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Model for the electrorheological effect in flowing polymeric nematics
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An analytical model to study the response of a polymeric nematic confined in a rectangular cell, to
a dc electric field is presented. The effect of a pressure-driven plane Poiseuille flow and its
competition with the electric field is explicitly considered. For the final stationary state where the
induced reorientation of the director has already occurred, an aligned structure with a greatly
enhanced viscositielectrorheological effefis produced. For this same state the first normal stress
difference is calculated as a function of position and of the applied field. For this quantity, regions
of negative and positive values develop along the direction of the velocity gradient and an increase
in the electric field or the flow causes an augmented effect in its profiles. The net force between the
plates is also calculated. As the Reynolds number increases, it is found that it also changes sign from
positive to negative, and the effect is more pronounced as the strength of the electric field increases.
Finally, the paper is closed by discussing the scope and limitations of the model and methods
employed. ©1999 American Institute of Physids$0021-960809)51416-3

I. INTRODUCTION electrorheological applications. They offer obvious advan-
tages over the more conventional ER fluids such as avoiding
Recently there has been a great deal of interest in the ushe problems associated with the settling of the dispersed
of rheological materials to manufacture a large variety ofphase; these complications are inexistent for liquid crystals
electrorheologicalER) devices. These materials are essen-since they are homogeneous phases. The feasibility of liquid
tially fluids which are imbedded with particulate solids crystal systems to produce a practical ER effect has been
which react to an electrical field by producing dramatic andshown recently by Yangt al.* who have observed an order
significant changes in their viscosity and other material propef magnitude increase of the viscosity of a solution of a
erties. More precisely, an ER fluid undergoes a transitiorpolymeric liquid crystal when acted upon by an external
from a liquid state into a viscoelastic solidlike state upon theelectric field in a rotational rheometer.
application of strong electric fieldtypically measuretin However, in spite of the large variety of ER devices that
10° V/m), which is characterized by a large reversible in-have been inventelpur understanding of the basic mecha-
crease in their viscosity. The usual systems that exhibit thisisms responsible for the ER effect is, in general, rather
ER transition are composed of individual particles that bepoor. The basic purpose of this work is to study analytically
come polarized by the applied field and align themselves int@ simple model for the reorientation of a thin film of the
chains and filaments giving rise to a structure that is resporsame polymeric nematipoly(n-hexyl isocyanatejPHIC)
sible for the gelationlike transition mentioned above. Thisused in by Yanget al* under a constant electric field. Since
occurs, for example, in concentrated suspensions, in soliis molecular weight is not too large<(10°), to describe its
particles in a dielectric medium or in some special polymericdynamics we use, as a first approximation, hydrodynamic
fluids? equations of motion for the director and the velocity fields
Actually, some of these features are also present in nenwhich we have derived before for thermotropids. describ-
atic liquid crystals, which are fluids that exhibit long-rangeing the realignment of the director we take explicitly into
orientational order over distances many times larger than thaccount the effects produced by an imposed plane Poiseuille
dimensions of the molecules of which they are compdsed.flow. We show that the induced reorientation produces an
The intrinsic anisotropy of their molecules gives rise to mac4ncrease of almost three orders of magnitude in the apparent
roscopic properties that are also anisotropic; this is the casejscosity of PHIC, which shows that the reorientation is the
for instance, of the dielectric constant and the magnetic sugnechanism leading to the existence of the ER effect in this
ceptibility. In fact, this intrinsic anisotropy is also respon- model.
sible for considering liquid crystals as interesting fluids for ~ To this end the paper is organized as follows. In the next
section, Sec. I, we define the model and by assuming that
aF . the reorientation is a relaxation process, we derive a com-
ellow of SNI Mexico. . . .
bAuthor to whom correspondence should be addressed. Electronic maiPl€te set of hydrodynamic equations for the director and the
zepeda@fenix.ifisicacu.unam.mx velocity field. Then in Sec. Ill, we specialize these equations
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z=1/2 C— — 3 In addition to the electric field we assume that a constant
§ Zte .N ( E == pressure gradient is maintained along xhexis. If the reori-
----- i/ )Z‘X R 3 entation occurs in thg-z plane, it is also feasible to assume
é y = that the hydrodynamic flow will also take place in the same
z=-1/21 - ) plane giving rise to the plane Poiseuille velocity profile
L shown in Fig. 1. Then the only relevant component of the

. . o . velocity field is v, which will be assumed to satisfy no-sli
FIG. 1. Schematics of a planarly aligned liquid crystal film in the presenceb dy d't'x t th lat fy P
of a constant electric field. The velocity profile of a plane Poiseuille flow is oundary condiions at the plates

also shown.

zZ= ili) =0. 2

Ux

for a particular pressure-driven flogplane Poiseuille and Now, if as usual the reorientation of the director is con-
derive an equation for the stationary orientational profile. Wesidered to be an isothermal process, its equilibrium states
solve this nonlinear equation in an approximate but analytimay be described in terms of the associated Helmholtz free
cal way by using boundary layer methods. Using this solu€nergy functional, which for the assumed geometry and in
tion, in Sec. IV we first calculate the appargatientational ~ MKS units takes the form
viscosity as a function of position within the cell and then we K/(dg\2 E?2 1
average it over the whole cell. A plot of this averaged vis-sz dv{— —) — —€o(€, +€,C0% 0)+ = pvi(2)|.
cosity as a function of the dimensionless external field, v 2\dz 2 2
shows a large increadelectrorheological effegtfor values &)
of the applied field which are about 10 times the criticalHere e;=¢,— €, stands for the dielectric anisotropy of the
field. We then calculate the first normal stress differencenematic, e, denotes the permittivity of the vacuum and
N, as a function of position, the applied field and the Rey-p(z,t) denotes its local mass density. The last term in this
nolds’ number of the imposed flow. We find thd{ devel-  equation represents the contributionRalue to the external
ops positive and negative values in different regions withinpressure gradient along tlxedirection. It should be stressed
the cell along the direction of the velocity gradient, and thatthat in writing this expression, for simplicity, we have made
an increase in the electric field or in the flow intensity pro-the assumption of equal elastic constants for the splay, bend
duces an increase iN;, but keeping the same qualitative and twist elastic deformation&=K;=K,=Kj.
behavior. It is worth emphasizing that, to our knowledge,  Following the usual procedure to derive nematodynamic
this type of behavior oN; has not been predicted at a hy- equations:® from Eq. (3) we arrive at the following set of
drodynamic level of description before. Then the force oncoupled dynamical equatiohfor 6 and v,
the plates as a function of the Reynolds’ number for different

P . 06 2 oF dvy
values of the electric field is also calculated. For sufficiently —=— — —_—(1—-\)cosf—, (4)
slow flows, the force is always positive, but at high fluid at 71 66 0z

;/_e:gcities tr}{ﬁ force i_z alvxéay;nel?ative 0\|/er altlhthe electribc Jux vy v, . N—1ad] 1 &F] 1ap ]
ield strengths considered. Finally, we close the paper by =~ —-= P 2p 92|c030 56| p X’ (5)
discussing the limitations and advantages of our approach.
The variational derivativedF/ 56 is given explicitly by
Il. MODEL AND GOVERNING EQUATIONS oF_ K@_ €0 2ginog )
86 T dZ 2 ;

Consider a quiescent nematic layer of thicknes®n- ) _ ) )
tained between two parallel conducting plates, as depicted ifi"d ¥1: Y2, vs, With A=1y,/7,, denote the various viscos-
Fig. 1. It is assumed that the transverse dimensibpalong ity coefficients of the nematic. Note that the last term in Eq.

thex andy axes are large comparedltd. >, so that the cell (5) rep.rese.nts the externally applied pressure gradient along
has a large aspect ratio but a finite volude=L2l. The thexdirection. _ ,

initial orientation of the director is planar and, therefore, At this pointit should be emphasized that, strictly speak-
when an external dc electric fieH is applied along the N9 EQs.(4)—(6) provide for a closed set of hydrodynamic
direction, the directori will reorient inside the cell for val- €duations for a low molecular weight nematthermotro-
ues of E>E,, whereE, is the critical field that has to be pic), since in thls_ case the director is the only add|t|onal_
exceeded to initiate the reorientation. Owing to the low asydrodynamic variable, apart from the usual conserved vari-
pect ratio of the cell, it is reasonable to assume that th@Ples of mass, specific entropy, and momentum denéities.
reorientation occurs in the— z plane. Moreover, spatial ho- However, the corresponding description for a polymeric
mogeneity in thex direction can be also assumed to simplify Nématic (lyotropic) is much more involved owing to the
the description and as a resik=[ sin f(zt),0,cosf(zt)]. We large numper Qf degrees of freedom that may.contnbute to
shall assume that the reorientation anglsatisfies strong the dynamics in the hydrodynamic limit. But since a com-

anchoring conditions at the plates plete fqrml_JIatign ofa hydrpdynamic de_scription fqr arbitrary
. lyotropics is still an open issue, as a first approximation we
ol 2= L _,T 1) shall use the above formalism to describe the hydrodynamic

-2/ T2 behavior of a polymeric nematic solution of PHIC, as de-
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scribed by Yand.It is important to stress that this is, indeed, the induced orientational configuration. On the other hand,
a strong approximation; however, it is expected to be a reathe parameteN=6Rwv;y,(A—1)/Kp contains the effects
sonable one owing to the fact that molecular weight of PHICdue to the hydrodynamic flow through the Reynolds number
(~10°) is not too large. If in addition, the system is always R=pl?(Vp)¢/ v3.
away from a critical point, it is not necessary to account for  In a previous work, Eq. (10) was solved exactly in an
the dynamics of an order parameter, which is not a hydrodyanalytical way for the case of strong field$&2>1) and in
namic variable, and therefore, the hydrodynamic behaviothe absence of flow\=0. There it was found thaf(s) var-
can be described in terms of the director field only. Thisjes abruptly in the cell's center vicinity, while it is almost
approximation has the great advantage of keeping the dewo pieces of horizontal lines in the right and left parts of the
scription simple enough so that an analytical treatment igell. This singular behavior is the result of the competition
possible and specific calculations can be carried out. between the strong external field and the hard-anchoring
Among all the possible nonequilibrium states the systenpoundary condition. Since exact solutions of Ef0) when
might have, here we only consider the final stationary stat®(=0 are, in general, difficult to obtain, the presence of the
characterized by the fact that the reorientation has alreadyimensionless parametegsandN in Eq. (10) allows for the
occurred, but flow effects are still present. For this case th@ossibility of carrying out systematic and analytic expan-
calculation of some rheological properties such as the viscosions in powers of them. However, instead of performing
metric functions, can be carried out explicifiyas we shall  these expansions, in this work we shall obtain approximate
see below. The final stationary state is defined by setting thgnalytical solutions of Eq10) based on the following ideas.

left hand sides of Eqg4) and(5) equal to zero. Thus, from As mentioned for the cadé=0, it is to be expected that
Eq. (5 we arrive at in the bulk of the cell the electric energy would be much
d2u (o) | larger than the nematic’s elastic energy, so thatl. In
a2 = V—s(Vp)ef, (7) contrast, near the solid boundaries, the opposite behavior is

expectedg<1. These different physical situations and be-
where (Vp)¢ is an effective pressure gradient defined by haviors of the solutions of Eq10) may be modelled by
— 112,11 considering these two regions as boundary layégs{z)
(VD) o= Q _rsdply) (=D , (8)  and#;,(z).*"**Then, these solutions have to be “matched”
plL 2 dx 4 or joint asymptotically in order to obtain a valid solution,
Q is the mass flow rate and we have introduced the dimenéag;. in the whole domain. Thus, the adjusted solutiyg is
sionless variableg=z/| andy=x/1. If Eq. (7) is solved for ~ given by
the boundary condition§2) and if this solution is inserted
into Eq.(4) settingdd/ 9t=0, this would yield a closed equa- Oad= Bout™ Oin~ Omatcn (1D
tion for the final stationary orientational configuration. We where 6,,.., must be determined so that,(z) and 6;,(z)
shall carry out this procedure explicitly _for a particular pres-are joint asymptotically. To apply this method to the problem
sure driven flow, namely, the plane Poiseuille flow. under consideration, note that ¢fE?>1 and N>1, with
qE2~N, Eq.(10) reduces to

V3

IIl. ORIENTATIONAL CONFIGURATION FOR PLANE
POISEUILLE FLOW ZQEZ SiN Byt BNZ=0. (12)

Let us assume that the external pressure gradient is co
stant,dp(x)/dx=Ap/L=const. Then the solution of E7)
is given by

q:his approximated equation is no longer a second-order dif-
ferential equation and hence its solution

1 fou= — arcsin3NZ/qE?), (13
(Vp)ef 1/4— £2). 9 t

V3

w({)=
" is not able to satisfy both boundary conditions, Ek. This

This defines the well known parabolic velocity profile of the means that the angle near the borders must vary within a
plane Poisedille flow. If we now substitute this solution into faster spatial scale than in the center of the cell, in such a
Eg. (4) with 96/9t=0, we arrive at the following closed, way that the corresponding boundary condition will be ful-

nonlinear and dimensionless equation for the final orientafjlled. If we Choose/_LE\/qug as a fast variable and rewrite

tional state: Eq. (10), we obtain
d?6  _, d?¢
a2 +qE*sin 20+ 6N{ cosf=0. (10  4sin204+ —2 _cosh=0 (14)
du® (qE2)3?2 :

Here E=E/E., where E.=n/l{2K/e ey is the critical
field,'° such that reorientation occursE>1. It is essential
to point out that there are two importa_nt physical parameters 42 6.,

in Eq. (10). On the one handy= eye,E?1%/2K, is propor- JuZ Tsin20,=0, (15
tional to the ratio between the energy of the incident field

and the nematic’s elastic energy. Therefore, it is a measure @nd its asymptotic solution, which satisfies the boundary
the strength of the coupling between the external field andondition ({=3)==/2, is given by

But sinceN~qE2, this equation foan2>1 reduces to
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FIG. 2. Orientational configuratiofi vs { of PHIC as

¢ calculated from. Eq.(18). (——) N=0; (--- N
=106(qE2=160).

IV. VISCOMETRIC FUNCTIONS
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é
20 ¢ —
| - _
1
-0.4 -0.2 0.2 0.4
7T —
0n=—=—2 arctaiitAe *), (16)

2

whereA is a constant to be determined. If the same proce
dure is followed for the other boundary condition, we find

that 6hatch IS given by

Omatcr= 12— 2 arctanA = T arcsir(3N/2q E?), (17)
where the double sigh corresponds to applying the condi-
tion to the right and left plates, respectively.

Finally, substitution 0, 6i,, andfmaeninto Eq.(11)
leads to

0(Z;N,qE?)

= 7r/2+ sign({)arcsinp ——— | —arcsi
2qE?

1
-2 arctar{ eftan{ wlA+ Esigr(g)

wef2)

2qE?
where sign(¢{) is the sign function. We should mention that
even though is defined in terms of this discontinuous func-
tions, it is easy to show thad and d¢/d{ are continuous
functions, whiled?6/d{? has a finite discontinuity a#=0.
The plot of 6 versus{ as given by Eq(18), is shown in Fig.
2 for the cases in which the flow is in the positivdirection
and when the flow is such thit~ 106, which corresponds to
Reynolds numbers in the range £6- 10 2. As mentioned
earlier, this curve indeed shows thg#§¢) has a sharp increase

3N )
qE?

(18)

A. Electrorheological effect

The viscosity function or apparent viscosity connects the
shearing force per unit area and the magnitude of the local
shear. It depends on the orientation of the director thrblgh
the expression

7(6();E) = a; cof Sir 0+ n.+ (ap+ az)sir? 6,
(19

wherea;, a,, as are the Leslie coefficientsand 7, is the
transverse Miesowicz viscosity.Since the orientation angle
0 is given by Eq.(18), from the above equation it follows
that the dependence of on ¢ indicates that the system is
non-Newtonian in its behavior, in the sense thas strongly
dependent on the driving force.

From Eqgs.(19) and (18) we obtain the spatial variation
of #» within the cell. Figure 3 shows a plot dfp(Z,E)
—9(¢==3,E)| vs { for PHIC for different values ofE? and
N in units of Pas. The required viscosity coefficients and
other material parameters of PHiCare taken asa;
=—1100Pas, a,=—3700Pas, «@&3=320Pas, 1.
=2100Pas, and,e,=6.19x 10 °N/V2. Here we have also
taken K~10 12N for the elastic constant and=4
X 10~ %m for the separation distance between the plates. In
this case it turns out thdi,=4490 V/m1°

Now, in order to exhibit that an electrorheological effect
does exist in the proposed model, we first substitute(Es).
into (19) and average the result ovérThis yields the aver-
aged apparent viscositW(E)Efgzlff,zn(e;E)dg. If we
now plot|7(E)—7(E=0)| vs E, so that the curve starts at
the origin, we arrive at the curves shown in Fig. 4. These
curves show that the PHIC nematic solution exhibits a sig-
nificant electrorheological effect, which is evidenced by the
sharp increase of almost three orders of magnitude in its
apparent viscosity. To estimate the corresponding value of

in a very narrow region aiound the central part of the cell forthe applied field, take a saturation Vamﬁzz 10 in Fig. 4. If
large values ofy, that is,gE?>10, and it becomes sharper as we takeq=10"1, which corresponds to a strong interaction

g increases.

between the electric field and the nematic, this implies that
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FIG. 3. Apparent viscosityn(¢,E)— n({=* %E)| in units of Pa s vg for different values ofjE2 andN, (—) N=50; (- - -) N=100; (- — -) N=160. The
inset shows the maximum occurring at the center of the cell corresponding to values one order of magnitude larger.

E=10 orE=10E,. This shows that for rather small applied ~ On the other hand, Marrucat al*"*® have solved a
fields, ~45x 10° V/m, a strong electrorheological effect may two-dimensional version of the Doi model for nematies

be produced in the cell. which the molecules are assumed to lie in the plane perpen-
dicular to the vorticity axis, that is, in the plane parallel to
B. First normal stress difference both, the direction of the velocity and the direction of the

One of the distinctive phenomena observed in the ﬂov\yelocity gradient. Despite th.is s.implifice'ltion., t'he predicted
of liquid crystal polymers in the nematic state is that of af@nge of shear rates over whibh is negative, is in excellent
negative steady-state first normal stress differeitg, in ~ 29reement with observations. This result opens up the possi-
shear flow over a range of shear ratds.is zero or positive  Dility that negative first normal stress differences may be
for isotropic fluids at rest over all rates of shear, whichpredicted in a two dimensional flow. Indeed, in this section
means that the force developed due to the normal stressede shall show that over a range of Reynolds’ numbers, nega-
tends to push apart the two surfaces between which the méive values ofN, are predicted for the plane Poiseuille flow,
terial is sheared. In liquid crystalline solutions, positive nor-taking into account the effect of an external electric field.
mal stress differences are found at low and high shear rates, We shall now examine the effects produced by the
with negative values occurring at intermediate shear rites. stresses generated during the reorientation process by calcu-

| 7(E) —7(E = 0) |

3000
2500

2000 _
FIG. 4. The same apparent viscosity as in Fig. /28
for PHIC. N takes the same values as in Fig. 3.

25 50 75 100 125 150
qk?
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FIG. 5. Primary dimensionless normal stress diﬁerert;ps N./K vs { as
calcilated from Eq.22) for different values ofqE? and N such that
N/qE2=%. N takes the same values as in Fig. 3.

lating the viscometric functions which relate the shear and _ _ 1o o

normal stress differences. For the geometry under considef!C: 8- The dimensionless forde=(J=1,N;(£)d{)/K in units of the elas-

ation and using the convention in Ref. 20, the first normalic constantK =10"'°N as a function ofN for different values ofqE?.
. . . ! ! — _2= N [ — _2= N —_—— _2=

stress difference is defined by (—) qE"=50; (- - -) qE"=100; ( J AE°=160.

Ni=0yy— 077, (20)

where o; are the components of the stress tensor of th
nematic used by De Genngs.

duces an increase N,, but keeps the same qualitative be-
%havior, as observed in Fig. 5. It should be stressed that the
chosen values offE> and N must be of the same order, so
that the boundary layer method discussed previously is ap-
plicable.

In Figs. 6 and 7, the integration of the first normal stress
difference profilejl,/zl,le(e(g“))dg, over the whole cell and
Here Aj;=(3)(dv;/dx;+ dv;1dx;) is the symmetric part of along the velocity gradient dir_ection renders the net force
the velocity gradienty, /dx; and ﬁzdﬁ/dt—(%)VXﬁxﬁ bet_wegn the pla_tes as a function of the Rey_nolds’ num_ber,
represents the rate of change of the director with respect tWh'Ch is proportional td\, a_nd to Fhe electric field. A posi-
the background fluid. The; for i=1,...6, denote the Leslie tive force exerteq by.the fluid mgnon ten_ds to push the plates
coefficients of the nematic. Substitution of Ed8) into Egs. apart, or otherwise, if the force is negative, the fluid tends to

O'ij =a1ninjnﬂnpAMp+ aznin“‘agani y

a4Aij+a5ninMAMj+a6ninMAm . (21)

(20) and (21) leads to pull the plates close together. As observed in Fig. 6, as the

Reynolds’ number increases, the net force changes sign from

Ny(0(0)) = v4(V )il (vy+ vy—2v3)sin 40 positive to negative, and the effect is more pronounced as the
€

electric field increases in magnitude. In Fig. 7, the force is

plotted as a function of the electric field strength for several
. values ofN (or R). For sufficiently slow flows, the force is

always positive, but at high fluid velocities the force is al-
(22)  ways negative over all the electric field strengths considered.

The quantities’; and v, also denote several viscosity coef- The results shown in these figures do not exclude the possi-
ficients. A plot ofN; vs £ for several values od]EZ andNis bility that a further increase in the fluid velocity will induce

j ! . W';mother change of sign in the force, becoming positive at
between two parallel surfaces, the velocity gradient is not €Y high velocity gradients. These prediction would be in

constant and varies between zero at the center of the cell aﬁcordance with the observed and predicted behavior of lig-

up to a maximum value at the walls. According to Marruc—u'd crystal solu_tion_s in simple shear fid™ It should b.e
ci's resultst’ it is likely that regions of negative and positive remarked that in Figs. 6 and 7 we have plotted the dimen-

first normal stress differences will develop along the direc—iolrg?lszs N(:\c/)vrt(c:)(rew; i units of the elastic constank

tion of the velocity gradient. In fact, in Fig. 5 negative values
of N, are shown in the central region of the cell, becoming
positive as the velocity gradient increases and approachin\g_ DISCUSSION

zero near the plates region, where the nematic lies parallel to

the plates in agreement with the chosen strong anchoring We have shown that an electrorheological effect may be
boundary conditions. An increase in the electric field pro-produced in a cell of a few microns thickness containing a

no '2ed20+ 2 a6)* S0
- alen Ez Cos & —qgco
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40 | —

30 -

20 F -

-~ FIG. 7. f vs qEZ for different values ofN. (——) N
=50; (- - =) N=100; (- — — - N=160.

10 -

PHIC nematic. To clarify and elaborate on this result weoccurs as the shear rate is increased. In this work, although

close the paper with the following comments. we have not discussed the tumbling regime, we have ob-
First, in our model the mechanism that produces the intained the same qualitative behavior but using a hydrody-

crease in the apparent viscosity is the induced reorientationamic description instead of a stochastic approach.

of the director by the applied electric field. This occurs be-  Finally, it should be pointed out once more that our the-

cause the permanent and induced dipole moments of PHIGretical description is approximated, since all the effects as-

align themselves with the field giving rise to an enhancedsociated with possible additional hydrodynamic variables re-

viscosity. As a matter of fact, this orientational distortion quired to describe properly the hydrodynamics of PHIC have

also manifests itself as a nonlinear optical process, in thbeen entirely neglected. However, our description is simple,

sense that the external field gives rise to a refraction indeanalytic, and predicts the existence of an interesting physical

gradient which produces self-focusing and waveguiding efeffect.

fects in the celP Although the existence of an electrorheo-

logical effect for PHIC have already shown to exist in a

rotational rheometer by Yang and Shihéiere we have

sh_own that the same effect ml_ght be mduced_ in a small NeM; - NOWLEDGMENTS

atic planar cell with a few microns separation between its

plates. _ ) . Financial support from Grant No. DGAPA-UNAM

Secondly, it should be emphasized that our analysis wWag\105797, Mexico, is gratefully acknowledged. We also
restricted to the final stationary state of the reorientation. Anank Mr. J. A. Olivares for his assistance in preliminary
more general and physically richer situation would be to cony,ymerical calculations.

sider nonstationary states defined by the full equaf®Bq.

(20)] with N#0. In this case, Eq(10) cannot be solved

exactly in an analytical form and one has to restore to the use

of numerical methods. From this point of view, preliminary

calculations based on the use of the well-known ShootinglEIectrorheoIogicaI Fluids edited by R. TaqWorld Science, New York,
method to solve Eq10), indicate that Eq(10) can be solved Block and J. P. Kelly, J. Phys. 21, 1661(1988.

only for values ofg such that]E2< 10. For larger values the 3®P. G. de GennesThe Physics of Liquid CrystaléClarendon, Oxford,
numerical method becomes unstable and a much larger nu4—|19£4)\-( 4 A.D. Shine. J. Rhed, 1079(1992

. .. . . . - _"I. K. Yang and A. D. Shine, J. Rhed6, .
merlcal precision is requwed.' This relnforces the CONVE-sp 'L Rodiguez and J. A. Reyes, J. Nonlinear Opt. Phys. Mate@43
nience of developing well defined analytic and asymptotic (1995
approximations to solve Eq10). However, even if this nu- jM. San Miguel and F. SagsePhys. Rev. /86, 1883(1987.
merical analysis can be carried out explicitly, the simplicity ‘R- F. Rodrguez, P. Ortega, and R. &-Uribe, Physica A230, 118
and the analytical t.reatm.ent _of t_h(_a m0(_jel presented. hereg ¢ Rodfguez and J. A. Reyes, Mol. Cryst. Liq. Cry&82, 287 (1996.
would be lost. In spite of its simplicity, this model predicts °R. F. Rodiguez and J. E. Camacho, Rev. Mex. Mg, 1859(1998.

an experimentally verified result for a different and new?®!. C. K_hoo,NonIinear Optics of Liquid Crystals, Progress in Optics, Vol.
physical situation. 26, edited by E. Wolf(North Holland, Amsterdam, 1988

. . . . Yc. M. Bender and M. C. Arszogddvanced Mathematical Methods for
Thirdly, with regard to the reported behavior of the first ggientists and Enginee(McGraWﬁm New York, 1978,

normal stress differencel,, it should be mentioned that !2H. Schiichting,Boundary Layer TheorfMcGraw-Hill, New York, 1968.
Marrucci et alt"*® for the first time linked these normal T Caflsgon, le-;irysté Lig. Cry(8ﬂ046307 (1984
; ; ; O. Parodi, J. PhyqParig 31, 581 (1970.
stress dlffergnces_to a tendency of the direction of averaggy, \resowicz. Nature(London 17, 261 (1935,
molecular orientation to tumble in shear flow about the vor-isg, giss and R. S. Porter, J. Polym. Sci., Part C: Polym. Sy85p193

ticity axes, and to the arrest of the tumbling that eventually (1978.

Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



8204 J. Chem. Phys., Vol. 110, No. 16, 22 April 1999 Rodriguez, Reyes, and Manero

17G. Marrucci and P. L. Maffettone, Macromolecul2® 4076(1989. 20R. B. Bird, R. C. Armstrong, and O. HassagBgnamic of Polymer Lig-

18R. G. Larson, Macromoleculez3, 3983(1990. uids (Wiley, New York, 1977, Vol. 1.

M. Doi and S. F. EdwardsThe Theory of Polymer Dynamid®©xford  2'S. Grisafi and P. O. Brunn, J. Rhed3, 47 (1989; P. Biller and F.
University Press, New York, 1986 Petruccione, J. Non-Newtonian Fluid Me@g, 347 (1987).

Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject to AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html



