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Abstract

A proof of the result due to Glowinski, Lions and Trèmoliéres on the time estimate for start-up of pipe flows in
a Bingham fluid is presented. This result states that the norm of the unsteady flow approaches that of the steady
flow exponentially, with the density and viscosity of the fluid, and the lowest eigenvalue of the Laplacian over the
cross-section of the pipe playing significant roles. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose thatc > 0 is a constant pressure drop per unit length, which is sufficient to overcome the
yield stress in a Bingham fluid. Further, under this pressure drop, let the fluid attain a steady velocity field
u∞ = u∞(x, y) in a pipe of arbitrary cross-section, defined byA in thex–y plane. Further, let us assume
that for every initial valueu0 = u0(x, y), the unsteady pipe flow with the same, constant pressure drop
c > 0, has a unique solutionu(t) = u(x, y, t). By ‖ · ‖, let us denote theL2 norm of a function overA,
i.e.

‖f ‖2 =
∫
A
f 2 da. (1.1)

In a start-up problem, we are interested in how the norm of the difference‖u∞ − u(t)‖ → 0 ast → ∞.
That is, ifw(t) = u∞ − u(t) is the unique solution to the time-dependent flow problem with an initial
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valuew(0) = u∞ −u(0), the problem that has to be investigated is the rate of decay of‖w(t)‖ ast → ∞.
If the fluid were Newtonian, the velocity fieldw(t) occurs under a zero pressure drop, and it can be
shown thatw(t) → 0 ast → ∞; for example, see [1]. Note that this is a result concerning the pointwise
convergence ofw(t) to zero from which the norm limit of zero is clearly established.

Here, the equations governing the flow of the yield stress fluid are non-linear, and hencew(t) may not
occur under a zero pressure drop. Instead of finding this pressure term, which may be unsteady, it will be
proved here that

ρ

(
∂(u∞ − u(t))

∂t
, u∞ − u(t)

)
+ ηa(u∞ − u(t), u∞ − u(t)) ≤ 0, (1.2)

whereρ is the density, andη is the constant viscosity of the fluid.
In Eq. (1.2), the dot product(·, ·) and the dissipation terma(·, ·) for the Bingham fluid appear. They

are defined through

(f, g) =
∫
A

fgda, a(u, v) =
∫
A
∇u · ∇v da, (1.3)

wheref andg are any smooth functions,u andv are any two smooth velocity fields, which vanish on the
boundary of the pipe, and∇ is the two dimensional gradient operator. Now, it is known that the dissipation
term obeys the coercive inequality

a(u∞ − u(t), u∞ − u(t)) ≥ λ1‖u∞ − u(t)‖2, (1.4)

whereλ1 > 0 is the least eigenvalue of the Laplace operator in the domainA. That is,λ1 > 0 is the
minimum eigenvalue of the boundary value problem

∂2w

∂x2
+ ∂2w

∂y2
+ λw = 0, (1.5)

with w = 0 on the boundary. The proof of the inequality (1.4) is not given here, for it is nothing but
a statement about the variational characterisation of the least eigenvalue of the Laplace operator (for
example, see Theorem 4.2 in [2]).

Since,(
∂(u∞ − u(t))

∂t
, u∞ − u(t)

)
= 1

2

d

dt
‖u∞ − u(t)‖2, (1.6)

the inequality (1.2) now becomes

ρ
d

dt
‖u∞ − u(t)‖ + η0λ1‖u∞ − u(t)‖ ≤ 0. (1.7)

This proves that

‖u∞ − u(t)‖ ≤ ‖u∞ − u(0)‖ e−η0λ1t/ρ, (1.8)

which shows the way the norm‖w(t)‖ of the differencew(t) approaches zero ast → ∞. The above
result is not new, for it appears as Remark 3.1 in Appendix 6 of the book by Glowinski et al. [3], or
as Exercise 6.1 in Chapter III of the book by Glowinski [4], with the reader being asked to establish it.
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However, no proof appears in these two treatises, and we are not aware of any published version of a
proof. We believe that it may be of interest to see a detailed argument, especially if one is interested in
expanding the result to more general yield stress fluids, such as Herschel–Bulkley fluids. Thus, the goal
of the present note is to prove the inequality in Eq. (1.2).

Before proceeding with the mathematical details, we wish to point out that it is the viscosity which
determines the rate of growth of the transient solution to the final value, while the yield stress puts a lower
bound on the pressure drop for the flow to persist. Indeed, Glowinski et al. in Theorem 3.2, Appendix 6
of [3] and Glowinski in Theorem 6.2, Chapter III of [4] prove that ifc < τyβ, then the pipe flow will be
non-zero for a finite time only, where

β = min
v 6=0

∫
A|∇v| da

‖v‖ > 0. (1.9)

We do not use this result here, except to assume thatc ≥ τyβ for the unsteady pipe flowu(t) to grow and
approach its steady state counterpartu∞.

2. The constitutive relations

Let DDD(vvv) be the rate of deformation tensor derived from a velocity fieldvvv which is isochoric, i.e.
∇ · vvv = 0. Now,

2Dij (vvv) = vi,j + vj,i . (2.1)

SinceDDD is symmetric, the second invariantK of DDD is given by

K2(vvv) = Dij (vvv)Dij (vvv). (2.2)

Let the stress tensorSSS in an incompressible yield stress fluid be written asSij = −pδij + τij , whereτij is
the extra stress tensor. The equations defining the Bingham fluid are

Dij = 0, T ≤
√

2τy, (2.3)

τij = 2ηDij +
√

2τy

K
Dij , T >

√
2τy, (2.4)

whereη andτy are, respectively, the constant viscosity and the constant yield stress of the fluid. The
second invariantT of the extra stress tensor is

T 2(τ ) = τijτij . (2.5)

The physical meaning of Eq. (2.3) is that the fluid moves as a rigid body or is at rest over all points where
the inequality holds; that of Eq. (2.4), is that the fluid yields and deforms, and an explicit constitutive
relation applies whenDDD 6= 000.

3. Start-up problem for a Bingham fluid

Consider the unsteady flow in a pipe where all velocity fields, such asuuu andvvv, have a non-zero
component in the axial direction only. That is,uuu = u(x, y, t)kkk, and so on. In this case, it is easily shown
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that the shear stressesτxz andτyz depend on(x, y, t) only, while the normal stressτzz = 0. The pressure
p depends onz only, i.e.p = −cz, wherec > 0 is the constant pressure drop per unit length. We shall
now state the variational inequality applicable to the pipe flow, which leads to Eq. (1.7). For a derivation
of the inequality, see [3–7].

For the assumed velocity fields,

Dij (uuu)Dij (vvv − uuu) = 1
2∇u · ∇(v − u), (3.1)

and

K2(u) = 1
2∇u · ∇u, (3.2)

where∇ is the two-dimensional gradient operator.
Now, set the body forcebbb = 000, or absorb it into the pressure term, if the body force is that due to

gravity. Also, note that the acceleration vector is given by

aaa = ∂u

∂t
kkk. (3.3)

Let us now define four integrals which are necessary to explain the terms used in the variational inequality.
They are

a(u, v − u) =
∫
A
∇u · ∇(v − u) da, (3.4)

j (v) =
∫
A
|∇v| da, (3.5)

(c, v − u) =
∫
A
c(v − u) da, (3.6)

(
∂u

∂t
, v − u

)
=

∫
A

∂u

∂t
(v − u) da. (3.7)

It is shown in [3–7] that one is led to following the variational inequality for unsteady pipe flows

ρ

(
∂u

∂t
, v − u

)
+ ηa(u, v − u) + τyj (v) − τyj (u) ≥ (c, v − u), (3.8)

whereu is the solution to the pipe flow problem under the constant pressure gradient, andv is any trial
velocity field which obeys the same boundary condition asu. The crucial point in exploiting the above
inequality lies in the fact that althoughu is unsteady,v may be steady or unsteady.

If the solutionu∞ is steady, the corresponding inequality is

ηa(u∞, v − u∞) + τyj (v) − τyj (u∞) ≥ (c, v − u∞). (3.9)

Again,v may be steady or unsteady.
We can derive the exact form of the equation satisfied by the true solution fieldu from Eq. (3.8).

Assume that the trial velocity fieldv = 2u. Note that this is permissible, becauseu = 0 on the boundary
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of the pipe means that the trial velocity fieldv = 2u satisfies this boundary condition. Then, Eq. (3.8) is
converted to

ρ

(
∂u

∂t
, u

)
+ ηa(u, u) + τyj (u) ≥ (c, u). (3.10)

If the trial velocity fieldv = 0, we obtain

−ρ

(
∂u

∂t
, u

)
− ηa(u, u) − τyj (u) ≥ −(c, u). (3.11)

Comparing Eqs. (3.10) and (3.11), it can be seen that we have an equality:

ρ

(
∂u

∂t
, u

)
+ ηa(u, u) + τyj (u) = (c, u). (3.12)

If the solution is steady, sayu∞, the equation satisfied by it is

ηa(u∞, u∞) + τyj (u∞) = (c, u∞). (3.13)

In the next section, we shall exploit Eqs. (3.8), (3.9), (3.12) and (3.13) repeatedly to derive the result
announced in Eq. (1.7) above. The proof is simple and straightforward.

4. The proof

First of all, we note from Eq. (3.4) thata(·, ·) is bilinear and symmetric, i.e.

a(u(t), u∞ − u(t)) = a(u(t), u∞) − a(u(t), u(t)), a(u(t), u∞) = a(u∞, u(t)). (4.1)

As well, from Eqs. (3.12) and (3.13), it follows that

(c, u∞ − u(t)) = ηa(u∞, u∞) + τyj (u∞) − ρ

(
∂u

∂t
, u

)
− ηa(u, u) − τyj (u). (4.2)

Next, if we putv = u∞ in Eq. (3.8), we find that

ρ

(
∂u(t)

∂t
, u∞ − u(t)

)
+ ηa(u(t), u∞ − u(t)) + τyj (u∞) − τyj (u(t)) ≥ (c, u∞ − u(t)). (4.3)

Using Eqs. (4.2) and (4.3), it is easily shown that

ρ

(
∂u(t)

∂t
, u∞

)
+ ηa(u(t), u∞) ≥ ηa(u∞, u∞). (4.4)

This result shows the effect of the inner product term, involving inertia, and the hybrid dissipation term
on the true dissipation term in a steady flow.

Finally, if we putv = u(t) in Eq. (3.9), we obtain

ηa(u∞, u(t) − u∞) + τyj (u(t)) − τyj (u∞) ≥ (c, u(t) − u∞). (4.5)
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Now, using Eqs. (4.1) and (4.2) in Eq. (4.5), we find that

ηa(u(t), u∞) ≥ ρ

(
∂u(t)

∂t
, u(t)

)
+ ηa(u(t), u(t)). (4.6)

Combining Eqs. (4.4) and (4.6), it is seen that

ρ

(
∂u(t)

∂t
, u∞

)
+ 2ηa(u(t), u∞) ≥ ρ

(
∂u(t)

∂t
, u(t)

)
+ ηa(u(t), u(t)) + ηa(u∞, u∞). (4.7)

The above results can now be put to use. We begin with(
∂(u∞ − u(t))

∂t
, u∞ − u(t)

)
= −

(
∂u(t)

∂t
, u∞

)
+

(
∂u(t)

∂t
, u(t)

)
, (4.8)

sinceu∞ is steady. Next, from Eq. (4.1), we obtain

a(u∞ − u(t), u∞ − u(t)) = a(u∞, u∞) + a(u(t), u(t)) − 2a(u(t), u∞). (4.9)

Utilising Eqs. (4.7), (4.8) and (4.9), it is seen that

ρ

(
∂(u∞ − u(t))

∂t
, u∞ − u(t)

)
+ ηa(u∞ − u(t), u∞ − u(t)) ≤ 0, (4.10)

which is Eq. (1.2), and the proof is complete.
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