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An analytical model to study the response of a polymeric nematic confined in a rectangular cell, to
a dc electric field is presented. The effect of a pressure-driven plane Poiseuille flow and its
competition with the electric field is explicitly considered. For the final stationary state where the
induced reorientation of the director has already occurred, an aligned structure with a greatly
enhanced viscosity~electrorheological effect! is produced. For this same state the first normal stress
difference is calculated as a function of position and of the applied field. For this quantity, regions
of negative and positive values develop along the direction of the velocity gradient and an increase
in the electric field or the flow causes an augmented effect in its profiles. The net force between the
plates is also calculated. As the Reynolds number increases, it is found that it also changes sign from
positive to negative, and the effect is more pronounced as the strength of the electric field increases.
Finally, the paper is closed by discussing the scope and limitations of the model and methods
employed. ©1999 American Institute of Physics.@S0021-9606~99!51416-5#
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I. INTRODUCTION

Recently there has been a great deal of interest in the
of rheological materials to manufacture a large variety
electrorheological~ER! devices. These materials are esse
tially fluids which are imbedded with particulate solid
which react to an electrical field by producing dramatic a
significant changes in their viscosity and other material pr
erties. More precisely, an ER fluid undergoes a transit
from a liquid state into a viscoelastic solidlike state upon
application of strong electric field~typically measured1 in
106 V/m), which is characterized by a large reversible
crease in their viscosity. The usual systems that exhibit
ER transition are composed of individual particles that
come polarized by the applied field and align themselves
chains and filaments giving rise to a structure that is resp
sible for the gelationlike transition mentioned above. T
occurs, for example, in concentrated suspensions, in s
particles in a dielectric medium or in some special polyme
fluids.2

Actually, some of these features are also present in n
atic liquid crystals, which are fluids that exhibit long-ran
orientational order over distances many times larger than
dimensions of the molecules of which they are compose3

The intrinsic anisotropy of their molecules gives rise to m
roscopic properties that are also anisotropic; this is the c
for instance, of the dielectric constant and the magnetic s
ceptibility. In fact, this intrinsic anisotropy is also respo
sible for considering liquid crystals as interesting fluids
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electrorheological applications. They offer obvious adva
tages over the more conventional ER fluids such as avoid
the problems associated with the settling of the disper
phase; these complications are inexistent for liquid crys
since they are homogeneous phases. The feasibility of liq
crystal systems to produce a practical ER effect has b
shown recently by Yanget al.,4 who have observed an orde
of magnitude increase of the viscosity of a solution of
polymeric liquid crystal when acted upon by an extern
electric field in a rotational rheometer.

However, in spite of the large variety of ER devices th
have been invented,1 our understanding of the basic mech
nisms responsible for the ER effect is, in general, rat
poor. The basic purpose of this work is to study analytica
a simple model for the reorientation of a thin film of th
same polymeric nematicpoly(n-hexyl isocyanate)~PHIC!
used in by Yanget al.4 under a constant electric field. Sinc
its molecular weight is not too large (;105), to describe its
dynamics we use, as a first approximation, hydrodyna
equations of motion for the director and the velocity fiel
which we have derived before for thermotropics.5 In describ-
ing the realignment of the director we take explicitly in
account the effects produced by an imposed plane Poise
flow. We show that the induced reorientation produces
increase of almost three orders of magnitude in the appa
viscosity of PHIC, which shows that the reorientation is t
mechanism leading to the existence of the ER effect in
model.

To this end the paper is organized as follows. In the n
section, Sec. II, we define the model and by assuming
the reorientation is a relaxation process, we derive a co
plete set of hydrodynamic equations for the director and
velocity field. Then in Sec. III, we specialize these equatio
il:
7 © 1999 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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for a particular pressure-driven flow~plane Poiseuille! and
derive an equation for the stationary orientational profile. W
solve this nonlinear equation in an approximate but anal
cal way by using boundary layer methods. Using this so
tion, in Sec. IV we first calculate the apparent~orientational!
viscosity as a function of position within the cell and then w
average it over the whole cell. A plot of this averaged v
cosity as a function of the dimensionless external fie
shows a large increase~electrorheological effect! for values
of the applied field which are about 10 times the critic
field. We then calculate the first normal stress differen
N1 , as a function of position, the applied field and the Re
nolds’ number of the imposed flow. We find thatN1 devel-
ops positive and negative values in different regions wit
the cell along the direction of the velocity gradient, and th
an increase in the electric field or in the flow intensity pr
duces an increase inN1 , but keeping the same qualitativ
behavior. It is worth emphasizing that, to our knowledg
this type of behavior ofN1 has not been predicted at a h
drodynamic level of description before. Then the force
the plates as a function of the Reynolds’ number for differ
values of the electric field is also calculated. For sufficien
slow flows, the force is always positive, but at high flu
velocities the force is always negative over all the elec
field strengths considered. Finally, we close the paper
discussing the limitations and advantages of our approac

II. MODEL AND GOVERNING EQUATIONS

Consider a quiescent nematic layer of thicknessl con-
tained between two parallel conducting plates, as depicte
Fig. 1. It is assumed that the transverse dimensions,L, along
thex andy axes are large compared tol, L@ l , so that the cell
has a large aspect ratio but a finite volumeV5L2l . The
initial orientation of the director is planar and, therefo
when an external dc electric fieldE is applied along thez
direction, the directornW will reorient inside the cell for val-
ues ofE.Ec , whereEc is the critical field that has to be
exceeded to initiate the reorientation. Owing to the low
pect ratio of the cell, it is reasonable to assume that
reorientation occurs in thex2z plane. Moreover, spatial ho
mogeneity in thex direction can be also assumed to simpl
the description and as a resultnW 5@sinu(z,t),0,cosu(z,t)#. We
shall assume that the reorientation angleu satisfies strong
anchoring conditions at the plates

uS z56
l

2D56
ṗ

2
. ~1!

FIG. 1. Schematics of a planarly aligned liquid crystal film in the prese
of a constant electric field. The velocity profile of a plane Poiseuille flow
also shown.
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In addition to the electric field we assume that a const
pressure gradient is maintained along thex axis. If the reori-
entation occurs in thex-z plane, it is also feasible to assum
that the hydrodynamic flow will also take place in the sam
plane giving rise to the plane Poiseuille velocity profi
shown in Fig. 1. Then the only relevant component of t
velocity field isyx which will be assumed to satisfy no-sli
boundary conditions at the plates

yxS z56
l

2D50. ~2!

Now, if as usual the reorientation of the director is co
sidered to be an isothermal process, its equilibrium sta
may be described in terms of the associated Helmholtz
energy functional, which for the assumed geometry and
MKS units takes the form

F5E
V
dVH K

2 S du

dzD
2

2
E2

2
e0~e'1ea cos2 u!1

1

2
ryx

2~z!J .

~3!

Here ea[e i2e' stands for the dielectric anisotropy of th
nematic, e0 denotes the permittivity of the vacuum an
r(z,t) denotes its local mass density. The last term in t
equation represents the contribution toF due to the externa
pressure gradient along thex direction. It should be stresse
that in writing this expression, for simplicity, we have ma
the assumption of equal elastic constants for the splay, b
and twist elastic deformations,K[K15K25K3 .

Following the usual procedure to derive nematodynam
equations,3,6 from Eq. ~3! we arrive at the following set of
coupled dynamical equations7 for u andyx

]u

]t
52

2

g1

dF

du
2~12l!cosu

]yx

]z
, ~4!

]yx

]t
5

n3

r

]2yx

]z2 1
l21

2r

]

]z F 1

cosu

dF

du G2
1

r

]p

]x
. ~5!

The variational derivativedF/du is given explicitly by

dF

du
5K

d2u

dz22
e0ea

2
E2 sin 2u, ~6!

andg1 , g2 , n3 , with l[g1 /g2 , denote the various viscos
ity coefficients of the nematic. Note that the last term in E
~5! represents the externally applied pressure gradient a
the x direction.

At this point it should be emphasized that, strictly spea
ing, Eqs.~4!–~6! provide for a closed set of hydrodynam
equations for a low molecular weight nematic~thermotro-
pic!, since in this case the director is the only addition
hydrodynamic variable, apart from the usual conserved v
ables of mass, specific entropy, and momentum densit8

However, the corresponding description for a polyme
nematic ~lyotropic! is much more involved owing to the
large number of degrees of freedom that may contribute
the dynamics in the hydrodynamic limit. But since a com
plete formulation of a hydrodynamic description for arbitra
lyotropics is still an open issue, as a first approximation
shall use the above formalism to describe the hydrodyna
behavior of a polymeric nematic solution of PHIC, as d

e

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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scribed by Yang.4 It is important to stress that this is, indee
a strong approximation; however, it is expected to be a r
sonable one owing to the fact that molecular weight of PH
~;105! is not too large. If in addition, the system is alwa
away from a critical point, it is not necessary to account
the dynamics of an order parameter, which is not a hydro
namic variable, and therefore, the hydrodynamic beha
can be described in terms of the director field only. T
approximation has the great advantage of keeping the
scription simple enough so that an analytical treatmen
possible and specific calculations can be carried out.

Among all the possible nonequilibrium states the syst
might have, here we only consider the final stationary s
characterized by the fact that the reorientation has alre
occurred, but flow effects are still present. For this case
calculation of some rheological properties such as the vis
metric functions, can be carried out explicitly,9 as we shall
see below. The final stationary state is defined by setting
left hand sides of Eqs.~4! and~5! equal to zero. Thus, from
Eq. ~5! we arrive at

d2yx~z!

dz2 5
l

n3
~¹p!ef , ~7!

where (¹p)ef is an effective pressure gradient defined by

~¹p!ef[
Q

r lL
5

n3

2

dp~x!

dx Fn31
~l21!2g1

4 G21

, ~8!

Q is the mass flow rate and we have introduced the dim
sionless variablesz[z/ l andx[x/ l . If Eq. ~7! is solved for
the boundary conditions~2! and if this solution is inserted
into Eq.~4! setting]u/]t50, this would yield a closed equa
tion for the final stationary orientational configuration. W
shall carry out this procedure explicitly for a particular pre
sure driven flow, namely, the plane Poiseuille flow.

III. ORIENTATIONAL CONFIGURATION FOR PLANE
POISEUILLE FLOW

Let us assume that the external pressure gradient is
stant,dp(x)/dx[Dp/L5const. Then the solution of Eq.~7!
is given by

yx~z!5
1

n3
~¹p!ef~1/42z2!. ~9!

This defines the well known parabolic velocity profile of th
plane Poiseuille flow. If we now substitute this solution in
Eq. ~4! with ]u/]t50, we arrive at the following closed
nonlinear and dimensionless equation for the final orien
tional state:

d2u

dz2 1qĒ2 sin 2u16Nz cosu50. ~10!

Here Ē[E/Ec , where Ec5p/ lA2K/eae0 is the critical
field,10 such that reorientation occurs ifĒ.1. It is essential
to point out that there are two important physical parame
in Eq. ~10!. On the one hand,q[e0eaĒ2l 2/2K, is propor-
tional to the ratio between the energy of the incident fi
and the nematic’s elastic energy. Therefore, it is a measur
the strength of the coupling between the external field
Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject t
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the induced orientational configuration. On the other ha
the parameterN[6Rn3g1(l21)/Kr contains the effects
due to the hydrodynamic flow through the Reynolds num
R[r l 2(¹p)ef /n3

2.
In a previous work,9 Eq. ~10! was solved exactly in an

analytical way for the case of strong fields (qĒ2.1) and in
the absence of flow,N50. There it was found thatu~§! var-
ies abruptly in the cell’s center vicinity, while it is almos
two pieces of horizontal lines in the right and left parts of t
cell. This singular behavior is the result of the competiti
between the strong external field and the hard-ancho
boundary condition. Since exact solutions of Eq.~10! when
NÞ0 are, in general, difficult to obtain, the presence of t
dimensionless parametersq andN in Eq. ~10! allows for the
possibility of carrying out systematic and analytic expa
sions in powers of them. However, instead of performi
these expansions, in this work we shall obtain approxim
analytical solutions of Eq.~10! based on the following ideas

As mentioned for the caseN50, it is to be expected tha
in the bulk of the cell the electric energy would be mu
larger than the nematic’s elastic energy, so thatq@1. In
contrast, near the solid boundaries, the opposite behavio
expected,q,1. These different physical situations and b
haviors of the solutions of Eq.~10! may be modelled by
considering these two regions as boundary layers,uout(z)
andu in(z).11,12 Then, these solutions have to be ‘‘matched
or joint asymptotically in order to obtain a valid solution
uadj, in the whole domain. Thus, the adjusted solutionuadj is
given by

uadj5uout1u in2umatch, ~11!

whereumatch must be determined so thatuout(z) and u in(z)
are joint asymptotically. To apply this method to the proble
under consideration, note that ifqĒ2@1 and N@1, with
qĒ2;N, Eq. ~10! reduces to

2qĒ2 sinuout16Nz50. ~12!

This approximated equation is no longer a second-order
ferential equation and hence its solution

uout52arcsin~3Nz/qĒ2!, ~13!

is not able to satisfy both boundary conditions, Eq.~1!. This
means that the angle near the borders must vary with
faster spatial scale than in the center of the cell, in suc
way that the corresponding boundary condition will be fu

filled. If we choosem[AqĒ2z as a fast variable and rewrit
Eq. ~10!, we obtain

d2u

dm2 1sin 2u1
6Nm

~qĒ2!3/2
cosu50. ~14!

But sinceN;qĒ2, this equation forqĒ2@1 reduces to

d2u in

dm2 1sin 2u in50, ~15!

and its asymptotic solution, which satisfies the bound
conditionu(z5 1

2)5p/2, is given by
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 2. Orientational configurationu vs z of PHIC as
calculated from. Eq.~18!. ~——! N50; ~– – –! N

5106(qĒ25160).
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22 arctan~Ae2m!, ~16!

whereA is a constant to be determined. If the same pro
dure is followed for the other boundary condition, we fin
that umatch is given by

umatch5p/222 arctanA57arcsin~3N/2qĒ2!, ~17!

where the double sign7 corresponds to applying the cond
tion to the right and left plates, respectively.

Finally, substitution ofuout, u in , andumatchinto Eq.~11!
leads to

u~z;N,qĒ2!

5p/21sign~z!arcsinS 3Nz

2qĒ2D 2arcsinS 3N

qĒ2D
22 arctanS e2z tanH p/41

1

2
sign~z!

3arcsinF 3Nz

2qĒ2G J D , ~18!

where sign~z! is the sign function. We should mention th
even thoughu is defined in terms of this discontinuous fun
tions, it is easy to show thatu and du/dz are continuous
functions, whiled2u/dz2 has a finite discontinuity atu50.
The plot ofu versusz as given by Eq.~18!, is shown in Fig.
2 for the cases in which the flow is in the positivex direction
and when the flow is such thatN;106, which corresponds to
Reynolds numbers in the range 102121022. As mentioned
earlier, this curve indeed shows thatu~§! has a sharp increas
in a very narrow region around the central part of the cell
large values ofq, that is,qĒ2.10, and it becomes sharper a
q increases.
Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject t
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IV. VISCOMETRIC FUNCTIONS

A. Electrorheological effect

The viscosity function or apparent viscosity connects
shearing force per unit area and the magnitude of the lo
shear. It depends on the orientation of the director throug13

the expression

h~u~z!;Ē!5a1 cos2 u sin2 u1hc1~a21a3!sin2 u,
~19!

wherea1 , a2 , a3 are the Leslie coefficients14 andhc is the
transverse Miesowicz viscosity.15 Since the orientation angle
u is given by Eq.~18!, from the above equation it follows
that the dependence ofh on u indicates that the system i
non-Newtonian in its behavior, in the sense thath is strongly
dependent on the driving force.

From Eqs.~19! and ~18! we obtain the spatial variation
of h within the cell. Figure 3 shows a plot ofuh(z,Ē)
2h(z561

2,Ē)u vs z for PHIC for different values ofqĒ2 and
N in units of Pa s. The required viscosity coefficients a
other material parameters of PHIC4 are taken asa1

521100 Pa s, a2523700 Pa s, a35320 Pa s, hc

52100 Pa s, andeae056.1931029N/V2. Here we have also
taken K;10212N for the elastic constant andl 54
31026 m for the separation distance between the plates
this case it turns out thatEc54490 V/m.10

Now, in order to exhibit that an electrorheological effe
does exist in the proposed model, we first substitute Eq.~18!
into ~19! and average the result overz. This yields the aver-
aged apparent viscosityh̄(Ē)[*z521/2

z51/2 h(u;Ē)dz. If we
now plot uh̄(Ē)2h̄(Ē50)u vs Ē, so that the curve starts a
the origin, we arrive at the curves shown in Fig. 4. The
curves show that the PHIC nematic solution exhibits a s
nificant electrorheological effect, which is evidenced by t
sharp increase of almost three orders of magnitude in
apparent viscosity. To estimate the corresponding value
the applied field, take a saturation valueqĒ2510 in Fig. 4. If
we takeq51021, which corresponds to a strong interactio
between the electric field and the nematic, this implies t
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 3. Apparent viscosityuh(z,Ē)2h(z56
1
2,Ē)u in units of Pa s vsz for different values ofqĒ2 andN, ~——! N550; ~- • -! N5100; ~- – -! N5160. The

inset shows the maximum occurring at the center of the cell corresponding to values one order of magnitude larger.
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Ē510 orE510Ec . This shows that for rather small applie
fields,;453103 V/m, a strong electrorheological effect ma
be produced in the cell.

B. First normal stress difference

One of the distinctive phenomena observed in the fl
of liquid crystal polymers in the nematic state is that of
negative steady-state first normal stress difference,N1 , in
shear flow over a range of shear rates.N1 is zero or positive
for isotropic fluids at rest over all rates of shear, whi
means that the force developed due to the normal stres
tends to push apart the two surfaces between which the
terial is sheared. In liquid crystalline solutions, positive n
mal stress differences are found at low and high shear ra
with negative values occurring at intermediate shear rate16
Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject t
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-
s,

.

On the other hand, Marrucciet al.17,18 have solved a
two-dimensional version of the Doi model for nematics,19 in
which the molecules are assumed to lie in the plane perp
dicular to the vorticity axis, that is, in the plane parallel
both, the direction of the velocity and the direction of th
velocity gradient. Despite this simplification, the predict
range of shear rates over whichN1 is negative, is in excellen
agreement with observations. This result opens up the po
bility that negative first normal stress differences may
predicted in a two dimensional flow. Indeed, in this secti
we shall show that over a range of Reynolds’ numbers, ne
tive values ofN1 are predicted for the plane Poiseuille flow
taking into account the effect of an external electric field.

We shall now examine the effects produced by t
stresses generated during the reorientation process by c
FIG. 4. The same apparent viscosity as in Fig. 3 vsqĒ2

for PHIC. N takes the same values as in Fig. 3.
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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lating the viscometric functions which relate the shear a
normal stress differences. For the geometry under consi
ation and using the convention in Ref. 20, the first norm
stress difference is defined by

N1[sxx2szz, ~20!

where s i j are the components of the stress tensor of
nematic used by De Gennes.3

s i j 5a1ninjnmnrAmr1a2niV j1a3njV i ,

a4Ai j 1a5ninmAm j1a6ninmAm j . ~21!

Here Ai j [( 1
2)(]y j /]xi1]y i /]xj ) is the symmetric part of

the velocity gradient]y i /]xj and VW [dn̂/dt2( 1
2)¹3yW3n̂

represents the rate of change of the director with respec
the background fluid. Thea i for i 51,...6, denote the Leslie
coefficients of the nematic. Substitution of Eq.~18! into Eqs.
~20! and ~21! leads to

N1~u~z!!5n3~¹p!efz~n11n222n3!sin 4u

2l
K

d2 Fsin 2u
d2u

dz2 1cos 2u S du

dz D 2

2q cos2 uG .
~22!

The quantitiesn1 andn2 also denote several viscosity coe
ficients. A plot ofN1 vs z for several values ofqĒ2 andN is
shown in Fig. 5. In nonhomogeneous plane Poiseuille fl
between two parallel surfaces, the velocity gradient is
constant and varies between zero at the center of the cel
up to a maximum value at the walls. According to Marru
ci’s results,17 it is likely that regions of negative and positiv
first normal stress differences will develop along the dir
tion of the velocity gradient. In fact, in Fig. 5 negative valu
of N1 are shown in the central region of the cell, becomi
positive as the velocity gradient increases and approac
zero near the plates region, where the nematic lies parall
the plates in agreement with the chosen strong ancho
boundary conditions. An increase in the electric field p

FIG. 5. Primary dimensionless normal stress differencesN̄1[N1/K vs z as

calculated from Eq.~22! for different values ofqĒ2 and N such that

N/qĒ25
1
3. N takes the same values as in Fig. 3.
Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject t
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duces an increase inN1 , but keeps the same qualitative b
havior, as observed in Fig. 5. It should be stressed that
chosen values ofqĒ2 and N must be of the same order, s
that the boundary layer method discussed previously is
plicable.

In Figs. 6 and 7, the integration of the first normal stre
difference profile,*21/2

1/2 N1(u(z))dz, over the whole cell and
along the velocity gradient direction renders the net fo
between the plates as a function of the Reynolds’ numb
which is proportional toN, and to the electric field. A posi
tive force exerted by the fluid motion tends to push the pla
apart, or otherwise, if the force is negative, the fluid tends
pull the plates close together. As observed in Fig. 6, as
Reynolds’ number increases, the net force changes sign f
positive to negative, and the effect is more pronounced as
electric field increases in magnitude. In Fig. 7, the force
plotted as a function of the electric field strength for seve
values ofN ~or R!. For sufficiently slow flows, the force is
always positive, but at high fluid velocities the force is a
ways negative over all the electric field strengths conside
The results shown in these figures do not exclude the po
bility that a further increase in the fluid velocity will induc
another change of sign in the force, becoming positive
very high velocity gradients. These prediction would be
accordance with the observed and predicted behavior of
uid crystal solutions in simple shear flow.17,21 It should be
remarked that in Figs. 6 and 7 we have plotted the dim
sionless force f in units of the elastic constantK
510212Newtons.

V. DISCUSSION

We have shown that an electrorheological effect may
produced in a cell of a few microns thickness containing

FIG. 6. The dimensionless forcef [(*21/2
1/2 N1(z)dz)/K in units of the elas-

tic constantK510212N as a function ofN for different values ofqĒ2.

~——! qĒ2550; ~– • –! qĒ25100; ~– – – –! qĒ25160.
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html
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FIG. 7. f vs qĒ2 for different values ofN. ~——! N
550; ~– • –! N5100; ~– – – –! N5160.
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PHIC nematic. To clarify and elaborate on this result
close the paper with the following comments.

First, in our model the mechanism that produces the
crease in the apparent viscosity is the induced reorienta
of the director by the applied electric field. This occurs b
cause the permanent and induced dipole moments of P
align themselves with the field giving rise to an enhanc
viscosity. As a matter of fact, this orientational distortio
also manifests itself as a nonlinear optical process, in
sense that the external field gives rise to a refraction in
gradient which produces self-focusing and waveguiding
fects in the cell.5 Although the existence of an electrorhe
logical effect for PHIC have already shown to exist in
rotational rheometer by Yang and Shine,4 here we have
shown that the same effect might be induced in a small n
atic planar cell with a few microns separation between
plates.

Secondly, it should be emphasized that our analysis
restricted to the final stationary state of the reorientation
more general and physically richer situation would be to c
sider nonstationary states defined by the full equation@Eq.
~10!# with NÞ0. In this case, Eq.~10! cannot be solved
exactly in an analytical form and one has to restore to the
of numerical methods. From this point of view, prelimina
calculations based on the use of the well-known shoo
method to solve Eq.~10!, indicate that Eq.~10! can be solved
only for values ofq such thatqĒ2,10. For larger values the
numerical method becomes unstable and a much larger
merical precision is required. This reinforces the con
nience of developing well defined analytic and asympto
approximations to solve Eq.~10!. However, even if this nu-
merical analysis can be carried out explicitly, the simplic
and the analytical treatment of the model presented h
would be lost. In spite of its simplicity, this model predic
an experimentally verified result for a different and ne
physical situation.

Thirdly, with regard to the reported behavior of the fir
normal stress differencesN1 , it should be mentioned tha
Marrucci et al.17,18 for the first time linked these norma
stress differences to a tendency of the direction of aver
molecular orientation to tumble in shear flow about the v
ticity axes, and to the arrest of the tumbling that eventua
Downloaded 13 Mar 2001 to 132.248.12.227. Redistribution subject t
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occurs as the shear rate is increased. In this work, altho
we have not discussed the tumbling regime, we have
tained the same qualitative behavior but using a hydro
namic description instead of a stochastic approach.

Finally, it should be pointed out once more that our th
oretical description is approximated, since all the effects
sociated with possible additional hydrodynamic variables
quired to describe properly the hydrodynamics of PHIC ha
been entirely neglected. However, our description is simp
analytic, and predicts the existence of an interesting phys
effect.
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