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Abstract

A realistically-shaped electron—boson interaction Eliashberg spectrum «?F(w) is shown to be crucial in determining
superconducting transition temperatures when the Fermi-energy shift from a Van Hove saddle-point singularity lies between
the minimum and maximum boson frequencies in «2F(w). © 1999 Published by Elsevier Science B.V. All rights reserved.

PACS. 74.20.-z; 74.62.-c; 74.80.Dm; 74.25; 74.90

A Van Hove scenario (VHS) consisting of a saddle-point singularity at energy e, in the vicinity of the
Fermi energy e in Eliashberg superconductors is the simplest model of a rapidly-varying electronic density of
states (EDOS) N(e) [1-12]. Eliashberg superconductivity is caused by charge carriers pairing mediated via
some kind of bosonic excitations in the correlated electron-ion system. Although the analogous Migdal theorem
(allowing neglect of vertex corrections to many-body-perturbation-theoretic Feynmann diagrams) has been
proved only for phonon mediation, Eliashberg equations are still useful as a first approximation [13,14].
Hopefully, vertex corrections, if important, can be included within effective kernels without modifying the form
of the basic equations [13—-15].

The behavior of the superconducting transition temperature, T, as a function of the shift t = |e. — €|, was
considered [1] in a modified Eliashberg theory that includes a non-constant EDOS [16—18]. It was found that for
large t, i.e, t> wgy, T. is insensitive to the EDOS singularity and identical to the familiar McMillan
T.-formula. But T, changes radically if a peak in N(e) iscloseto e.. Qualitatively, T, depends only weakly, in
either extreme t< wy, Or t> w,,, on the fine-structure of the frequency distribution of the assumed
electron—boson interaction spectrum function a?F(w) of Eliashberg theory. Any dependence on the a?F(w)
fine structure enters the T_-equation only via an average boson frequency w,,, the mass-renormalization factor
A, and possibly through the first few moments of a2F(w), [17] — the Coulomb pseudopotential ., being taken
as zero. Thus, two different spectra leading to identical A and w,, parameters results in nearly equal T.(t) for
either t < o, and t > w,,,. However, the more interesting and realistic case when e, is shifted from e, by
some finite value [10] such that w,,, <t < o, has not been studied.
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In this Letter we elucidate the effect upon T, of a realistically-structured «?F(w), for t lying within the
interval (wgin, ®ne)- Weignore all complications arising from possible structural instabilitiesin a VHS (for an
excellent review see [7]), and assume the simplest mode! for the EDOS, namely N(e) = NyIn(2W/ | € — t|) over
the entire range of € [1,5]. This model may be relevant for any type intermediate boson such as excitons,
plasmons, paramagnons, etc., e.g., in cuprate superconductors where e is closely pinned to the e, of N(e) as
now firmly established experimentally [7]. We need not assume that the singular N(e) originates from the
intrinsic band structure of CuO-planes. Indeed, flat regions of the band structure — leading to singularities in
N(e) — may arise from the complex electron-electron interactionsin high-T.-oxides, but we do not exclude that
an intermediate boson necessary for the Eliashberg formalism would be provided by these interactions [19].
Furthermore, one need not specify precisely the interaction spectrum «?F(w) which may be any function of w
over the interval (w,;,, ®.) and zero otherwise. Effects of strong gap-anisotropy found in some high-T,
materials are not considered, although the symmetry of the order parameter may yet prove to be d-wave. If so,
the present work would merely suggest the need of more careful consideration of the possible consequences
from the ‘e to e, ,-vicinity’ in the corresponding Eliashberg theory. For s-wave-type symmetry these effects
could be qualitatively included in the treatment given below within the spirit of [20] (see also [21]) — i.e., by
means of a mean-square anisotropy factor a2,

The Migdal-Eliashberg theory including all the complexities of band structure has been developed by
Garland [22]. Ignoring interband and anisotropy effects modifies the relevant equations in a way that
incorporates the energy dependence of N(e) and leads to equations very similar to those of standard Eliashberg
theory. A popular method of analytically solving the Eliashberg equations valid for general N(e) [16-18] is
described in [1] where the basic gap A(i w,,) and mass renormalization Z(i ,,) functions are related, near T =T,
through

VY(iow,) =V(iw,) +vaT, Jrzw Kiwyiog)¥(io,), (1)

where V(i w,) = Ali 0,)Z(i )/ A(0)Z(0), and w,, are the Matsubara frequencies. The free term and the kernel
in (1) are determined by specific @?F(w) and N(e) which enter through known functions I(w,, @) and N(| &,|)
determined in [1] (see, also [16-18]), namely

Vo(iw,) = 1(w,,0) + [ 1( @,,0) — 1],

2(0) N(| &)
Ziwoy) |ow

Here &, = w,Z(»,), A =2/7%a?F(w), and v= A/Z(0), while Z(0) = 1+ A is the renormalization factor
associated with N(e) = const. Then, T, emerges as an eigenvalue of the equation ¥(0) = 1.

Note, however, that the exact transformation used to arrive at (1) was suggested in [23] and is essentially a
regularization procedure for integral equations with divergent kernels. Following Refs. [1,24,25] one generates a
series for ¥(i w,) from ¥°(i w,,), which is a zero-order approximation that will be successful depending on the
nature of the sum in (1) and provided the constant v is small. For intermediate-coupling A < 1.5 (» < 0.6) and
wpp > 7T, it was shown [24,25] that the zero-order approximation already leads to rather accurate expressions
for T.. The exact value of « is proportional to the weak pseudopotential w, [1], which for simplicity isinitially
taken as zero. As to the function Z(w,,), following [14] we neglect its frequency-dependence and put

K(iwn’iwm) = [ I(wn'wm) - I(wnvo)l(()’wm)]

o dw?

In(2W/t) fo t?— o

7(0) =2(0) + 2In($)a2F(w2)
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asfound in [1]. Results obtained from this analytic expression for the renormalization factor compare excellently
with exact numerica calculations that were performed for Z(0) based on the original Eliashberg equations.
The eigenvalue equation for T, is then [1]

1 1 [P(@1) = P(w,)]

i F/:dwfazlz(wl)f:dwgazF(wz) 0 — w2 ’ ()
where g = A/Z(0) and
(o) - %%[In( 1.13w)|n( 2W )_%|n2(1.13t +s[(w,Tc)1,
In(T) @ T [t? — w?| Te

for which we assumed that 7T, <t and 7T, < » for any o contained in a?F(w). Similarly [1,26] one has

St(w’Tc) = Sto(w'Tc) + 6(’[ - w)ASt(w'Tc)'

where the Heaviside unit step-function 6(t — w) was introduced to write

S(w.T) = 'n( +0y(w),

T

c c

1.130 )l ( 1.13/|t? — w?|
n

1.13/|t? — 0?| L[ 113w
———— | A —— | + 8x(w).
TC

AS(w,T,) =In( t )In( T

w c

Two remarks are in order: @ §,(w) and §,(w) do not depend on T, — as a result they have no effect on the
T.-equation functional form, and lead to small corrections to T, [1]; and b) due to a specific form for S(w,T,),
T, enters the eigenvalue Eg. (2) only via In[1.13f( w,t) /Tc]. Hence, the T_-dependence expressed as integrals
over w may be factored out since In[1.13f( w,t) /T,] = IN(L.13t/T,) + In[( f(w,t) /t)]. Then, (2) becomes

+¢(t) =0, (3)

a(t)lnz( + b(t)ln(

9 Cc

where the coefficients a(t), b(t) and c(t) are functionals of the spectral density of interaction. Their exact
expressions, at least for t < w,,,, and t > w,,,,, are known [1], eg., at)=1/2 or 0 for t < wy, OF t> Wya»
respectively. In genera, they are double integrals over a?F(w) and can be determined only if the spectrum
a?F(w) is specified. However, one can perform in (2) the partial integrations for any a?F(w) by introducing
the partial interaction spectra S(w) and S,(w) split a w =t, and defined as

S w) =a’F(w) =S(0)0(t— o) +S(w)o(w—t). (4)
The integras in (2) then factorize as
(s = 200 s 20

via the partial interaction parameters

tdw
M) =2f —(e)
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and

nv =2 “sa)

where by definition

<...>X(w)Ej(;m(dwz/wz)X(w)(...)/j:(dwz/wz)X(w), X=S§SoS,.

The spectra S(w) and S,(w) given by (4) lead to physicaly different channels of charge-carrier Cooper
pairings, i.e., to electron-like and hole-like sections simultaneously in different directions of the iso-energy
surface € = €. Because € is shifted from €, by an amount t, absorption or emission by an electron of a
phonon belonging to the spectrum S(w) constrains an electron (hole) to an electron- (hole-) like orbit.
Similarly, a phonon of energy w >t [i.e., a phonon from S,(w)] may convert an electron into a hole, and vice
versa. This is in addition to the conventional channel associated with S(w) which does not mix electron- and
hole-like excitations.
The coefficients in (3) thus become

1 A3(t 1 4dw? = dw3 w?
a(t)=§ /\(2) _Fj;)w_%s(wl)j; w—gs(wz)m,
2WY  Ay(t w,(t 1 A3 (t
R B e

o

2W/( w 1
c(t) =In— In— — noz
t t 2 g

+ Ac(t).

The analytic expressions for Ab(t) and Ac(t), whose contributions correspondingly to b(t) and c(t) are less
than 5-10%, will be reported elsewhere. Here, w,, = exp{lnw)s., is the mean-logarithmic frequency of the
total spectrum. The partial frequencies w,(t) or w,(t) are given by the expression for w,, but with S(w) or
S,(w) instead of S w). The quantity n° — as well as w,,— follow from standard Eliashberg theory with constant
EDOS[24,25], and isjust n° = ({ w?/(0? — w'?))g'))sw)- The factor n(t) is obtainable by replacing the total
S w) by S(w) in n°. The latter quantity, as well as n(t), are weakly-structure-dependent parameters of the
interaction spectrum and thus result in differing asymptotic values of T, for small and large t.
Eqg. (3) then leads to the final expression

b(t) — /b?(t) —4a(t)c(t)
2a(t) '

T.=1.13texp (5)

so that T, is clearly determined by the filling-parameter-dependent a(t), b(t) and c(t) which in turn are
functionals of S(w) and S(w). It depends principally on the partial interaction parameters A,(t), w(t) and
A,(1), w,(t) connected via the total A and average frequency w,,, through

A1) A1)

A=2(0) +A(1), @ =[wy(D)] * [ (D] "
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The form of (5) reveals that the contribution of any » to the eigenvalue equation for T, depends on the
location of e in N(e). For either small or large t = |ex — €, the form of the three coefficients (3) simplify
considerably, and (5) is then expressible in terms of the w,, and A as

\/( 2W 1
_ m(—) .

t g
113w,

1
2) _
T® = o7 exp( g) (larget),

both of which were obtained in [1] and closely resemble those given in the VHS of the BCS theory [8,12]. Note
that T, also depends on the full electronic bandwidth 2W being a decreasing function of the ratio 2W/ w,,,. As
this ratio diverges for fixed t one obtains the familiar McMillan T-formula[1]. As t increases, the ‘evolution’
of T, (5 from TP to T/? is entirely determined by the behavior of the coefficients (3), with a(t) the
highest-order term of In(1.13t/T,) being fixed solely by the interaction-spectrum parameters. This coefficient
changes sign for some t lying within (wg;,, wma)- By contrast, b(t) and c(t) being of opposite sign depend
mainly on the electronic structure of the system.

To qualitatively understand the effect upon T, of any (non-s-function-like) fine-structure in a>F(w) one can
model the latter by simple functions reflecting general features of some redlistic spectrum. Initially a?F(w)
was modeled by single peaks of the form S(w) = A 0"/[(w — wy;)? + B?], with parameters A, B, and o,
modulating the shapes of «?F(w), and fitted to yield the same w,, and A for each case ‘i’. This guaranteed
nearly equal values of T, for either extreme t < w, Or t> w,. Fig. 1 shows that narrowing the spectrum
gives dlightly higher T, in either extreme — a well-known result for constant EDOS [17]. However, the variation
of T, turns out to be non-monotonic in the intermediate region and passes through a minimum T.™". Fixing A
and o, T™" decreases with narrowing «?F(w) eventually making superconductivity disappear altogether
over some interval of intermediate t values near ,,. Broadening «?F(w) leads to T, a smoother function of t,
while its minimum shifts towards larger filling-parameter values approaching T.°, the value corresponding to
constant EDOS, from below. Calculations for a smaller set of v were repeated by fixing ,,, but changing the

2

o

4 (In( “’t') - %)2— é) (smal t),

TO =

1130, [ 2W
— |eX
( t ) P

eTlo/2

40t
30t
<
o
'_.
201
\ o, =20 meV
'/ wW=600mev
10t \/
10 20 30 40
t (meV)

Fig. 1. T, vs t for different shape-types of a?F(w); single-peak results shown in inset. The set of parameters (A, B, w,) were chosen (in
meV) as: (0.65,3,19.8) full curve; (1.12,5,19.4) dashed; (1.62,7,18.9) dotted; and (2.2,9,18.2) dot-dashed. All parameter sets yield the same
A and w,. Horizontal dashed-line is T.° as defined in text.



206 T.A. Mamedoo, M. de Llano / Physics Letters A 257 (1999) 201-208

height of the (single-peak) curve in a?F(w) so as to ensure different A’s. The T.-enhancing effect of the VHS
over that of constant EDOS increased significantly by decreasing A [1,27], but the characteristic non-monotonic
behavior of T, vs t remained unchanged. Because the iterative solution of (1) is ‘exact’ for smal v, we
conclude that this non-trivial variation of T, is an inherent property of real superconductors, i.e., systems with
varying N(e).

Next, a?F(w) was put in the form of two superposed peaks, motivated by the fact that T, itself depends
critically on the details of variation of a(t) (5) which in turn is quite sensitive to the structure in a?F(w). The
strongest variation in T, then occurs near the characteristic peaks of a?F(w), while far from these peaks T,
changes dlightly [1]. Thus, for the two-peak-structured a?F(w) we expect a ‘ladder-like’ behavior in the
evolution of T, between the two extremes t < w,;, and t > w,,,,, the exact nature of which is then dictated by
the details of a?F(w). In fact, when the peaks in a?F(w) are narrowed, thus rendering sharper individual
peaks, for t varying over the considerable part of the interval (wy,, @) the magnitude of T is more
concentrated near two different but nearly constant values T, and T,. The width over which T, changes from
T, to T, is given by the width of the low-frequency part of a?F(w), but the magnitude of T, — T, is fixed
by the interaction parameters A and A® associated with each peak, Fig. 2. As in the case of a single peak,
Fig. 1, T, passes through aminimum T,"" and at t > w,, approaches T.°. Decreasing A does not eliminate the
non-monotonic behavior of the evolution of T, between the extremes t < w,, and t > w,,. The reason for the
dlight T.-reduction at very small shiftsin Figs. 1 and 2 is discussed in [1], as well in pioneering work by Pickett
[16]. BCS-like theories predict maximum T, when e and €, coincide; however, additional work is needed
when t < 7 T_. Also, one finds that non-zero values of w, drasticaly decrease T, for large t [1], but as shown
in [12] for smdll t (viz., in the high-temperature region) the influence of w, is significantly reduced.

A clue in understanding the origin of this nontrivial T, behavior as a function of t follows by proposing a
Fourier transform V(w) for the indirect pairwise boson-mediated interaction potential that is a complicated
function and changes sign for some frequencies — thus resulting in a depairing effect for the Cooper pairs. In
BCS-like theories this interaction potential is mimicked by a negative constant or zero depending on whether
is or is not, respectively, in the interval (— @, , wma)- The reason for the depairing component of V(w) is
clarified by considering physically-different pairing channels S(w) and S,(w) in (4), as discussed above, and
by assuming for the moment that there is only an S(w)-type channel (different from zero provided w <').

100 — T . T T
3
[ o«*F(o) (\

I
_ | I
o N A
35 55 75 95

< 60} \ '
I__
A=13
o,, = 50.2 meV
40+ W =600 meV
20 L Il Il 1 1
20 30 40 50 60
t (meV)

Fig. 2. T, vs t for a two-pesk-structured a?F(w). Inset figure is for a?F(w)= Ajw"/[(0 — wy)? + B2+ Ay0" /(0 — ©yy)? + BZ]
with A, =02, B,=2.1, wg, =35 meV and A, = 0.31, B, = 2.8, wp, = 70 meV.
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Then, by applying BCS-theory it is easy to find a repulsive contribution to the total V(w) originating from the
exchange of two electrons via phonons of frequencies w > t.

The following argument may shed additional light into the origin of the non-monotonic T, vs t-behavior.
Since the EDOS varies sharply (even infinitely so at distances of order t = | e, — €| from e;) pairing due to
an individual boson of energy close to t is much stronger than that due to phonons with energies differing
significantly from t, there being a large number of final states for electrons to be scattered into via phonons of
energy ~ t. In other words, due to the logarithmic N(e) the main contribution in the basic equations to the gap
energy (which is proportional to T,) comes from phonons with energies concentrated near t. On the other hand,
as shown by several studies in conventional superconductors, e.g., [14], the gap function is roughly slowly-vary-
ing for frequencies less than w,,,,, decreases rapidly near the upper edge of the phonon spectrum, and changes
Sign near w,,,- IN fact, in many analytic studies of conventional superconductors, the gap function is simulated
by single- or two-step shapes. Assuming now a very narrow electron-phonon interaction spectrum ‘ located’ near
some w,, (i.e., a spectrum for which ., ~ ®,) and placing t near o, where the magnitude of the gap is
significantly reduced, a reduction in T, ensues.

To conclude, the behavior of T, as a function of t depicted in special cases in Figs. 1 and 2 is useful in
interpreting observations in several oxide superconductors. In Bi,Sr,Cu,0, (T, =10K) [28] and Sr,RuQ,
(T, = 0.1K) [29,30] T, is unexpectedly small in spite of €, lying very closeto er. Assuming that the shift of
e from €, in these compounds corresponds to values of t such that T, falls near its minimum value (see,
e.g., Fig. 1) then Eq. (5) adequately describes experiment. Moreover, for a two-peak-shaped «2F(w), assuming
an inter-electron (or -hole) interaction via bosons from the higher-frequency parts of «?F(w) to be significant,
the two-plateau structure, Fig. 2, for T. is obtained which is well-established in empirical T, vs x curves for
Y,Ba,Cu;0,_,. Finaly, the origin of so-called anomalous isotope effects in high-T,-materials might be
clarified, given the novel element that the partial A,(t) and A,(t) depend on the ionic mass (unlike the total A in
the harmonic approximation) and thus lead to non-vanishing terms in the isotopic-shift factor, as will be
examined in detail elsewhere.
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