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Abstract

A simple model consisting of the Upper Convected Maxwell constitutive equation and a kinetic equation for
destruction and construction of structure, first proposed by Fredrickson in 1970, is used here to reproduce the
complex rheological behavior of viscoelastic systems that also exhibit thixotropy and rheopexy under shear flow. The
model requires five parameters that have physical significance and that can be estimated from rheological measure-
ments. Several steady and unsteady flow situations were analyzed with the model. The model predicts creep behavior,
stress relaxation and the presence of thixotropic loops when the sample is subjected to transient stress cycles. Such
behavior has been observed with surfactant-based solutions and dispersions. The role of the characteristic time for
structure built up, l, in the extent and shape of the thixotropic loops is demonstrated. © 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Concentrated suspensions, solutions of polyelectrolytes, biological and other complex fluids
are known to exhibit thixotropy, antithixotropy (rheopexy) and other complex rheological
behavior [1–5]. Recent experimental reports [6–10] have shown that elongated micellar solu-
tions, dispersions of liquid crystals and lamellar liquid crystalline phases exhibit time-dependent
rheological behavior and viscoelasticity. However, very few studies have been devoted to the
analysis of thixotropic phenomena in liquid crystals and micellar solutions [11,12].
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In the analysis of thixotropic phenomena, two approaches can be distinguished [5]: a
continuum mechanics one, which is phenomenological in nature, and another based in the
understanding of the basic processes leading to structural changes as the sample is deformed. In
the latter approach, it is usually considered that the instantaneous rheological properties depend
on a structural parameter (i.e. molecular entanglements, network junctions, liquid crystalline
microdomains, etc.) that is changing with deformation history. Thus, the rheological functions,
such as viscosity, depend on the actual level of the fluid structure. When the structure breaks
down due to flow, viscosity consequently decreases. Mewis [13], in his review article, points out
that the non-linear, time-dependent behavior of the rheological functions is caused by changes
in the internal structure of the material, which can be described by a set of two equations. One
is a constitutive equation that gives the instantaneous stress t as a function of the instantaneous
kinematics D(r, t) for every possible state of the structure at any position, r. The other is a
kinetic equation that describes the rate of change of the degree of structure s(r, t) with the
instantaneous kinematics, i.e. the imposed shear rate, g; .

Due to the kinetics of structure breakdown and reformation usually being system-dependent,
a unique kinetic expression for these processes is not possible. Thus, several models have been
proposed which assign different forms to the basic constitutive equation and to the kinetic
equation for the structural parameter. Usually, the structural parameter, which has to be
obtained from experimental data, is related to a measurable rheological property. The apparent
shear viscosity (h) has been used as a measure of structure [13,14]. This is equivalent to assume
that the viscosity is proportional to the instantaneous number of structural points, N(t) (i.e.
bonds, links or entanglements). In this approach, it is usually considered that the rate of change
of the number of structural points depends on their instantaneous number and on the work
done on the system [15–19]. Some time ago, Fredrickson [20] proposed a simple kinetic equation
for the destruction and construction of structure coupled to a Newtonian constitutive equation
with a time dependent viscosity to predict the thixotropic behavior of inelastic suspensions under
shear flow. This model can predict Non-Newtonian behavior and apparent yield stresses
(Bingham plastic-like behavior) in steady shear-flow and thixotropic loops under time dependent
shear histories. The kinetic equation of Fredrickson has the following form [20]:

d8

dt
=

(80−8)
l

+k(8�−8)t :D. (1)

Here, 8 is the fluidity (h−1), 80 and 8� are the fluidities at zero and very high shear rates,
respectively, l is the relaxation time upon the cessation of steady flow and k is a parameter that
is related to a critical stress value, below which the material exhibits primary creep. Later we will
show that l is a structural relaxation time, i.e. a structural built up time, whereas k can be
interpreted as a kinetic constant for structure breaking down.

In the present work, the kinetic equation of the Fredrickson model (Eq. (1)) is used coupled
to the upper-convected Maxwell constitutive equation to account for the Non-Newtonian and
the thixotropic and antithixotropic behavior reported for viscoelastic micellar solutions and
lamellar liquid crystalline dispersions under shear flow [6–10]. The Maxwell equation can be
written as [21]
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t+d(r, t)t
9
=

2D
8(r, t)

, (2)

where t
9

is the codeformational derivative of the stress tensor, d [= (G08)−1], is a structure-de-
pendent relaxation time and G0 is the instantaneous relaxation modulus.

2. Results

2.1. Steady simple shear flow

For simple shear flow, Eqs. (1) and (2) can be expressed as the following scalar equations:

d8

dt
=

(80−8)
l

+k(8�−8)t12g; , (3)

t12+
1

G08

dt12

dt
−

t22g;
G08

=
g;
8

, (4)

N1+
1

G08

dN1

dt
=

2t12g;
G08

(5)

and

N2+
1

G08

dN2

dt
=0, (6)

where N1(t11−t22) and N2(t22−t33) are the first and second normal stress differences,
respectively. In what follows, the third term in the left hand side of Eq. (4) will be neglected due
to t22 being small. Also, for simplicity, the subscripts of t12 will be dropped.

For simple steady shear flow, the time derivatives in Eqs. (3)–(6) become zero. The
combination of Eqs. (3) and (4) with their time derivatives set equal to zero, yields a quadratic
equation in 8, whose non negative root gives the steady state fluidity:

8SS=1
2[− (klg; 2−80)+ ((klg; 2−80)2+4klg; 28�)1/2]. (7)

Eq. (7) gives the shear rate dependence of the steady state fluidity, where its limits at zero and
at very large shear rates are 80 and 8�, respectively.

Fredrickson [20] showed that when 80=0, the material behaves as a Bingham plastic (i.e. an
apparent yield stress is observed); when 80=8�, the fluid is Newtonian; and when 0B80B8�,
the fluid is pseudoplastic and shows a Newtonian plateau with viscosity equal to 80

−1 at low
shear rates and other plateau at very high shear rates with viscosity equal to 8�

−1.
Fig. 1 shows plots of the steady shear viscosity versus shear rate with identical values of 80,

k and l but different values of 8�. Here, Newtonian behavior (when 80=8�), shear-thinning
behavior (whenever 80B8�) or shear-thickening behavior (whenever 80\8�) is observed—
the latter case was not examined by Fredrickson [20].

The substitution of 8ss in Eq. (5) with dN1/dt=0 gives
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N1=
2g; t

G08ss
. (8)

For small enough values of g; , 8ss tends toward 80 and from Eq. (4), N1 shows a quadratic
dependence on g; in this limit; likewise, for very high shear rates, 8ss tends toward 8� and N1

increases again in a quadratic fashion with g; (inset in Fig. 1).
Fig. 2 shows plots of shear stress versus shear rate for different values of 80. Notice that at

low values of 80 there is an apparent yield stress. However, amplification of the scale shows that
the stress goes to zero as the applied shear rate goes to zero, except when 80=0 (inset in Fig.
2); in this case, Bingham plastic-like behavior is observed, i.e. a yield stress is detected.
Fredrickson [20] argued that when 80=0, an infinite stress is required to start building up the
fluidity of the material, which is not physically possible; so, he concluded that there is not a true
yield stress. However, from Eq. (3) with 80=0 one can show that

8=8�[1− (tc/t)2], (9)

where tc[ (kl8�)−1/2] is the plateau value of the stress (inset in Fig. 2) and is as good a yield
stress as the Bingham one.

Fig. 1. Shear viscosity vs. shear rate as a function of 8� in (Pa s)−1: (a) 0.0002; (b) 0.002; (c) 0.0053; (d) 0.20; (e)
1. Inset: First normal stress difference as a function of g; 2 for curve e. The parameters used were 80=0.0053 (Pa s)−1;
G0=185 Pa; k=3.9×10−5 Pa−1; l=0.14 s.
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Fig. 2. Shear stress vs. shear rate as a function of 80 in (Pa s)−1: (a) 0.0; (b) 0.0001; (c) 0.001; (d) 1.0; (e) 10.5. Inset:
Enlargement of scale in log–log mode. The parameters used were 8�=10.5 (Pa s)−1; G0=185 Pa; k=3.9×10−5

Pa−1; l=0.14 s.

2.2. Stress relaxation after cessation of steady shear flow

In this type of experiment, a sample is sheared at constant and steady shear rate (g; ss). At time
t=0, the flow is suddenly stopped and the relaxation of the stress is followed as a function of
time. Hence, one sets g; =0 in Eq. (3). The integration of the resulting equation, with the initial
condition 8(0)=8ss, yields

8=80+ (8ss−80)e− t/l. (10)

The substitution of Eq. (10) in Eq. (4) with g; =0 and the integration with the initial condition
t(0)=tss, produces

t=tss exp[−G0(80t+l(8ss−80)(1−e− t/l))]. (11)

For very low values of steady shear rate, where 8ss tends to 80, the stress should relax
monoexponentially with a time constant given by (G080)−1, which is equal to the Maxwell
relaxation time.

Eq. (11) has two limits: one at short times and another one at long times. At short times, a
series expansion of e− t/l in Eq. (11) gives, after neglecting terms of order three and higher, that
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t=tss exp
�
−G0

�
8sst+

(8ss−80)t2

2l
+…

�n
. (12)

When the quadratic term is neglected, a single time constant given by (G08ss)−1 is recovered.
A plot of log(t/tss) versus time (Fig. 3) follows straight lines at very short times, with larger
negative slopes than (G080)−1 due to 8ss being larger than 80 for shear thinning fluids. Notice
that the slope of log(t/tss) versus time depends on the steady state conditions prior to the
relaxation process due to 8ss increasing with shear rate; hence the relaxation becomes faster as
the value of 8ss increases (Fig. 3). The limiting value of 8ss is 8�, which is reached at very high
shear rates. In this case, the shortest relaxation constant is equal to h�G0

−1 and the initial slope
reaches its steepest possible value.

The time range of validity of the linear approximation can be estimated by equating the linear
and quadratic terms of the argument in Eq. (12). This shows that the linear approximation is
valid for times smaller than 48ssl/(8ss−80). This limit has been verified experimentally [6].

For long times, Eq. (11) can be written as

t=Atss exp[−G080t ], (13)

where A=exp[−G0l(8ss−80)]. In this situation, the relaxation time corresponds again to the
Maxwell relaxation time. However, the extrapolation at time zero of the stress curves gives stress
values smaller than tss by a factor equal to exp[−G0l(8ss−80)], which depends on the steady
state flow conditions prior to cessation of flow (Fig. 3).

Fig. 3. Normalized shear stress after cessation of steady flow (t/tss) vs. time as a function of shear rate (s− l): (a) 0.1;
(b) 1; (c) 3; (d) 5; (e) 10. The parameters used: 80=0.0053 (Pa s)−1; 8�=10.5 (Pa s)−1; k=3.9×10−5 Pa−1;
l=0.14 s; G0=185 Pa. tss is the steady stress prior to the cessation of flow.
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It is noteworthy that the relaxation process at short times is governed by a time constant that
depends on the steady state fluidity (8ss) prior to the relaxation. On the other hand, the
relaxation at long times is governed by a time constant that corresponds to the Maxwell
relaxation time. Therefore, at long times one should expect lines with identical slopes whose
ordinates are functions of the magnitude of (8ss−80) (Fig. 3). Consequently, Eq. (13) tends
toward exp(−G080t) as 8ss�80. Eq. (13) and its limit have been verified experimentally [6].

2.3. Step change in stress and creep

In this case, the shear stress on the fluid is suddenly changed from t0 to t1, and it remains at
the latter value for subsequent times. Therefore, Eq. (3) can be written as

d8

dt
=

(80−8)
l

+k(8�−8)t1
28. (14)

This equation, in turn, can be written in the form of the Ricatti equation, i.e.

d8

dt
= −kt1

282+
�

kt1
28�−

1
l

�
8+

80

l
. (15)

Performing the change of variable 8=8ss+y−1 in Eq. (15) with the initial condition,
8(0)=800 (where 800 is the fluidity corresponding to the stress t0, which can be any steady/un-
steady initial stress), and with 8(�)=8ss, it yields, after some manipulations, that [22]:

8(t)=8ss+
��kt1

2

u
+

1
800−8ss

�
eut−

kt1
2

u

n−1

, (16)

where u=kt1
2(28ss−8�)+l−1.

Fig. 4 shows the variation of viscosity as a function of time, calculated with Eq. (16), due to
successive step changes in shear stress at constant time intervals. In this case, the step is applied
after the sample has reached its steady shear rate value. Notice how the change in viscosity
becomes steeper as the stress increases because, presumably, disruption of structure of the
sample upon increasing shear stress.

The model also allows the calculation of the compliance, J(t, t) (=g/t1), according to

J(t, t)=
&

0

t

8(t) dt. (17)

Hence, after integration, the substitution of Eq. (16) into Eq. (17) yields

J(t1, t)=
�

80−
u

kt1
2

�
t+

1
kt1

2 ln
�8�kt1

2

u
(1−eut)+eutn. (18a)

Fig. 5 shows the compliance and the viscosity versus time for several applied stresses. For
stresses smaller than tc[ (kl8�)−1/2], there is a primary creep region at short times, corre-
sponding to an initial elastic response of variable shear rate. At long times, the sample flows
with constant shear rate and J(t) follows a straight line with slope 80. The viscosity, on the
other hand, increases from h�(8�

−1) at short times (corresponding to its value at high
frequencies or high shear rates) up to h0 at a long times. Notice that the primary creep region
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Fig. 4. Viscosity as a function of time after successive step changes in stress (Dt=10 Pa). The parameters used are
the same as in Fig. 3.

appears simultaneously to the region where the viscosity is almost constant with value h�. For
stresses slightly larger than tc, the compliance attains a slope equal to 8ss(\80) at long times
(curve d in Fig. 5). For stresses much larger than tc, the limiting slope at short and long times
in the compliance curve tends to 8�, i.e. there is a negligible primary creep. The viscosity in this
case is constant and equal to h�.

The time required to reach steady state can be found from Eq. (16) in the limit t��. It turns
out that for times equal to u−1 the slope of J(t1, t), has reached 80% of its steady state value,
80, whereas for times longer than 4u−1, this value is 98.8% of 80.

Fig. 6 depicts the behavior of ul as a function of the applied reduced stress (t/tc) The region
where tBtc(=1/
kl8�) is the creep region corresponding to the limiting slope, 80, at long
times, where ul varies from 1 down to zero. When t\tc, ul increases with increasing reduced
stress and corresponds to the flow region where the limiting slope at long times is 8ss. The
largest slope corresponds to 8ss=8�, which is attained at very large stresses; in this case,
ul= l+ (t/tc)2.

It is useful to recast Eq. (18a) in terms of ul and t/tc to illustrate the two regimes of behavior
expected from the shape of ul in Fig. 6:

J(t1, t)=
�

80l−
ul28�

(t1/tc)2

�
tr+

8�l

(t1/tc)2 ln
�(t1/tc)2

ul
(1−eultr)+eultr

n
, (18b)
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where tr is the reduced time t/l. When t/tc�0 and for significant lengths of time, Eq. (18b)
renders J(t)=8�l+80t which represents a straight line with intercept 8�l, the steady state
compliance, J e

0 [24]. One may thus view the creep compliance as composed of ‘an elastic part’
J e

0=8�l and a ‘viscous part’ 80t. Notice that J e
0=1.47 for curve a in Fig. 5. On the other hand,

when t/tc� l, J(t)=8�t. It is interesting to point out that at short times, Eq. (18b) gives,
J(t):8�t for all magnitudes of the stress. This is the initial slope of curves a–d in Fig. 5.

2.4. Step change in shear rate

Here, a sample is being sheared at a steady shear rate (g; ss); suddenly at time t=0, the shear
rate is changed in step fashion to g; 1. For this situation, Eqs. (3) and (4) apply with g; =g; 1 and
with the initial conditions, 8(0)=8ss and t(0)=tss. Eqs. (3)–(5) have to be solved numerically.
However, it is possible to find analytical solutions for the inception of flow, i.e. when tB0, g; =0
and t]0, g; =g; 1. In this case, Eq. (4) gives

t [8(t)]=
g; 1
8

(1−e−G08t). (19)

Fig. 5. Compliance (small caps) and viscosity (capital caps) vs. time as a function of the applied stress (Pa): (a, A)
1; (b, B) 100; (c, C) 130; (d, D) 200. Inset: enlargement of scale for the compliance. The parameters used are the same
as in Fig. 3.
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Fig. 6. ul as a function of the normalized applied stress (t/tc). u is defined in text and tc is the plateau stress.

It is clear that a very low shear rates, 8:80 and d8/dt:0 in Eq. (3). In this situation,
Maxwellian behavior is followed with a time constant equal to (G080)−1 and furthermore
h+�h0 in the limit of long times.

For higher shear rates, as in the case of step change in the stress, the fluidity at very short
times is 8� (corresponding to its value at high frequencies or high shear rates) and Eq. (3)
becomes

8(t)=80+ (8�−80) e− t/l. (20)

In this case, stress is given by a combination of Eqs. (19) and (20).
At long times, in the intermediate shear rate region, 8�80 and 8��8, resulting in Eq. (3)

becoming, (with t$g; /8 from Eq. (19))

d8

dt
= −

8

l
+

k8�g; 2

8
, (21)

which, after integration, renders

8(t)= [8�2 e−2t/l+kl8�g; 2(1−e−2t/l)]1/2. (22)

Note that as t��, 8(t)�g; 1/tc=8ss and the stress tends to its steady state value, tc (the
plateau stress).

Fig. 7 shows the stress growth coefficient, h+(t), calculated numerically for the inception of
shear flow, as a function of shear rate. For low shear rates, h+(t) follows a Maxwellian behavior
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with a time constant equal to (G080)−1 (curve a in Fig. 7). As g; increases, h+ exhibits
overshoots which become bigger as the applied shear rate increases (curves b, c, y, d in Fig. 7).
Of course, the model predicts that h+(t)�hss as t��.

The analytical approximations for short and long times in the intermediate shear rate region
(g; =40 s−1 for this case), given by Eqs. (20) and (22), are compared with the numerical solution
in the inset of Fig. 7. Both approximations follow closely the numerical solution at short and
long times, although both depart from the exact solution outside their respective time range of
application. Notice that at the inception of flow, 8(t�0)=8�, the fluidity attains its maximum
value which corresponds to the initial magnitude of h+(t) at very short times. The variation of
8 with time is independent of the destruction term in Eq. (3). This is a purely elastic response
whose contribution decreases as time evolves; in turn, the destruction of structure manifests at
times longer than the overshoot time scale. Thus, curve I in Fig. 7 signals the limit of elastic
response.

2.5. Instantaneous stress relaxation

Here, a sample initially at rest, is suddenly subjected to a given deformation, g1, and
immediately the flow is stopped and the stress is allowed to relax. In this case, Eqs. (3)–(5) have
to be solved numerically. An analytical solution can be obtained, however, by allowing the
sample initially at rest, to be deformed for a very short period of time (t1); then the flow is

Fig. 7. Stress growth coefficient vs. time upon interception of flow for different values of applied shear rate (s−1): (a)
1; (b) 10; (c) 40; (d) 50. The parameters used are the same as in Fig. 3. Inset: Comparison of numerically obtained
curve c with approximations for short time (curve I) and long time (curve II) given by Eq. (20) and Eq. (22),
respectively.
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Fig. 8. Relaxation modulus as a function of time for different values of applied shear strain (%): (a) 0.1; (b) 0.5; (c)
1.0; (d) 2.0; (e) 3.0. Thick line: numerical solution; thin line: solution given by Eq. (23) divided by g. The parameters
used are the same as in Fig. 3. Inset: Damping function as a function of strain.

stopped and the stress is allowed to relax. This situation is more realistic that an instantaneous
deformation. In fact, in the rheometer employed here, the applied deformation lasts �0.05 s. In
this case, the deformation history can be represented by

g; Í
Á

Ä

0
g; 1

0
for

tB0,
05 t5 t1,

t\ t1,

Eqs. (3)–(5) describe this process with g; =g; 1. After a period t1, the flow is stopped and the
stress relaxation is given by Eq. (11) with t(t1) instead of tss and with 8ss=8(t1), since these
material functions have not yet reached their steady state values. Hence

t=t(t1) exp[−G0(80t+l(8(t1)−80)(1−e− t/l))], (23)

where 8(t1) is given by Eq. (20) which gives the fluidity at short times after a step change in
shear rate.

Fig. 8 depicts a semi-logarithmic plot of the relaxation modulus, G(t)=t(t)/g versus time as
a function of shear strain. For low values of applied strain, a linear viscoelastic behavior is
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predicted, i.e. G(t) is independent of g (lines a and b in Fig. 8). For larger values of strain,
however, G(t) depends on g (lines c to e in Fig. 8). This behavior corresponds to the nonlinear
viscoelastic regime. The solution given by Eq. (23) closely follows the numerical solution as long
as t1 is sufficiently small [13]. In fact, the stress given by Eq. (23) with t1=0.05 s agrees with the
stress calculated numerically within 0.9%.

At long times, Eq. (23) reduces to an expression equal to Eq. (13) with tss=t(t1). The
intercept of the plot of log(t/tss) versus time is −G0l(8(t1)−80). For this situation, Eq. (23)
divided by g [g; t1] may be expressed as

G(t)=Gl(t)h(g). (24)

Here Gl(t) is the linear relaxation modulus and h is the damping function, which is usually
defined as [exp(−Kg)], where K is the damping coefficient [25]. Inspection of Eq. (13) with
tss=t(t1) and 8ss=8(t1) shows that Gl(t)= (t(t1)/g; t1) exp(−G080t) and h=exp[−G0l(8(t1)−
80)], which provides a theoretical ground to the empirical treatment proposed elsewhere [25].

Eq. (24) indicates that the stress relaxation modulus can be separated in a time-dependent part
(the relaxation function) and a strain-dependent part (the damping function). The non-linear
behavior of the fluid can be quantified by measuring the magnitude of the ordinate at t=0 of
the curve of log G(t) versus time. The inset in Fig. 8 shows h as a function of deformation. The
damping coefficient, K, which is the slope of this curve, has a value near 0 at low deformations
(ca. 2%),within the linear viscoelastic region. K reaches a constant value equal to 0.14 at higher
deformations, i.e. the damping function decays monoexponentially with deformation. In be-
tween these regimes, K varies with deformation. Laun [26] reported a similar behavior of h as
a function of deformation for polymer melts.

2.6. Transient stress cycles

Attention is given here to the predictions of the model in time-dependent complex flow
histories produced by a controlled stress rheometer in an exponential stress mode. Exponential
shear flow is a strong flow since the distance between material elements of the fluid increases
exponentially with time. Nevertheless, this type of flow is not devoid of vorticity and hence it
does not possess the strength of a pure extensional deformation. In this regard, exponential
shear flow is kinematically characterized by shear and extensional components.

The exponentially increasing–decreasing shear stress histories yield thixotropic loops in
micellar solutions of CTAT and in other microstructured surfactant-based fluids [6,7]. In these
experiments, the stress is increased exponentially at time t=0 from a preset value (t0) to a
prescribed maximum stress (tf) at t= t1. Subsequently, tf can be kept constant for a given period
of time. In the final stage at t= t2, stress is decreased exponentially with time to t0 at the same
rate as in the increasing mode. Also, two or more consecutive cycles can be performed in the
sample with or without a rest period between the cycles. There are three main variables in this
type of experiments: the magnitude of the final stress, tf, the rate of change of stress, a, and the
duration of the interval of constant stress, (t2− t1).

The shear history in this case is given by the following expressions:
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t=Í
Á

Ä

t0 eat

t f

t0 e−at

for
05 t5 t1,
t15 t5 t2,
t25 t5 t3.

(25)

The substitution of these equations in Eq. (3) and Fig. 4 yields

t+
1

G08
�9�at=

g;
8

, (26)

d8

dt
=

(80−8)
l

+k(8�−8)g; t. (27)

The combination of Eqs. (26) and (27) gives

d8

dt
=

(80−8)
l

+k(8�−8)t2 �8�9� a
G0

�
. (28)

This equation has no analytical solution; therefore, it was solved numerically for the different
situations presented in the following.

Fig. 9. Shear viscosity as a function of shear rate for exponentially increasing and decreasing stress cycles. Initial
stress is the same in all cycles (t0=0.1 Pa) and final stress, tf is varied: (a) 10; (b) 20; (c) 50; (d) 100; (e) 150. The
parameters used are the same as in Fig. 3. Inset I: Stress program applied and time response of viscosity. Inset II:
Enlargement of the scale for curves a and b.
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The effect of increasing the final stress, tf, on the extent of thixotropy is shown in Fig. 9. The
steady shear curve is included in this figure for comparison (curve ss in Fig. 9). The inset I in
this figure depicts the applied stress program and the viscosity response as a function of time.
All the relevant parameters of the model (i.e. G0, d, l, 80, 8� and k) were fixed in the simulations.
When tf is small, i.e. levels of stress within the Newtonian region in steady shear, the thixotropic
loops are very small, almost negligible (curves a and b in Fig. 9 and inset II). As tf increases,
the extent of the thixotropic loops augments (curves c to e in Fig. 9). Also, as expected, the shear
viscosity at the maximum applied stress becomes smaller as the value of tf increases. Hence, in
the increasing shear mode, structure breaks down by the application of increasing stress. Therefore,
as the applied stress becomes larger, more structure is broken down, and consequently, lower
viscosities are obtained. Notice that the time when tf is reached does not coincide with that when
the minimum in viscosity is observed (inset I in Fig. 9). This implies that the breaking down of
structure continues for a time even after the stress has become smaller than tf, i.e. in the stress
decreasing mode. Also, in the stress decreasing mode, structure begins to build up, first slowly
and then faster as the applied stress becomes smaller. The rate of structure built up depends strongly
on the structure relaxation time, l, as it will be discussed later. This thixotropic behavior has been
observed in elongated micellar solutions and liquid crystalline dispersions [6,7].

The effect of the rate of increase of shear stress, a(d ln t/dt), on the extent of the hysteresis
loops is shown in Fig. 10. The applied stress program and the time response of the viscosity are

Fig. 10. Shear viscosity as a function of shear rate for exponentially increasing and decreasing stress cycles. Initial
stress (t0=0.1 Pa) and final stress (tf=150) are the same in all cycles, however, the ramp time, a(=d ln t/dt), is
varied: (a) 0.014; (b) 0.028; (c) 0.033. The parameters used are the same as in Fig. 3. Inset: Stress program applied
and time response of viscosity.
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presented in the inset of this figure. The initial (t0) and final (tf) stresses are the same in all
simulations. As is evident in Fig. 10, the size of the thixotropic loops increases as the time of the
ramp used to reach the maximum level of the applied stress increases (i.e. with decreasing values
of a).

The effect of the duration of the interval where tf is maintained is presented in Fig. 11. The
applied stress program and the time response of the viscosity are depicted in the inset of this
figure. The loops shown in this figure becomes larger as the duration of the interval of constant
tf increases. Moreover, the value of h at the end of the constant tf period diminishes as this
period becomes longer. The explanation to this behavior is akin to the one given in the previous
paragraph, i.e. the extent of disruption or breakdown of structure increases with both, the level
of applied stress and the duration of the application of the stress.

The structural relaxation time, l, has a strong influence on the size and the shape of the
thixotropic loops. Fig. 12 depicts thixotropic loops obtained by the application of identical stress
programs (inset) on samples with different values of l and identical values of the other
parameters (i.e. G0, d, 80, 8� and k). As discussed earlier, small values of l indicate a fast
reformation of structure, i.e. a very labile structure, whereas large values of l imply a slower
structure build up associated with a longer persistence lifetime. Two effects can be observed in
Fig. 12 as the value of l is increased. One is that the extent of the thixotropic loops augments
upon increasing the value of l. In fact, the sample with the smaller value of l (fast reforming

Fig. 11. Shear viscosity as a function of shear rate for exponentially increasing and decreasing stress cycles. Initial
stress (t0=0.1 Pa), final stress (tf=150) and a(=d In t/dt)=0.028 are the same in all cycles, however, the period
of time (t2– t1) where tf is maintained and varied: (a) 0 s; (b) 10 s; (c) 30 s; (d) 40 s. The parameters used are the same
as in Fig. 3. Inset: Stress program applied and time response of viscosity.
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Fig. 12. Shear viscosity as a function of shear rate for exponentially increasing and decreasing stress cycles. Initial
stress (t0=0.1 Pa), final stress (tf=100) and a(=d ln t/dt)=0.028) are the same in all cycles. The parameters used
are the same as in Fig. 3, with the exception of l, which was varied: (a) 1 s; (b) 2 s; (c) 5 s; (d) 10 s. Inset: Stress
program applied and time response of viscosity.

structure) exhibits the smallest thixotropic loop. The other effect is that as l increases, the loops
tend to open up and the viscosity does not return to its initial value, h0, within the time scale
of the experiment because the larger the value of l, the longer it will take to the sample to return
to its original structure. Notice that the value of h at the end of the cycle decreases substantially
as l increases and that the curves of viscosity versus time (inset in Fig. 12) become more
asymmetrical as l becomes larger. These patterns have been observed in fast reforming systems
(elongated micellar solutions of CTAT), which exhibit the behavior shown in the curves a and
b in Fig. 12, and in slow structure-reforming systems (Aerosol OT or DDAB lamellar liquid
crystalline dispersions), which behaves more like curves c and d in Fig. 11 [6,7,23].

Fig. 13 depicts the effect of applying consecutive stress cycles on the extent of thixotropy. For
a sample with a small value of l (fast structural recovery), the areas of the thixotropic loop in
the first, second and third cycles are very similar (Fig. 13(a)). In fact, the viscosity responses are
alike in the three loops (inset in Fig. 13a). However, for a material with a large value of l, the
area of thixotropy after the first cycle (curve I in Fig. 13(b)) decreases substantially after the
second cycle (curve II in Fig. 13(b)) and even more when the third consecutive cycle is applied
(curve III in Fig. 13(b)). Moreover, the final viscosity of the material at the end of the cycle is
more than two orders of magnitude lower than the initial viscosity. The reason for this behavior



F. Bautista et al. / J. Non-Newtonian Fluid Mech. 80 (1999) 93–113110

Fig. 13. Shear viscosity as a function of shear rate for three consecutive exponentially increasing and decreasing stress
cycles applied on samples with different value of l : (a) 2 s: (b) 50 s. Initial stress (t0=0.1 Pa), final stress (tf=100)
and a(=d In t/dt)=0.028 are the same in all cycles. The parameters used are the same as in Fig. 3, with the
exception of l. Inset: Stress program applied and time response of viscosity.

is that with slow recovering materials (large l), the time scale of the experiment is much shorter
that the time scale for structure built up. This means that at the end of the first cycle, the
material has not yet recovered its original structure, and so, the application of a second and
third stress cycles destroys even more structure and the loops shrink. With fast recovering
materials, this behavior does not happen because the time scale of the experiment is similar or
larger than the time scale for reconstruction of structure. These two behaviors have been
observed in aqueous dispersions of liquid crystals and in micellar solutions [6,7].

To demonstrate that the parameter l is indeed a characteristic time for structure reconstruc-
tion, a sample was subjected to a stress cycle; then it was allowed to rest for a certain period of
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Fig. 14. Shear viscosity as a function of shear rate for exponentially increasing and decreasing stress cycles with a
resting period between them: (a) 5 s; (b) 50 s; (c) 100 s. Initial stress (t0=0.1 Pa), final stress (tf=100) and a(=d
ln t/dt)=0.028 are the same in all cycles. The parameters used are the same as in Fig. 3, with the exception of l

(50 s). Inset: Stress program applied and time response of viscosity.
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time before a second cycle was applied. The simulations were performed with a slow recov-
ery material (large l) and with resting times smaller, similar and larger than the value of
l. Upon application of the first cycle, a large hysteresis loop forms and the viscosity at the
end of the cycle is almost three orders of magnitude smaller than h0 (Fig. 14(a)). As
discussed above, this is due to the fact that the material cannot recover its initial structure
within the time scale of the experiment. When the rest period is smaller than l, the
thixotropic loop decreases substantially after the application of the second stress cycle—but
the area is larger than when there is no rest period between the loops (curves II in Fig.
13(b) and Fig. 14(a)). As the resting time increases, the area of the thixotropic loop after
the second cycle increases and resembles more the loop obtained after the first cycle. When
the resting time is of the order of (Fig. 14(b)) or larger than l (Fig. 14(c)), the area after
the first and second cycles are identical, because the material has had enough time to
recover completely and to return to its equilibrium (no flow) structure before the applica-
tion of the second cycle.

3. Conclusions

A simple model consisting of the Upper Convected Maxwell constitutive equation and a
kinetic equation for destruction and construction of structure—the latter first proposed by
Fredrickson [20]—is used here to reproduce the complex rheological behavior of viscoelastic
micellar solutions and liquid crystalline dispersions that also exhibit thixotropy and
rheopexy under shear flow. The model requires five parameters that have physical signifi-
cance and that can be estimated from rheological measurements. The parameters are the
Newtonian fluidity (80), the high shear rate fluidity (8�), a structure dependent relaxation
time (d), a characteristic time for structure built up (l) and a kinetic constant for destruc-
tion of structure (k).

Several steady and unsteady shear flow situations (simple steady shear flow, stress relax-
ation after cessation of steady flow, creep, instantaneous stress relaxation and exponentially
increasing-and decreasing stress cycles) were examined with the model. In particular, the
model predicts creep behavior and the presence of thixotropic loops when the sample is
subjected to transient stress cycles. Such behavior has been observed with surfactant-based
viscoelastic micellar solutions, dispersions and liquid crystalline phases [6,7]. The role of the
characteristic time for structure built up, l, in the extent and shape of the thixotropic loops
was demonstrated.

The merits of the model will be demonstrated in a forthcoming publication, where the
predictions are compared with rheological data of viscoelastic worm-like micellar solutions,
dispersions of lamellar liquid crystals and bentonite suspensions [27].
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