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Abstract

A proof of the result due to Glowinski, Lions and Tremoliéres on the time estimate for start-up of pipe flows in
a Bingham fluid is presented. This result states that the norm of the unsteady flow approaches that of the steady
flow exponentially, with the density and viscosity of the fluid, and the lowest eigenvalue of the Laplacian over the
cross-section of the pipe playing significant roles. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose that > 0 is a constant pressure drop per unit length, which is sufficient to overcome the
yield stress in a Bingham fluid. Further, under this pressure drop, let the fluid attain a steady velocity field
oo = Uno(x, y) IN a pipe of arbitrary cross-section, definedtyn thex—y plane. Further, let us assume
that for every initial valueg = ug(x, y), the unsteady pipe flow with the same, constant pressure drop
¢ > 0, has a unique solutian(z) = u(x, y, ). By || - ||, let us denote thé&, norm of a function ove,
ie.

1£12 = /Af2da. (1.1)

In a start-up problem, we are interested in how the norm of the differenge— u(¢)|| — 0 asr — oo.
That is, ifw(t) = us — u(t) is the unique solution to the time-dependent flow problem with an initial
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valuew(0) = u,, —u(0), the problem that has to be investigated is the rate of decy @f || asr — oc.
If the fluid were Newtonian, the velocity field(r) occurs under a zero pressure drop, and it can be
shown thatw(r) — 0 ast — oo; for example, see [1]. Note that this is a result concerning the pointwise
convergence ofv(t) to zero from which the norm limit of zero is clearly established.

Here, the equations governing the flow of the yield stress fluid are non-linear, andibh@hogay not
occur under a zero pressure drop. Instead of finding this pressure term, which may be unsteady, it will be
proved here that

(8(”00 —u(t))
pl————

5 Uoo — M(t)> + na(ue — u(t), uso — u(t)) =0, 1.2)

wherep is the density, ang is the constant viscosity of the fluid.
In Eq. (1.2), the dot produgt, -) and the dissipation tera(-, -) for the Bingham fluid appear. They
are defined through

(f, &) =ffgda, a(u, v) =fVu-Vvda, (1.3)
A A

where f andg are any smooth functiong,andv are any two smooth velocity fields, which vanish on the
boundary of the pipe, ard is the two dimensional gradient operator. Now, it is known that the dissipation
term obeys the coercive inequality

A(Uoo — U(t), oo — u(t)) > Allttes — u()|?, (1.4)

wherei; > 0 is the least eigenvalue of the Laplace operator in the domaifihat is,A; > O is the
minimum eigenvalue of the boundary value problem

2w 3w

with w = 0 on the boundary. The proof of the inequality (1.4) is not given here, for it is nothing but
a statement about the variational characterisation of the least eigenvalue of the Laplace operator (for
example, see Theorem 4.2 in [2]).
Since,
3 (Uoo — u(t)) 1d 2
Y e —u@) ) = == |luse — u(@®)|?, 1.6

( 5 LU u()) 20|tllu u(@®)|l (1.6)

the inequality (1.2) now becomes

d
:OE”“OO —u@) | + norlluc —u@)| < 0. (1.7)
This proves that
lttoo — u(DI] <t — u(0)[| € */7, (1.8)

which shows the way the norihw ()| of the differencew(¢) approaches zero as— oo. The above
result is not new, for it appears as Remark 3.1 in Appendix 6 of the book by Glowinski et al. [3], or
as Exercise 6.1 in Chapter Ill of the book by Glowinski [4], with the reader being asked to establish it.
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However, no proof appears in these two treatises, and we are not aware of any published version of a
proof. We believe that it may be of interest to see a detailed argument, especially if one is interested in
expanding the result to more general yield stress fluids, such as Herschel-Bulkley fluids. Thus, the goal
of the present note is to prove the inequality in Eq. (1.2).

Before proceeding with the mathematical details, we wish to point out that it is the viscosity which
determines the rate of growth of the transient solution to the final value, while the yield stress puts a lower
bound on the pressure drop for the flow to persist. Indeed, Glowinski et al. in Theorem 3.2, Appendix 6
of [3] and Glowinski in Theorem 6.2, Chapter Il of [4] prove that ik 7,8, then the pipe flow will be
non-zero for a finite time only, where

_ [4IVv|da
= min=-——— > 0. 1.9
P=t0" T~ (1.9)

We do not use this result here, except to assume-that, 8 for the unsteady pipe flow(r) to grow and
approach its steady state counterpast

2. The constitutive relations

Let D(v) be the rate of deformation tensor derived from a velocity fielhich is isochoric, i.e.
V -v = 0. Now,

ZDij (v) = V,j + Vji- (21)
SinceD is symmetric, the second invariakitof D is given by
K?(v) = Djj(v) Dy (v). 2.2)

Let the stress tensdrin an incompressible yield stress fluid be writtenSas= — pd;; + tj, wherer; is
the extra stress tensor. The equations defining the Bingham fluid are

D;j=0, T <+2z, (2.3)
V27,
Tij = 20Dy + e > Djj, T > x/éfy, (2.4)

wheren andt, are, respectively, the constant viscosity and the constant yield stress of the fluid. The
second invarianT’ of the extra stress tensor is

TZ(‘L') = Tjj Tj. (2.5)

The physical meaning of Eq. (2.3) is that the fluid moves as a rigid body or is at rest over all points where
the inequality holds; that of Eq. (2.4), is that the fluid yields and deforms, and an explicit constitutive
relation applies whe® # 0.

3. Start-up problem for a Bingham fluid

Consider the unsteady flow in a pipe where all velocity fields, sucia asdv, have a non-zero
component in the axial direction only. Thatis= u(x, y, t)k, and so on. In this case, it is easily shown
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that the shear stressgg andr,, depend or(x, y, ¢) only, while the normal stress, = 0. The pressure
p depends on only, i.e.p = —cz wherec > 0 is the constant pressure drop per unit length. We shall
now state the variational inequality applicable to the pipe flow, which leads to Eq. (1.7). For a derivation
of the inequality, see [3-7].

For the assumed velocity fields,

Djj)Djj(v —u) = 3Vu - V(v — u), (3.1)
and
K*(u) = 3Vu - Vu, (3.2)

whereV is the two-dimensional gradient operator.
Now, set the body forcé = 0, or absorb it into the pressure term, if the body force is that due to
gravity. Also, note that the acceleration vector is given by

ou
= —k. 3.3
a=- (3-3)

Let us now define four integrals which are necessary to explain the terms used in the variational inequality.
They are

a(u,v —u) :/Vu-V(v—u) da, (3.4)
A
j) = / |Vv| da, (3.5)
A
(c,v—u)= / c(v —u)da, (3.6)
A
au au
—v—ul)=| —(@-— . 7
<8t’v u) /Aat(v u) da (3.7)
It is shown in [3—7] that one is led to following the variational inequality for unsteady pipe flows
ad
IO (a_btl’ vV — M) + na(“, v — I/l) + Tyj(v) - Tyj(”) Z (C, v — I/l), (38)

whereu is the solution to the pipe flow problem under the constant pressure gradientjsady trial
velocity field which obeys the same boundary conditiom aghe crucial point in exploiting the above
inequality lies in the fact that althoughis unsteadyy may be steady or unsteady.

If the solutionu, is steady, the corresponding inequality is

Na(Uoo, V — o) + tyj(v) - Tyj(”oo) > (€, 0 —Ux). (39)

Again, v may be steady or unsteady.
We can derive the exact form of the equation satisfied by the true solutiorufiietwm Eq. (3.8).
Assume that the trial velocity field = 2u. Note that this is permissible, because- 0 on the boundary
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of the pipe means that the trial velocity fiald= 2u satisfies this boundary condition. Then, Eq. (3.8) is
converted to

0
0 (8—1: u) +nau, u) + vy jw) > (c,u). (3.10)
If the trial velocity fieldv = 0, we obtain
ou .
—p (E? M) - 77“(”, I/l) - Ty](”) = _(Cv M). (311)

Comparing Egs. (3.10) and (3.11), it can be seen that we have an equality:

0
P (8—1: u) +na(u,u) +t,jWm) = (c, u). (3.12)
If the solution is steady, say.., the equation satisfied by it is

na(Uoo, Uoo) + Ty j (Uoo) = (€, Uoo)- (3.13)

In the next section, we shall exploit Egs. (3.8), (3.9), (3.12) and (3.13) repeatedly to derive the result
announced in Eqg. (1.7) above. The proof is simple and straightforward.

4. The proof

First of all, we note from Eq. (3.4) that(-, -) is bilinear and symmetric, i.e.

a(u(t), uoo — u(t)) = a(u(t), us) — au(t), u(t)), a(u(t), uo) = a(Uog, u(t)). (4.1)
As well, from Egs. (3.12) and (3.13), it follows that

d
(€, ttoo — u(1)) = Na(Uoo, Uoo) + Ty j(Uoo) — p <8—L; u) —nau, u) — 7,ju). (4.2)

Next, if we putv = u, in EQ. (3.8), we find that

0
I < ’;El)’ Uoo — u(t)> +na@(t), uoo — u(t)) + Ty j (Uoo) — Ty j (1)) > (¢, oo — u(t)). (4.3)

Using Egs. (4.2) and (4.3), it is easily shown that

14 (82?), uoo> + nau(t), ueo) = naiso, tso). (4.4)

This result shows the effect of the inner product term, involving inertia, and the hybrid dissipation term
on the true dissipation term in a steady flow.
Finally, if we putv = u(¢) in EqQ. (3.9), we obtain

Na(Uoo, U(t) — Uoo) + Ty j(U(t)) — Ty j(Uoo) = (¢, u(t) — o). (4.5)
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Now, using Egs. (4.1) and (4.2) in Eq. (4.5), we find that

du(t)

na(u(t), us) = p (7 u(t)) + na(u(t), u(r)). (4.6)

Combining Egs. (4.4) and (4.6), it is seen that

ot ot

The above results can now be put to use. We begin with

0(Uoo — u(t)) _ du(t) du(t)
(P ) = (B0, ) (0 0). @

p (—au(”, uoo> + 2na(u(t), uss) > p (M) u(t)) + na(u(t), u(t)) + na(ioo, o). (4.7)

sinceu, is steady. Next, from Eq. (4.1), we obtain
A(Uoo — U(t), oo — U(t)) = a(Uoo, Uoo) +a(u(t), u(t)) — 2a(u(t), uso). (49)
Utilising Egs. (4.7), (4.8) and (4.9), it is seen that

(oo — u(t))
p( al‘ 9

which is Eg. (1.2), and the proof is complete.

Uoo — u(t)) 4+ naus — u(t), use —u()) <0, (4.10)
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