f(0) = 0, and/or that all of its derivatives of higher orders, up to a required degree, be zero as
well.
The consequence of the above for rheology is the following. The ®rst approach permits the

constitutive relation to be used in an initial value problem without demanding that the stress
tensor or the relevant kinematical tensors, or their derivatives, be zero to start with, in all
cases. The latter does not have this ¯exibility. Indeed, the latter approach may result in
requiring that all motions begin from rest only. We believe that this is too severe a restriction,
for it does not permit the study of all classes of initial value problems. This observation
explains the reasoning behind the de®nition of the fractional derivative used here.
Next, all fractional derivative models possess memory kernels of the form t ÿa, where

0 < a < 1. Hence, any integral of the form�1
0

tÿaeat dt �57�

will diverge when a>0. Consequently, one may object to studying an aspect of the stability of
the rest state, as in Section 5, by using exponentially growing modes. Now, this is not the ®rst
instance such problems have arisen in rheology. For example, the analysis by Craik [32] shows
that there is an upper limit to the damping rate in a single integral model of the Maxwell type,
which means that not all exponentially growing disturbances can be considered in examining
the stability of the rest state in a ¯uid described by that model. In the present instance, the
analysis in Section 5 has served its purpose in drawing attention to some serious defects in
fractional derivative constitutive equations.
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It is essential to realise that the anomalous stability behavior is not a consequence of the
objective derivatives of the stress and the ®rst Rivlin±Ericksen tensor used here. This is because
under linearization, other objective derivatives will also lead to the same constitutive relation
(20) examined above. Thus, one has to seek other explanations for the strange stability results
obtained in the present work
Hence, one is forced to look at the singularities in the memory kernels. Here, it must be

noted that the appearance of singular kernels in viscoelasticity is not new. For example, the
ultrasonic behavior of G0 in the K-BKZ ¯uid [33] or the Doi±Edwards ¯uid [34] depends on
the nature of the singularity in their respective memory functions. Additionally, unbounded
kernels are shown to lead to smooth solutions in the Rayleigh problem for viscoelastic
liquids [35]. Thus, it is not the presence of singular kernels alone which results in the
anomalous stability results; rather, it is the type of singularity associated with fractional
derivative models. That is, had the functions m 1,2 been di�erent, this conundrum about stabilty
would not occur.
Now, the real reason fractional derivative models have found favor is that they ®t a certain

class of experimental data better than more conventional constitutive relations; for example,
refs [5, 6, 26]. However, the fact that the rest state of a ¯uid described by a fractional derivative
model is not unambiguously stable is a cause for some concern, because the assumption that
the constants a and b must obey 0 < a< b< 1 has its own thermodynamical backing derived
by Friedrich [28], who showed that this restriction arises if the rate of mechanical energy
dissipation is non-negative. Here, this rate dm is de®ned through

dm � Fÿ r _f; �58�
where F is the stress power and f is the free energy. In this connection, one may remark that
second- and higher-order ¯uids which obey thermodynamically derived constraints on the
material constants lead to the asymptotic stability of the rest state. For a review of these and
other related matters, see Dunn and Rajagopal [36]. Hence, we seem to have discovered a
constitutive relation which does not behave like thermodynamically consistent order ¯uids,
even when the material parameters meet the criterion of non-negativity of the rate of
mechanical energy dissipation in isothermal deformations.
Thus, the real usefulness of fractional derivative models remains to be explored. Earlier, it

has been shown by VanArsdale [22] that in a viscometric ¯ow, a fractional derivative model
predicts that the stresses depend on time. Here, our work has raised another set of di�culties
with such models. Whether these models or some variants thereof yield predictions which are
acceptable in dealing with large scale rheological phenomena must be investigated. Unless such
results are forthcoming, fractional derivative models will be restricted to studying a very
narrow range of experimental behavior only.
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Appendix A

Let s be a constant with varg sv < p/2, so that Re s = l>0. Let a be a real constant with
0 < a < 1, and let t>0. For any real number a, let us de®ne (a)n to be given by

�a�n �
G�a� n�
G�a� ; �A1�

where G(�) is the Gamma function. Now, repeated integration by parts gives�t
0

tÿaest dt � t1ÿa

�1ÿ a�1
est � � � � � �ÿ1�nÿ1 tnÿa

�1ÿ a�n
snÿ1est � Rn; �A2�

where the remainder term Rn is given by

Rn � �ÿ1�n
�t
0

tnÿa

�1ÿ a�n
snest dt: �A3�

We shall now prove that Rn40 as n41. This follows because

jRnjR
�t
0

tnÿa

�1ÿ a�n
jsjnelt dt � jsjn

�1ÿ a�n�1
tnÿa�1elt: �A4�

Now, it is a standard result [37, pp. 587±588] that for any real x>0,

lim
n41

xn

n!
� 0: �A5�

Next, by the property of the Gamma function,

xn

G�n� 2ÿ a� <
xn

nG�n� 1ÿ a� < � � � <
xn

n!G�1ÿ a� : �A6�

Using (A5)±(A6), we ®nd that

jRnjRG�1ÿ a�t1ÿaelt jstjn
G�n� 2ÿ a�40 �A7�

as n41. Thus,�t
0

tÿaest dt � G�1ÿ a� t1ÿa

G�2ÿ a� ÿ
st2ÿa

G�3ÿ a� �
s2t3ÿa

G�4ÿ a� � � � �
� �

est: �A8�

This can be put in the form
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�t
0

tÿaest dt � G�1ÿ a�t1ÿaest 1

G�2ÿ a� ÿ
st

G�3ÿ a� �
�st�2

G�4ÿ a� ÿ � � �
� �

: �A9�

It is easily shown, by using the ratio test [37, pp. 634±637], that the above series is absolutely
convergent.
The generalised Mittag±Le�er function is the entire function [38, Section 18.1, pp. 210]

Ea;b�z� �
X1
n�0

zn

G�an� b� ; �A10�

where a and b are positive constants. Using this, we may rewrite eqn (A9) as�t
0

tÿaest dt � G�1ÿ a�t1ÿaestE1;2ÿa�ÿst�: �A11�

Moreover, the function Ea,b(z) obeys [38, Section 18.1, pp. 210]

Ea;b�z� � ÿ
XNÿ1
n�1

zÿn

G�bÿ an� �O�jzjÿN� �A12�

as z41 in varg (ÿz)v < p(1 ÿ a/2).
Let us now put a = 1, b = 2 ÿ a, z = ÿ st and N = 2. Since varg sv < p/2, and t>0,

we have

arg�ÿz� � arg�st� � arg s: �A13�
Thus, varg(ÿz)v < p/2 = p[1 ÿ (a/2)]. Consequently,

E1;2ÿa�ÿst� � 1

G�1ÿ a�
1

st
�O

1

s2t2

� �
; �A14�

as t41. Hence, from eqn (A9),�t
0

tÿaest dt � tÿa
est

s
1�O

1

t

� �� �
; �A15�

as t41. Using the above, we conclude that

lim
t41

� t
0 t
ÿbest dt� t

0 t
ÿaest dt

� lim
t41 taÿb 1�O

1

t

� �� �
� 0; �A16�

since 0 < a < b < 1. This result is used in (38) above.
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