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Abstract

2 Ž .A realistically-shaped electron–boson interaction Eliashberg spectrum a F v is shown to be crucial in determining
superconducting transition temperatures when the Fermi-energy shift from a Van Hove saddle-point singularity lies between

2 Ž .the minimum and maximum boson frequencies in a F v . q 1999 Published by Elsevier Science B.V. All rights reserved.

PACS: 74.20.-z; 74.62.-c; 74.80.Dm; 74.25; 74.90

Ž .A Van Hove scenario VHS consisting of a saddle-point singularity at energy e in the vicinity of theVH

Fermi energy e in Eliashberg superconductors is the simplest model of a rapidly-varying electronic density ofF
Ž . Ž . w xstates EDOS N e 1–12 . Eliashberg superconductivity is caused by charge carriers pairing mediated via

some kind of bosonic excitations in the correlated electron-ion system. Although the analogous Migdal theorem
Ž .allowing neglect of vertex corrections to many-body-perturbation-theoretic Feynmann diagrams has been

w xproved only for phonon mediation, Eliashberg equations are still useful as a first approximation 13,14 .
Hopefully, vertex corrections, if important, can be included within effective kernels without modifying the form

w xof the basic equations 13–15 .
The behavior of the superconducting transition temperature, T , as a function of the shift t' e ye , wasc F VH

w x w xconsidered 1 in a modified Eliashberg theory that includes a non-constant EDOS 16–18 . It was found that for
large t, i.e., t)v , T is insensitive to the EDOS singularity and identical to the familiar McMillanmax c

Ž .T -formula. But T changes radically if a peak in N e is close to e . Qualitatively, T depends only weakly, inc c F c

either extreme t-v or t)v , on the fine-structure of the frequency distribution of the assumedmin max
2 Ž . 2 Ž .electron–boson interaction spectrum function a F v of Eliashberg theory. Any dependence on the a F v

fine structure enters the T -equation only via an average boson frequency v , the mass-renormalization factorc ln
2 Ž . w xl, and possibly through the first few moments of a F v , 17 – the Coulomb pseudopotential m being taken

)

Ž .as zero. Thus, two different spectra leading to identical l and v parameters results in nearly equal T t forln c

either t-v and t)v . However, the more interesting and realistic case when e is shifted from e bymin max F VH
w xsome finite value 10 such that v - t-v has not been studied.min max
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2 Ž .In this Letter we elucidate the effect upon T of a realistically-structured a F v , for t lying within thec
Ž . ŽinterÕal v , v . We ignore all complications arising from possible structural instabilities in a VHS for anmin max

w x. Ž . Ž .excellent review see 7 , and assume the simplest model for the EDOS, namely N e sN ln 2Wr ey t over0
w xthe entire range of e 1,5 . This model may be relevant for any type intermediate boson such as excitons,

Ž .plasmons, paramagnons, etc., e.g., in cuprate superconductors where e is closely pinned to the e of N e asF VH
w x Ž .now firmly established experimentally 7 . We need not assume that the singular N e originates from the

intrinsic band structure of CuO-planes. Indeed, flat regions of the band structure – leading to singularities in
Ž .N e – may arise from the complex electron-electron interactions in high-T -oxides, but we do not exclude thatc

w xan intermediate boson necessary for the Eliashberg formalism would be provided by these interactions 19 .
2 Ž .Furthermore, one need not specify precisely the interaction spectrum a F v which may be any function of v

Ž .over the interval v , v and zero otherwise. Effects of strong gap-anisotropy found in some high-Tmin max c

materials are not considered, although the symmetry of the order parameter may yet prove to be d-wave. If so,
the present work would merely suggest the need of more careful consideration of the possible consequences
from the ‘e to e -Õicinity’ in the corresponding Eliashberg theory. For s-waÕe-type symmetry these effectsF VH

w x Ž w x.could be qualitatively included in the treatment given below within the spirit of 20 see also 21 – i.e., by
means of a mean-square anisotropy factor a2.

The Migdal-Eliashberg theory including all the complexities of band structure has been developed by
w xGarland 22 . Ignoring interband and anisotropy effects modifies the relevant equations in a way that

Ž .incorporates the energy dependence of N e and leads to equations very similar to those of standard Eliashberg
Ž . w xtheory. A popular method of analytically solving the Eliashberg equations valid for general N e 16–18 is

˜w x Ž . Ž .described in 1 where the basic gap D iv and mass renormalization Z iv functions are related, near TsT ,n n c

through

q`

C iv sC 8 iv qnp T K iv ,i v C iv , 1Ž . Ž . Ž . Ž . Ž .Ýn n c n m m
msy`

˜Ž . Ž . Ž . Ž . Ž .where C iv 'D iv Z iv rD 0 Z 0 , and v are the Matsubara frequencies. The free term and the kerneln n n m
2 ˜Ž . Ž . Ž . Ž . Ž .in 1 are determined by specific a F v and N e which enter through known functions I v ,v and N ṽn m n

w x Ž w x.determined in 1 see, also 16–18 , namely

C 8 iv s I v ,0 qk I v ,0 y1 ,Ž . Ž . Ž .n n n

˜Z 0 N vŽ . ˜Ž .m
K iv ,i v s I v ,v y I v ,0 I 0,v .Ž . Ž . Ž . Ž .n m n m n m ˜ vZ ivŽ . mm

dv` 2Ž̃ . Ž . Ž . Ž .Here v sv Z iv , ls2H a F v , and nslrZ 0 , while Z 0 s1ql is the renormalization factor˜ n n n 0 v

Ž . Ž .associated with N e sconst. Then, T emerges as an eigenvalue of the equation C 0 s1.c
Ž . w xNote, however, that the exact transformation used to arrive at 1 was suggested in 23 and is essentially a

w xregularization procedure for integral equations with divergent kernels. Following Refs. 1,24,25 one generates a
Ž . Ž .series for C iv from C 8 iv , which is a zero-order approximation that will be successful depending on then n

Ž . Ž .nature of the sum in 1 and provided the constant n is small. For intermediate-coupling l-1.5 n-0.6 and
w xv )p T , it was shown 24,25 that the zero-order approximation already leads to rather accurate expressionsph c

w xfor T . The exact value of k is proportional to the weak pseudopotential m 1 , which for simplicity is initiallyc )

Ž̃ . w xtaken as zero. As to the function Z v , following 14 we neglect its frequency-dependence and putn

`
21 dv v

2Z̃ 0 sZ 0 q ln a F vŽ . Ž . Ž .H 22 2 ž /ln 2Wrt tt yvŽ . 0



( )T.A. MamedoÕ, M. de LlanorPhysics Letters A 257 1999 201–208 203

w xas found in 1 . Results obtained from this analytic expression for the renormalization factor compare excellently
Ž̃ .with exact numerical calculations that were performed for Z 0 based on the original Eliashberg equations.

w xThe eigenvalue equation for T is then 1c

` `1 1 P v yP vŽ . Ž .1 22 2 2 2s dv a F v dv a F v , 2Ž . Ž . Ž .H H1 1 2 22 2 2g l v yv0 0 2 1

Ž̃ .where gslrZ 0 and

1 1 1.13v 2W 1.13t
1 2P v s ln ln y ln qS v ,T ,Ž . Ž .t c222W 2 2ž / ž /ž /T Tv ( t yvc cln ž /t

2 Ž . w xfor which we assumed that p T - t and p T -v for any v contained in a F v . Similarly 1,26 one hasc c

S v ,T sS 8 v ,T qu tyv DS v ,T ,Ž . Ž . Ž . Ž .t c t c t c

Ž .where the Heaviside unit step-function u tyv was introduced to write

2 2(1.13v 1.13 t yv
S 8 v ,T s ln ln qd v ,Ž . Ž .t c 1ž / ž /T Tc c

2 2(t 1.13 t yv 1.13v
1 2DS v ,T s ln ln y ln qd v .Ž . Ž .t c 22ž / ž /ž /v T Tc c

. Ž . Ž .Two remarks are in order: a d v and d v do not depend on T – as a result they have no effect on the1 2 c
w x . Ž .T -equation functional form, and lead to small corrections to T 1 ; and b due to a specific form for S v,T ,c c t c

Ž .T enters the eigenvalue Eq. 2 only via ln 1.13 f v ,t rT . Hence, the T -dependence expressed as integralsŽ .c c c
Ž . Ž .over v may be factored out since ln 1.13 f v ,t rT s ln 1.13trT q ln f v ,t rt . Then, 2 becomesŽ . Ž .Ž .c c

1.13t 1.13t
2a t ln qb t ln qc t s0, 3Ž . Ž . Ž . Ž .ž / ž /T Tc c

Ž . Ž . Ž .where the coefficients a t , b t and c t are functionals of the spectral density of interaction. Their exact
w x Ž .expressions, at least for t-v and t)v , are known 1 , e.g., a t s1r2 or 0 for t-v or t)v ,min max min max

2 Ž .respectively. In general, they are double integrals over a F v and can be determined only if the spectrum
2 Ž . Ž . 2 Ž .a F v is specified. However, one can perform in 2 the partial integrations for any a F v by introducing

Ž . Ž .the partial interaction spectra S v and S v split at vs t, and defined as1 2

S v 'a 2F v sS v u tyv qS v u vy t . 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .1 2

Ž .The integrals in 2 then factorize as

l t l tŽ . Ž .1 2² : ² : ² :. . . s . . . q . . . ,Ž . Ž . Ž .Ž . Ž .Ž . S v S vS v 1 2
l l

via the partial interaction parameters

dvt
l t s2 S vŽ . Ž .H1

v0
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and

` dv
l t s2 S v ,Ž . Ž .H2

vt

where by definition

` `
2 2 2 2² :. . . ' dv rv X v . . . r dv rv X v , XsS,S or S .Ž . Ž . Ž .Ž . Ž .Ž . H HX v 1 2

0 0

Ž . Ž . Ž .The spectra S v and S v given by 4 lead to physically different channels of charge-carrier Cooper1 2

pairings, i.e., to electron-like and hole-like sections simultaneously in different directions of the iso-energy
surface ese . Because e is shifted from e by an amount t, absorption or emission by an electron of aVH F VH

Ž . Ž . Ž .phonon belonging to the spectrum S v constrains an electron hole to an electron- hole- like orbit.1
w Ž .xSimilarly, a phonon of energy v ) t i.e., a phonon from S v may convert an electron into a hole, and vice2

Ž .versa. This is in addition to the conventional channel associated with S v which does not mix electron- and1

hole-like excitations.
Ž .The coefficients in 3 thus become

2 2
`

2 21 l t 1 dv dv vŽ . t2 1 2 1
a t s y S v S v ,Ž . Ž . Ž .H H1 22 2 2 2 2 22 l l v v v yv0 t1 2 2 1

2W l t v t 1 l2 tŽ . Ž . Ž .2 2 1
b t s ln q ln y h8y h t qDb t ,Ž . Ž . Ž .2ž / ž / ž /t l t 2 l

2W v h8 1ln
c t s ln ln y y qDc t .Ž . Ž .ž /t t 2 g

Ž . Ž . Ž . Ž .The analytic expressions for Db t and Dc t , whose contributions correspondingly to b t and c t are less
² :than 5–10%, will be reported elsewhere. Here, v 'exp lnv is the mean-logarithmic frequency of theSŽv .ln

Ž . Ž . Ž .total spectrum. The partial frequencies v t or v t are given by the expression for v but with S v or1 2 ln 1
Ž . Ž .S v instead of S v . The quantity h8 – as well as v – follow from standard Eliashberg theory with constant2 ln

w x ²² 2 Ž 2 X 2 .: X : Ž .EDOS 24,25 , and is just h8s v r v yv . The factor h t is obtainable by replacing the totalSŽv . SŽv .
Ž . Ž . Ž .S v by S v in h8. The latter quantity, as well as h t , are weakly-structure-dependent parameters of the1

interaction spectrum and thus result in differing asymptotic values of T for small and large t.c
Ž .Eq. 3 then leads to the final expression

2(b t y b t y4a t c tŽ . Ž . Ž . Ž .
T s1.13t exp , 5Ž .c 2 a tŽ .

Ž . Ž . Ž .so that T is clearly determined by the filling-parameter-dependent a t , b t and c t which in turn arec
Ž . Ž . Ž . Ž .functionals of S v and S v . It depends principally on the partial interaction parameters l t , v t and1 1 1 1

Ž . Ž .l t , v t connected via the total l and average frequency v through2 2 ln

Ž . Ž .l t l t1 2

l l
lsl t ql t , v s v t v t .Ž . Ž . Ž . Ž .1 2 ln 1 2
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Ž .The form of 5 reveals that the contribution of any v to the eigenvalue equation for T depends on thec
Ž . Ž .location of e in N e . For either small or large t ' e ye the form of the three coefficients 3 simplifyF F VH

Ž .considerably, and 5 is then expressible in terms of the v and l asln

2 21.13v 2W 2W 1 v h8 1ln lnŽ1.T s exp y ln q q ln y y small t ,Ž .)c h8r2 2ž /ž / ž / ž /ž /t t g t 2e gž /
1.13v 1lnŽ2.T s exp y large t ,Ž .c h8r2 ž /ge

w x w xboth of which were obtained in 1 and closely resemble those given in the VHS of the BCS theory 8,12 . Note
that T also depends on the full electronic bandwidth 2W being a decreasing function of the ratio 2Wrv . Asc ln

w xthis ratio diverges for fixed t one obtains the familiar McMillan T -formula 1 . As t increases, the ‘evolution’c
Ž . Ž1. Ž2. Ž . Ž .of T 5 from T to T is entirely determined by the behavior of the coefficients 3 , with a t thec c c

Ž .highest-order term of ln 1.13trT being fixed solely by the interaction-spectrum parameters. This coefficientc
Ž . Ž . Ž .changes sign for some t lying within v ,v . By contrast, b t and c t being of opposite sign dependmin max

mainly on the electronic structure of the system.
Ž . 2 Ž .To qualitatively understand the effect upon T of any non-d-function-like fine-structure in a F v one canc

2 Ž .model the latter by simple functions reflecting general features of some realistic spectrum. Initially a F v

Ž . n wŽ .2 2 xwas modeled by single peaks of the form S v sA v r vyv qB , with parameters A , B and v ,i i 0 i i i i 0 i
2 Ž .modulating the shapes of a F v , and fitted to yield the same v and l for each case ‘i’. This guaranteedln

nearly equal values of T for either extreme t<v or t4v . Fig. 1 shows that narrowing the spectrumc ln ln
w xgives slightly higher T in either extreme – a well-known result for constant EDOS 17 . However, the variationc

of T turns out to be non-monotonic in the intermediate region and passes through a minimum T min. Fixing lc c
min 2 Ž .and v , T decreases with narrowing a F v eventually making superconductivity disappear altogetherln c

2 Ž .over some interval of intermediate t values near v . Broadening a F v leads to T a smoother function of t,ln c

while its minimum shifts towards larger filling-parameter values approaching T 8, the value corresponding toc

constant EDOS, from below. Calculations for a smaller set of n were repeated by fixing v , but changing theln

2 Ž . Ž . ŽFig. 1. T vs t for different shape-types of a F v ; single-peak results shown in inset. The set of parameters A, B,v were chosen inc 0
. Ž . Ž . Ž . Ž .meV as: 0.65,3,19.8 full curve; 1.12,5,19.4 dashed; 1.62,7,18.9 dotted; and 2.2,9,18.2 dot-dashed. All parameter sets yield the same

l and v . Horizontal dashed-line is T 8 as defined in text.ln c
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Ž . 2 Ž .height of the single-peak curve in a F v so as to ensure different l’s. The T -enhancing effect of the VHSc
w xover that of constant EDOS increased significantly by decreasing l 1,27 , but the characteristic non-monotonic

Ž .behavior of T vs t remained unchanged. Because the iterative solution of 1 is ‘exact’ for small n , wec

conclude that this non-trivial variation of T is an inherent property of real superconductors, i.e., systems withc
Ž .varying N e .

2 Ž .Next, a F v was put in the form of two superposed peaks, motivated by the fact that T itself dependsc
Ž . Ž . 2 Ž .critically on the details of variation of a t 5 which in turn is quite sensitive to the structure in a F v . The

2 Ž .strongest variation in T then occurs near the characteristic peaks of a F v , while far from these peaks Tc c
w x 2 Ž .changes slightly 1 . Thus, for the two-peak-structured a F v we expect a ‘ladder-like’ behavior in the

evolution of T between the two extremes t-v and t)v , the exact nature of which is then dictated byc min max
2 Ž . 2 Ž .the details of a F v . In fact, when the peaks in a F v are narrowed, thus rendering sharper individual

Ž .peaks, for t varying over the considerable part of the interval v ,v the magnitude of T is moremin max c

concentrated near two different but nearly constant values T and T . The width over which T changes fromc1 c2 c
2 Ž .T to T is given by the width of the low-frequency part of a F v , but the magnitude of T yT is fixedc1 c2 c1 c2

by the interaction parameters lŽ1. and lŽ2. associated with each peak, Fig. 2. As in the case of a single peak,
Fig. 1, T passes through a minimum T min and at t4v approaches T 8. Decreasing l does not eliminate thec c ln c

non-monotonic behavior of the evolution of T between the extremes t<v and t4v . The reason for thec ln ln
w xslight T -reduction at very small shifts in Figs. 1 and 2 is discussed in 1 , as well in pioneering work by Pickettc

w x16 . BCS-like theories predict maximum T when e and e coincide; however, additional work is neededc F VH
w xwhen tFp T . Also, one finds that non-zero values of m drastically decrease T for large t 1 , but as shownc ) c

w x Ž .in 12 for small t viz., in the high-temperature region the influence of m is significantly reduced.
)

A clue in understanding the origin of this nontrivial T behavior as a function of t follows by proposing ac
Ž .Fourier transform V v for the indirect pairwise boson-mediated interaction potential that is a complicated

function and changes sign for some frequencies – thus resulting in a depairing effect for the Cooper pairs. In
BCS-like theories this interaction potential is mimicked by a negative constant or zero depending on whether v

Ž . Ž .is or is not, respectively, in the interval yv ,v . The reason for the depairing component of V v ismax max
Ž . Ž . Ž .clarified by considering physically-different pairing channels S v and S v in 4 , as discussed above, and1 2

Ž . Ž .by assuming for the moment that there is only an S v -type channel different from zero provided vF t .1

2 Ž . 2 Ž . n wŽ .2 2 x n wŽ .2 2 xFig. 2. T vs t for a two-peak-structured a F v . Inset figure is for a F v s A v r v y v q B q A v r v y v q Bc 1 01 1 2 02 2

with A s0.2, B s2.1, v s35 meV and A s0.31, B s2.8, v s70 meV.1 1 01 2 2 02
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Ž .Then, by applying BCS-theory it is easy to find a repulsive contribution to the total V v originating from the
exchange of two electrons via phonons of frequencies v) t.

The following argument may shed additional light into the origin of the non-monotonic T vs t-behavior.c
Ž .Since the EDOS varies sharply even infinitely so at distances of order ts e ye from e pairing due toF VH F

an individual boson of energy close to t is much stronger than that due to phonons with energies differing
significantly from t, there being a large number of final states for electrons to be scattered into via phonons of

Ž .energy ; t. In other words, due to the logarithmic N e the main contribution in the basic equations to the gap
Ž .energy which is proportional to T comes from phonons with energies concentrated near t. On the other hand,c

w xas shown by several studies in conventional superconductors, e.g., 14 , the gap function is roughly slowly-vary-
ing for frequencies less than v , decreases rapidly near the upper edge of the phonon spectrum, and changesmax

sign near v . In fact, in many analytic studies of conventional superconductors, the gap function is simulatedmax

by single- or two-step shapes. Assuming now a very narrow electron-phonon interaction spectrum ‘located’ near
Ž .some v i.e., a spectrum for which v ;v and placing t near v where the magnitude of the gap is0 max 0 max

significantly reduced, a reduction in T ensues.c

To conclude, the behavior of T as a function of t depicted in special cases in Figs. 1 and 2 is useful inc
Ž . w xinterpreting observations in several oxide superconductors. In Bi Sr Cu O T ,10K 28 and Sr RuO2 2 1 x c 2 4

Ž . w xT ,0.1 K 29,30 T is unexpectedly small in spite of e lying very close to e . Assuming that the shift ofc c VH F
Že from e in these compounds corresponds to values of t such that T falls near its minimum value see,F VH c

. Ž . 2 Ž .e.g., Fig. 1 then Eq. 5 adequately describes experiment. Moreover, for a two-peak-shaped a F v , assuming
Ž . 2 Ž .an inter-electron or -hole interaction via bosons from the higher-frequency parts of a F v to be significant,

the two-plateau structure, Fig. 2, for T is obtained which is well-established in empirical T vs x curves forc c

Y Ba Cu O . Finally, the origin of so-called anomalous isotope effects in high-T -materials might be1 2 3 7yx c
Ž . Ž . Žclarified, given the novel element that the partial l t and l t depend on the ionic mass unlike the total l in1 2

.the harmonic approximation and thus lead to non-vanishing terms in the isotopic-shift factor, as will be
examined in detail elsewhere.
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