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Spin and charge ordering in the dimerized Hubbard model
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We study the effect of a chemically or deformation-induced charge-density wave on the spin-density-wave
ground state of the Hubbard model at half-filling. We also consider the effect of a lattice deformation associ-
ated with a dimerization of the hopping term, thus introducing a competition with a paramagnetic bond-
alternating phase. The slave-boson approach is used as an interpolation scheme to treat the electronic correla-
tions from weak to strong coupling and determine the phase diagram of the model. We also apply our results
to describe the neutral-ionic transition in organic mixed-stack donor-acceptor crystals.
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I. INTRODUCTION

In the absence of a direct electron-electron mechanism
the onset of a charge-density wave~CDW!, an induced
charge transfer between neighboring sites may be produ
by a modulation of the chemical environment, which resu
in the so-called chemical dimerization of the system. Such
for instance, the case of thep-bond chains on the recon
structed ~111! surfaces of C and Si.1 Other examples of
chemically induced charge transfer are found in orga
mixed-stack donor-acceptor crystals, which are often fou
either in the quasi neutral or in the fully ionized configur
tion, as a consequence of the competition between covale
and ionic effects.2 When the coupling of the electronic den
sity to the lattice is taken into account, the charge trans
may be accompanied~or produced! by a deformation of the
lattice.

The issue we want to address in this paper is the effec
such kinds of chemical and/or lattice dimerization in nestin
type models for spin-density-wave~SDW! antiferromagnets,
such as the Hubbard model with nearest-neighbor hoppin
half-filling. The SDW in the Ne´el-like antiferromagnetic
~AFM! phase and the CDW associated with the structure
the chemical and/or lattice dimerization that we are going
analyze in the following are characterized by the same c
mensurate wave vector, so that the competition betw
charge and spin ordering is essentially due to the way
which different mechanisms affect the gap in the excitat
spectrum, in the charge and spin channel.

Two scenarios are possible: either the existence of a s
ordered state excludes any charge ordering and vice vers
charge and spin order coexist, possibly with a mutual red
tion.

Indeed when the charge transfer between neighbo
sites is induced by an external potential~e.g., a modulation
of the chemical environment!, a coexistence is possible if th
~intra-atomic! energy scale responsible for antiferromagne
PRB 610163-1829/2000/61~23!/15667~9!/$15.00
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order is sufficiently large.3 On the other hand, when th
charge modulation is produced by the coupling of elect
density to an elastic lattice deformation, the presence of s
order excludes charge ordering by suppressing anharm
effects in the self-consistent elastic potential. In such a c
the SDW phase stays undeformed, whereas the defor
CDW phase is paramagnetic~PM!.4

It must be pointed out that other lattice deformations, n
directly related to a modulation of the electron density, m
compete with antiferromagnetism in nesting-type syste
For instance, when the lattice dimerizes, with the format
of long and short bonds, the overlap integral between ne
boring sites is modulated, and a gap opens at the bounda
the Brillouin zone thus stabilizing the PM phase with resp
to the SDW phase when the coupling to the lattice deform
tion is strong enough to compete with the~intra-atomic! en-
ergy scale responsible for spin ordering.3

When some or all of the above mechanisms are pres
different physical behaviors are possible. Without attempt
to provide a full variety of phase diagrams, which wou
necessarily refer to specific physical systems, in this pa
we emphasize generic features of the structures which
arise in dimerized systems due to the interplay of comp
tive mechanisms leading to different ordered phases.

The scheme of the paper is as follows. In Sec. II
introduce an extended Hubbard model and discuss the ph
cal meaning of the different terms appearing in our mo
Hamiltonian. In Sec. III we discuss the mean-field pha
which may arise due to the interplay between charge
spin degrees of freedom. In particular, Sec. III A is devot
to the effect of a chemical dimerization on the SDW grou
state of the Hubbard model and Sec. III B deals with t
effect of a bond dimerization. In Sec. III C we discuss t
effects of the coupling of electron density to an elastic latt
deformation. In Sec. III D we show that the dimerized Hu
bard model introduced in Sec. II may be used, in a suita
limit, to discuss the neutral-ionic transition occurring
15 667 ©2000 The American Physical Society
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15 668 PRB 61S. CAPRARA, M. AVIGNON, AND O. NAVARRO
some organic mixed-stack donor-acceptor crystals. Conc
ing remarks are found in Sec. IV.

II. THE MODEL

For the sake of definiteness, the physical scenario
cussed in the preceding section is analyzed in this pape
means of the one-dimensional extended Hubbard mode
fined by the Hamiltonian

H̃52t(
l ,s

~ f̃ l ,s
1 f̃ l 11,s1H.c.!1I(

l ,s
~21! l f̃ l ,s

1 f̃ l ,s

1U(
l

f̃ l ,↑
1 f̃ l ,↑ f̃ l ,↓

1 f̃ l ,↓2gt(
l ,s

yl ,l 11~ f̃ l ,s
1 f̃ l 11,s1H.c.!

1ga(
l ,s

xl S f̃ l ,s
1 f̃ l ,s2

n

2D1
Kt

2 (
l

yl ,l 11
2 1

Ka

2 (
l

xl
2 ,

~1!

wherel 51, . . . ,Ns labels the sites of the chain, the inters
distance is takena51, the fermion operatorsf̃ l ,s

1 , f̃ l ,s act in
the Wannier representation,t is the nearest-neighbor hoppin
parameter,I is the amplitude of a staggered local potenti
which is produced by some external~crystal! field associ-
ated, for instance, with the modulation of the chemical en
ronment, andU is the on-site Coulombic repulsion. The ele
trons are coupled to the lattice and we consider two poss
terms. The constantgt.]t/]y couples the electrons to
bond deformationyl ,l 11, with elastic constantKt , which in-
duces a change in the hopping parameter, whereasga
.]Ea /]x couples electron density fluctuations with resp
to the average valuen/2 ~per spin! to a lattice deformation
xl , with elastic constantKa , which induces a change in th
atomic energyEa . We have chosen the reference energy
Eq. ~1! such thatEa50.

This is the simplest model to investigate the conditio
for the coexistence of a SDW, which is promoted by theU
term, and a CDW, produced by theI term and/or the cou-
pling of electron density fluctuations to the local deformati
xl . The possibility for a dimerization of the hopping ter
due to the coupling of electrons to a bond deformationyl ,l 11
is also taken into account as an alternative mechanism w
competes with AFM spin ordering in dimerized systems
must be observed that in Eq.~1! we are considering two
different lattice deformations coupled to the electron den
fluctuations and to the hopping term, respectively. Howev
we are not going, in the following, to consider the interpl
of the two electron-lattice terms, i.e., we shall discuss
effect of a deformation which modifies either the local p
tential or the overlap of the electron wave functions
neighboring sites. In real systems the two effects might
associated with a single lattice deformation~e.g., a bond de-
formation which induces a modulation in both the hoppi
term and the atomic term! or with two independent lattice
modes~a change in the atomic term might be produced b
deformation which does not change the bond length!. In such
a case a deeper analysis of the different modes of the la
is required to describe the interplay of different distortio
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and the resulting physical scenarios in each specific phys
system. Such a detailed analysis is beyond the scope of
paper.

Finally we note that, as far as the properties of the el
tronic spectrum are concerned, the parametrization of
electron-lattice coupling through the constantsgt , Kt and
ga , Ka is redundant. In the following we adopt a standa
notation and introduce the dimensionless deformat
Yl ,l 115gtyl ,l 11 /t, the dimensionless coupling constantl
52gt

2/pKtt, and the parametersXl5gaxl and Ep

5ga
2/2Ka , both with the dimensions of an energy. Th

electron-lattice Hamiltonian then reads

2t(
l ,s

Yl ,l 11~ f̃ l ,s
1 f̃ l 11,s1H.c.!1(

l ,s
Xl S f̃ l ,s

1 f̃ l ,s2
n

2D
1

t

pl (
l

Yl ,l 11
2 1

1

4Ep
(

l
Xl

2 , ~2!

from which it is evident that the two parametersl,Ep com-
pletely determine the properties of the electronic spectrum
the deformed state, while the coupling constantsgt , ga de-
termine only the properties of the deformed lattice, i.e.,
self-consistent values of the deformationsyl ,l 11 ,xl .

We emphasize that, in the zero-temperature limit cons
ered in this paper, due to the mean-field character of
results, the choice of a one-dimensional model is essent
adopted to simplify the forthcoming analytical and numeric
calculations, and does not imply by itself any severe limi
tion to their validity. One should, for instance, keep in min
that in real quasi-one-dimensional systems the chains
~loosely! bound with one another and the correspond
characteristic energy scalet' determines the crossover to
genuine one-dimensional behavior at some finite temp
ture. On the other hand, mean-field results are not modi
as long as, for instance,t'!t.

III. MEAN-FIELD RESULTS

This section is devoted to the analysis of the differe
ordered structures that may appear due to the interpla
charge and spin degrees of freedom and to the relative
evance of the different terms appearing in Eq.~1!.

A. Chemical dimerization

Let us first consider the case in which the coupling
electrons to the lattice is neglected~i.e., gt , ga50).5 In the
noninteracting (U50) half-filled (n51) system, a charge
modulation is induced by the external fieldI. If we let nA and
nB be the number of particles on the two inequivalent sites
the bi-partite chain, with even and odd site indexl, respec-
tively (nA1nB52 in the half-filled case!, then the CDW
amplitudeme[

1
2 (nB2nA) is given by

me5
I

pE2p/2

p/2 dk

AI 214t2cos2k
, ~3!

which saturates towards 1 asI is increased. Here we poin
out that, due to the logarithmic divergence of the integral
Eq. ~3! asI→0, the curveme(I ) starts with an infinite slope
close toI 50. This behavior is a consequence of the perf
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FIG. 1. Charge-~top! and spin- ~bottom!
density-wave amplitudes within the HF approx
mation as a function of 2I /t, for U/t51 ~left!
andU/t510 ~right!.
ist
pe

g
ac

fie

w
-
ti
ck
g
h

ea
a
es
y

on

m

on

in
on
p
in

i

ven

in
g

i-
gne-
ith

e

of
qua-

elf-

d

lf-
c-
a-

ut
nesting of the Fermi surface with respect to the character
wave vector of the external potential discussed in this pa

On the other hand, whenI 50, the possibility for an AFM
state arises as soon asU.0, again due to the perfect nestin
of the Fermi surface at half-filling. This state can be char
terized by a SDW amplitudems[nA↑2nA↓5nB↓2nB↑ . At
I 50, ms is an increasing function of the ratioU/t, both in
the Hartree-Fock and slave-boson approximations.6 As U/t
→`, ms saturates towards 1.

The simultaneous presence of the staggered external
I and of the on-site electron-electron interactionU implies an
interplay of charge and spin degrees of freedom which
want to clarify in the following. Before turning to the slave
boson~SB! technique, we shall briefly analyze the compe
tion of spin and charge ordering within the Hartree-Fo
~HF! approximation, which applies in the weak-couplin
limit U/t!1, to provide, as a starting point, a clearer insig
into the physics of the dimerized Hubbard model.

On a general ground, indeed, the fieldI opens a gap in the
charge channel, thus unfavoring SDW formation, wher
the interactionU opens a gap in the spin channel and c
substantially reduce the CDW amplitude even in the pr
ence of a sizeable external fieldI. However, self-consistenc
imposes a complicate interdependence ofms andme , which
can give rise to discontinuous~first-order! phase transitions
between magnetic and nonmagnetic phases.

In the following we make use of the parametrizati
nAs5 1

2 (11sms2me), nBs5 1
2 (12sms1me), for the aver-

age number of electrons of a given spins on a site of theA
or B sublattice, respectively. The HF spin-dependent ato
levels are then given byEAs[I 1UnA,2s5I 1U(12sms
2me)/2 and EBs[2I 1UnB,2s52I 1U(11sms
1me)/2 so that the gap in the energy spectrum for electr
of spin s is given by Ds[ 1

2 (EAs2EBs)5I 2U(me
1sms)/2. This expression for the energy gap gives an
sight into the competition between external potential and
site Coulombic repulsion, with respect to charge and s
order. Indeed, the repulsiveU term tends to reduce the gap
the charge channel, but affects the two spin channels w
ic
r.
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different signs, thus stabilizing the spin-ordered phase e
in the presence of a charge modulation.

The self-consistency equations forms andme are then3

ms5
1

2pt (
s

~2s!ksDsK~ks
2 !,

~4!

me5
1

2pt (
s

ksDsK~ks
2 !,

whereks52t/A4t21Ds
2 and K(x) is the complete elliptic

integral of the first kind. Observe that the two equations
Eq. ~4! differ in the relative sign of the two terms appearin
in the sum overs in the right-hand side. The HF approx
mation thus implies that a phase with zero staggered ma
tization will have a larger CDW amplitude than a phase w
coexisting CDW and SDW.

Introducing the two auxiliary parametersms5me
1sms , so thatDs5I 2Ums/2 , one can reduce the abov
equations ~4! to m↑5(1/pt)k↓D↓K(k↓

2) and m↓
5(1/pt)k↑D↑K(k↑

2), from which it is evident thatm↑ is
determined viam↓ and vice versa. From a numerical point
view, the last two equations can thus be reduced to an e
tion for a single variable~for instancem↑), the other being
immediately determined once the first is known.

The energy per lattice site corresponding to each s
consistent solution of Eq.~4! is

E52
U

4
m↑m↓2

2t

p (
s

E~ks
2 !

ks
,

where E(x) is the complete elliptic integral of the secon
kind.

We investigated the numerical solution of the se
consistency equations~4! and found that the paramagneti
antiferromagnetic transition predicted by the HF approxim
tion is of first order in the weak-coupling regime, b
becomes of second order in the strong-coupling regime~see
Fig. 1!.
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However, whenU.t the HF predictions are unreliabl
and the SB approach7 is more appropriate to deal with th
intermediate- to strong-coupling limitU/t.1. Moreover,
since the SB formalism provides a description which agr
with HF results in the weak-coupling regime, to avo
switching between two different notations, in the rest of t
paper we shall apply the SB approach as an interpola
scheme down toU/t50.

To describe a bi-partite lattice, we introduce a set
Kotliar-Ruckenstein SB operators,8 with the corresponding
Lagrange multipliers, on each sublattice. At the mean-fi
level, in the case of coexisting CDW and SDW, we introdu
the parametrization

^pl ,s&5pAs

^el&5eA

^dl&5dA

^l l&5lA

^L l ,s&5LAs

for l PA;

^pl ,s&5pBs

^el&5eB

^dl&5dB for l PB,

^l l&5lB

^L l ,s&5LBs
~5!

where, as in the previous sections,A andB indicate the two
different sublattices,pl ,s ,el ,dl are the SB operators to labe
singly occupied, empty, and doubly occupied sites, resp
ou
b

-

an
a

s

e
n

f

d
e

c-

tively, l l , is the Lagrange multiplier to enforce the com
pleteness relation on each sitel, andL l ,s (s5↑,↓) are the
Lagrange multipliers to enforce correct fermion counting.
connect the above parameters to the parameters introduc
the HF approximation, observe that it is possible to defi
pA(B)s[p01(2)sms/4p0 , dA(B)[d02(1)me/4d0 , eA(B)

[d01(2)me/4d0, and LA(B)s[U/22(1)@Lc1sLs#,
wherems , me are the SDW and CDW amplitudes as in th
preceding section, andp0 , d0 and Lc , Ls are new param-
eters, the last two playing the role of the charge and s
effective fields, respectively, even though, in the SB appro
mation,LcÞUme/2 andLsÞUms/2 . We point out that the
above connection reduces the number of free parame
Nonetheless, we did not eliminate this redundancy while
merically solving the self-consistency equations~see below!,
so that all the parameters introduced in Eq.~5! were allowed
to vary independently. Once self-consistency was achiev
we checked that all self-consistent solutions could be re
pressed in terms of the fewer parameters introduced abo

The average particle density per spin on each sublattic
given by nAs[^ f l ,s

1 f l ,s&5dA
21pAs

2 5 for i PA and nBs

[^ f l ,s
1 f l ,s&5dB

21pBs
2 for i PB, wheref l ,s are the pseudof-

ermion operators in the Wannier representation. After int
ducing the effective hopping parametert̃ s5tzs

2 , where
zs
2[zAszBs5

~pAseA1dApA,2s!~pBseB1dBpB,2s!

A~12eA
22pA,2s

2 !~12dA
22pAs

2 !~12eB
22pB,2s

2 !~12dB
22pBs

2 !
q.

e

ast
b-

Eq.

B
ic-
ling
w
n-

of
is the hopping renormalization factor, we performed a F
rier transform in the reduced-Brillouin-zone scheme to o
tain the mean-field Hamiltonian in the form

Hm f5(
k,s

~ f k,s
1 f k1Q,s

1 !S Es22 t̃ s cosk Ds

Ds Es12 t̃ s cosk
D

3S f k,s

f k1Q,s
D 1

NsU

2
~dA

21dB
2 !

2
Ns

2 (
s

@LAs~pAs
2 1dA

2 !1LBs~pBs
2 1dB

2 !#

1
Ns

2 FlAS (
s

pAs
2 1eA

21dA
221D

1lBS (
s

pBs
2 1eB

21dB
221D G . ~6!

In the above formulasf k,s
1 , f k,s are the pseudofermion op

erators in the Block representation, the sum overk runs over
the reduced Brillouin zone~i.e., kP@2p/2,p/2#), Q is the
wave vector of both the commensurate SDW structure
the external potential, equal to one-half of the reciproc
lattice vector of the undimerized lattice,Es5 1

2 (LAs

1LBs)5U/2 is actually independent ofs, Ds5 1
2 (2I

1LAs2LBs)5I 2(Lc1sLs), andNs is the number of lat-
-
-

d
l-

tice sites. The eigenvalues of the matrix Hamiltonian in E
~6! give the quasiparticle bands Eks

6 5U/2

6ADs
214 t̃ s

2 cos2 k. At half-filling and zero temperature
only the two lower~valence! bands are occupied and th
mean-field energy per lattice site is

E5E01
1

Ns
(
k,s

Eks
2 , ~7!

whereE0 is the energy per lattice site associated with the l
two lines in Eq.~6!. The self-consistency equations are o
tained by requiring the mean-field energy, Eq.~7!, to be sta-
tionary with respect to the parameters in Eq.~5!, and have
the general form9

]E0

]Pa
1

1

Ns
(
k,s

]Eks
2

]Pa
50, ~8!

wherePa represents generically one of the parameters in
~5!.

We found that, contrary to the HF approximation, the S
approximation gives a first-order antiferromagnet
paramagnetic phase transition even in the strong-coup
regime (U@t). The region of hysteresis is generally narro
whenU@t, and the jump of the SDW amplitude at the tra
sition is sizeable~see Fig. 2!. This means that, at largeU/t,
the AFM phase is the only stable phase in a wide range
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values of the external fieldI, but is rapidly suppressed onc
the competition with a metastable PM phase sets in. The
state is always characterized by a larger CDW amplitude
the transition point~see Fig. 3!. The corresponding phas
diagram is found in the 2I /t vs U/t plane in Fig. 5.

B. Bond dimerization

In this section we discuss the effect of a dimerization
the hopping term in Eq.~1! due to the coupling of electron
to a bond deformationyl ,l 11, by assuming a finitegt . Ac-
cording to our initial assumptions, we consider here only
casega50. We shall describe the electronic properties of
model in terms of the dimensionless deformationY[YAB5
2YBA and of the dimensionless coupling constantl appear-
ing in Eq. ~2!. The mean-field Hamiltonian now reads

FIG. 2. Spin-density-wave amplitude within the SB approxim
tion as a function of 2I /t, for U/t58,10,12. The vertical lines in the
coexistence regions locate the first-order AFM-PM phase-trans
points and represent the corresponding jump in the SDW amplit

FIG. 3. Charge-density-wave amplitude within the SB appro
mation as a function of 2I /t, for the representative valuesU/t
50.0, 4.0, 10.0. The vertical lines in the coexistence regions lo
the first-order AFM-PM phase-transition points and represent
corresponding jumps in the CDW amplitude.
M
at

f

e
e

Hm f5(
k,s

~ f k,s
1 f k1Q,s

1 !

3S Es22 t̃ s cosk Ds22i t̃ sY sink

Ds12i t̃ sY sink Es12 t̃ s cosk
D S f k,s

f k1Q,s
D

1
NsU

2
~dA

21dB
2 !2

Ns

2 (
s

@LAs~pAs
2 1dA

2 !

1LBs~pBs
2 1dB

2 !#1
Ns

2 FlAS (
s

pAs
2 1eA

21dA
221D

1lBS (
s

pBs
2 1eB

21dB
221D G1

Nst

pl
Y2. ~9!

The eigenvalues of the matrix Hamiltonian in Eq.~9! give
the quasiparticle bands, which after some simple manip

tions may be cast in the formEks
6 5U/26AD̄s

214 t̄ s
2 cos2 k,

whereD̄s[ADs
214 t̃ s

2Y2 is the effective gap for electrons o
spins, increased by the effect of the bond dimerization, a

t̄ s[A t̃ s
2(12Y2) is the effective bandwidth for electrons o

spins, reduced by the bond dimerization. We point out th
although the resulting spectrum is real for alluYu, as an ob-
vious consequence of the hermiticity of the matrix Ham
tonian in Eq.~9!, it preserves the same structure as the sp
trum atY50 only as long ast̄ s is real, i.e.,uYu<1. Thus, in
the following, we limit our analysis to values of the electro
lattice coupling constantl such thatY2!1.

When I 50, U.0, a PM phase is stabilized with respe
to the SDW phase in the region of smallU/t by the opening
of a gap at the boundary of the Brillouin zone. The SD
phase is always undeformed~i.e., spin ordering and bond
deformation do not coexist! and at sufficiently largeU/t it
has a lower energy than the PM dimerized phase. A fi
order phase transition between a PM phase and a SDW
tiferromagnetic phase is then produced, for instance, by
creasingU/t at a fixedl. The value ofU/t at the phase
transition increases with increasingl. To be consistent with
the requirement thatY2!1, we followed the transition line
up to l50.5 ~see theU/t vs l plane in Fig. 5!.

On the other hand, ifU50 andI .0, there are two pos-
sibilities: if I is small, the resulting CDW phase has dime
ized bonds, i.e.,YÞ0. As I is increased, the CDW phas
with dimerized bonds undergoes a second-order phase
sition towards a CDW phase with undimerized bonds, wh
Y50 ~see Fig. 4 and the 2I /t vs l plane in Fig. 5!.

WhenU, I , l.0, the phase diagram is divided into thre
regions. For largeU/t, a SDW is present and coexists with
CDW as soon asI .0. The bonds in the spin-ordered pha
are never dimerized (Y50). For largeI /t, the pure CDW
phase exists, and the bonds are not dimerized. Finally,
small I /t andU/t a PM phase exists, which is characteriz
by dimerized bonds whenl.0, and a finite CDW amplitude
as soon asI .0. The transition between the CDW phas
with dimerized and undimerized bonds is of second ord
The SDW phase may either undergo a direct phase trans
to the CDW phase with undimerized bonds, or to the CD
phase with dimerized bonds, which in turn evolves contin

-

n
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-
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e
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ously towards the CDW with undimerized bonds, asI /t is
increased. It is interesting to observe that, at sufficien
largeU/t, the bond dimerizationY in the CDW phase is firs
increasing with increasingI /t, reaches a maximum, and the
decreases until it vanishes at the phase transition to the C
phase with undimerized bonds~see Fig. 4!. @Observe that this
figure refers to a region of the parameter space where the
phase is a local~metastable! minimum, and the AFM phase
has a lower energy. It is, however, indicative of a gene
behavior.3# A schematic idea of the full phase diagram
given in Fig. 5.

We point out again that our analysis was limited to t
values ofl such thatY2!1 and to values ofU/t not too
close to the Brinkman-Rice transition point in the P
phase,8,10 at which the effective~i.e., renormalized by slave
bosons! hopping amplitude vanishes, so that the coupling
electrons to the deformationyl ,l 11 loses its meaning within
our approach.

FIG. 4. Mean-field value of the bond dimerizationY within the
SB approximation as a function of 2I /t for the representative valu
U/t56 and different values of the dimensionless electron-lat
coupling constantl. It must be observed that the curves are pur
indicative of a generic behavior. AtU/t56, indeed, the PM phas
is a local minimum of the energy, but the SDW AFM phase ha
lower energy~see Fig. 5!.

FIG. 5. Schematic phase diagram of the Hubbard model in
presence of chemical and bond dimerization, within the SB appr
mation. The prefix d-~u-! stand for dimerized~undimerized! bonds.
y

W

M

c

f

C. Lattice dimerization

In this section we briefly describe the properties of t
Hubbard model in the presence of a coupling of the elect
density fluctuations to the lattice, through a coupling co
stantga . According to the general scheme of our paper,
consider here only the casegt50. The electronic properties
of the model will be discussed in terms of the change in
atomic energyX[XA52XB associated with a lattice dimer
ization, and of the effective coupling constantEp ~both with
the dimensions of an energy! appearing in Eq.~2!. We shall
also introduce the dimensionless parameter«p[Ep /t, which
provides a measure of the deformation energy in the ato
limit ( ;Ep) with respect to the kinetic energy of the fre
electrons (;t). The mean-field Hamiltonian is then

Hm f5(
k,s

~ f k,s
1 f k1Q,s

1 !S Es22 t̃ s cosk Ds1X

Ds1X Es12 t̃ s cosk
D

3S f k,s

f k1Q,s
D 1

NsU

2
~dA

21dB
2 !

2
Ns

2 (
s

@LAs~pAs
2 1dA

2 !1LBs~pBs
2 1dB

2 !#

1
Ns

2 FlAS (
s

pAs
2 1eA

21dA
221D

1lBS (
s

pBs
2 1eB

21dB
221D G1

Ns

4Ep
X2. ~10!

It is evident that the change in the electronic spectrum
to the presence of the lattice deformationX may be discussed
in terms of an effective external fieldĨ [I 1X, so that letting
D̃s5 Ĩ 2(Lc1sLs), the quasiparticle bands areEks

6 5U/2

6AD̃s
214 t̃ s

2 cos2 k. Self-consistency may then be triviall
obtained from the results atga50, given in Sec. III A. In-
deed, the additional self-consistency condition to fix the
rameterX simply givesX52Epme , i.e.,

me5~2 Ĩ 22I !/4t«p . ~11!

Thusme is a linear function of the ratioĨ /t, for givenI /t,«p .
On the other hand, the solution of the self-consistency eq
tions ~8! yields a functionme(2 Ĩ /t) of the external fieldĨ
assumed as given~see Fig. 3!. Full self-consistency is ob-
tained as the intersection of this curve and the straight l
Eq. ~11!, for given values of 2I /t and«p , yielding the self-
consistent values ofme and Ĩ , from whichX5 Ĩ 2I is finally
determined.

At I 50,U50, the slope of the curveme(2 Ĩ /t) is infinite
and a CDW state develops as soon as«p.0, due to the
perfect nesting of the Fermi surface. This is the so-cal
Peierls instability. AtI 50,U.0, however, the slope of the
curveme(2 Ĩ /t) is finite and a finite«p is needed to produce
a charge modulation with a CDW amplitude that increa
with increasing«p ~see Fig. 6!, whereas a phase with coex
isting SDW amplitude and lattice deformation does not ex
at small«p and is a maximum of the free energy, withme
decreasing with increasing«p , for large«p .
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Even neglecting the possibility for spin ordering, th
CDW phase eventually undergoes a phase transition tow
a state without deformation asU/t is increased.11 If «p is
large enough, this transition becomes of first order. To ob
the phase diagram, it is important to observe that in the
deformed phase (X50) at I /t50 the model reduces to th
pure Hubbard model at half-filling. For this latter it is we
known that, within the SB approach, the antiferromagne
phase always has a lower energy than the PM phase.8 Since
a phase with both lattice deformation and antiferromagn
structure is not possible atI 50, the two competing phase
are the CDW and the undeformed SDW.4 The transition is
always of first order, the two phases having a different sy
metry, and is located at«p.U/t. The resulting phase dia
gram is given in Fig. 7.

When I .0, the possibility for a deformed SDW sta
arises. Indeed, the straight line, Eq.~11!, meets the curves
me(2 Ĩ /t) at finite Ĩ and me ~see Fig. 3!. When U/t*2I /t,
the SDW phase has a lower energy than the CDW phas
«p50 ~see Sec. III A and Fig. 2!. At small «p the self-

FIG. 6. Charge-density-wave amplitude within the SB appro
mation as a function ofU/t for different values of«p . The expo-
nential tails close to the critical points~Ref. 11! are not shown.

FIG. 7. Phase diagram of the Hubbard model in the presenc
a coupling of the local electronic density fluctuations to a latt
deformation within the SB approximation. The arrow indicates
critical value of«p beyond which an instability develops within th
CDW phase~see text!.
ds

in
n-

c

ic

-

at

consistent solution is very close to the solution at«p50, the
straight line, Eq.~11!, being almost vertical. However, as«p
is increased, the CDW amplitude increases much more
ciently in the CDW phase, which is thus more and mo
competitive with the deformed SDW phase. At a certa
critical value for«p , a first-order phase transition takes pla
and at larger«p the ground state of the system is PM. Im
mediately above the phase-transition point, the deform
SDW is still a local minimum of the free energy, but at larg
enough«p a self-consistent solution with coexisting lattic
deformation~and related charge modulation! and SDW is no
longer possible.

Finally, at U/t50 a CDW phase exists at allI /t.0
which is accompanied by a lattice deformation when«p.0.

D. The neutral-ionic transition in mixed-stack systems

In this section we want to discuss in more detail the r
evance of the results discussed in Secs. III A and III B fo
class of organic mixed-stack donor-acceptor crystals, wh
may be schematically described as a lattice of alterna
donor and acceptor atoms, each having two possible confi
rations. The acceptor may be found either in the neutral c
figuration ~of total chargeQ50) or in the singly ionized
configuration~of total chargeQ521) with one electron in
the lowest unoccupied atomic level of the neutral configu
tion. The energy difference between the two atomic confi
rations, taken with a conventional minus sign, is the elect
affinity 2EA of the acceptor. The donor is found either in th
neutral configuration~of total chargeQ50), which we de-
scribe as the presence of two electrons of opposite spin in
highest occupied atomic level of the valence multiplet~the
core having a chargeQcore512), or in the singly ionized
configuration~of total chargeQ511) when one single elec
tron is left in the highest occupied atomic level. The ener
difference between the two atomic configurations, is the i
ization energyEi . The process of a second ionization
usually unfavorable for both atoms, and is neglected by t
ing the respective energy scales to be infinitely large.

The above situation may be described by means of
model Hamiltonian, Eq.~1!, in the limit U,I→`, while the
difference 2I 2U stays finite. In such a limiting case th
acceptor sites correspond to theA sites~with local potential
1I ) and the donor sites correspond to theB sites~with local
potential2I ) of the lattice. In the neutral configuration, th
atomic energy per site is (U22I )/2, since theB site is dou-
bly occupied and theA site is empty. In the ionized configu
ration the atomic energy per site is (I 2I )/250 since both
the A and theB sites are singly occupied. All other configu
ration are projected away in the limit considered here. T
parameterD05I 2U/2 measures the energy involved in th
charge transfer of one electron from the donor to the acce
and is relevant in the discussion of the resulting phase
gram. We initially neglect the possibility for AFM spin or
der.

In Fig. 8 we plot the number of electrons on the accep
sitena as a function ofD0/2t for different values of the ratio
U/t, in the absence of bond dimerization (l50). The ionic
and neutral phases are characterized byna.1/2 and na
,1/2, respectively. At finiteU/t there is a continuous cross
over from the neutral phase to the ionic phase asD0/2t is
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decreased. In the limitU/t→`, however, the curve
na(D0/2t) becomes nonanalytical atD0/2t524/p.12 This
point marks the transition to a fully ionized state, withna
[1 for D0/2t<24/p. This transition to a fully ionized
phase, which is equivalent to the SB description of
Brinkman-Rice transition in the Hubbard model,8,10 might be
an artifact of our mean-field approach, and was not fou
within a real-space renormalization-group approach.13 None-
theless, the quantitative agreement with these results is
good, the acceptor occupancy being very close to unity in
ionic phase.

Within our model, Eq.~1!, we may also discuss the effe
of a bond dimerization whenl.0. In Fig. 9 we show that
the bond dimerizationY is maximum in the weakly ionized
phase, and decreases asD0/2t is increased, until it vanishe
in the neutral phase, which is characterized by the absenc
bond dimerization.14 The behavior ofna as a function of
D0/2t for different values ofl is shown in Fig. 10. However
if the possibility for a SDW solution is considered, a fir
ordered phase transition takes place between a dimer
weakly ionized PM phase and an undimerized AFM phase
D0/2t is reduced. The transition point, according to the ph
diagram in Fig. 5, is located atD0/2t.20.5 for largeU/t
andl50, and is shifted to lowerD0/2t at finite l ~see the
inset in Fig. 9!. At the transition point the bond dimerizatio
Y jumps discontinuously to zero. However, the ionic P
phase is still a local minimum of the energy, in the regi
where the AFM phase has a lower energy, and hyster
phenomena are possible. The acceptor occupancyna is larger
in the AFM phase at the transition point. The correspond
jump is marked in Fig. 10.

We point out that in our model, Eq.~1!, we neglected the
effect of the Coulombic interaction in the ionized configur
tion. If a term

2V(
l

(
ss8

f̃ l ,s
1 f̃ l ,s f̃ l 11,s8

1 f̃ l 11,s8

is added to Eq.~1!, the Hartree contribution changesI to
I eff[I 1V(nd2na), wherend is the number of electrons o

FIG. 8. Density of electrons on the acceptor site,na , as a func-
tion of D0/2t for U/t510, 20, 40, 90. The exponential asympto
behavior was not plotted forU/t.10. The transition point in the
limit U/t→` is marked on the horizontal axis. The possibility f
AFM spin ordering is neglected here.
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the donor site. This has the effect of shifting the neutral-io
transition to larger values ofD0/2t, with a sizeable jump of
na at the transition point. Furthermore, a sizeable near
neighbor Coulombic interaction term should prevent thespu-
rious appearance of an AFM order15 within the ionized
phase. The detailed analysis of these effects is beyond
scope of this paper and will be reported elsewhere.12 We
limit ourselves to remark that our results are in good qu
titative agreement with previous real-space renormalizati
group results.12

FIG. 9. Bond dimerizationY as a function ofD0/2t for the
typical valueU/t58 and dimensionless electron-lattice couplin
constantl50.4, 0.5, 0.6. The neutral phase at largeD0/2t is always
undimerized. The vertical dashed lines locate the first-order tra
tion points towards an undimerized SDW AFM phase, represen
the corresponding jumps in the bond dimerization. TheY curves in
the metastable PM phase are represented by dashed lines. In
region the AFM phase withY[0 has a lower energy. In the inse
the intersection of the energies in the dimerized PM phase, at
variousl ~solid lines, same symbols as in the main figure!, with the
energy in the undimerized SDW AFM phase~dashed line, indepen
dent ofl) locate the first-order phase-transition points.

FIG. 10. Density of electrons on the acceptor site,na , as a
function of D0/2t for the typical valueU/t58 and dimensionless
electron-lattice coupling constantl50.4, 0.5, 0.6. The curves col
lapse in the undimerized neutral phase at largeD0/2t. The topmost
solid line ~independent ofl) represents the acceptor occupancy
the undimerized SDW AFM phase. The dashed vertical lines loc
the first-order phase-transition points~see Fig. 9!, representing the
corresponding jumps in the acceptor occupancy.
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IV. CONCLUSIONS

We investigated the competition of spin ordering a
dimerization by means of a generalized Hubbard model, b
in the case when dimerization is associated with the app
ance of a charge modulation and when the dimerization
produced by a deformation of the bonds. We found t
when the dimerization is produced by an elastic deformat
it is incompatible with spin ordering, i.e., the system is eith
dimerized or antiferromagnetic. When the dimerization
imposed by some external field~provided, for instance, by a
modulation of the chemical environment of the system!, a
coexistence of spin order and dimerization becomes poss
As the strength of the intra-atomic potential responsible
spin ordering is reduced, the SDW phase undergoes a
order phase transition towards a PM dimerized phase, c
acterized by the presence of a CDW amplitude and/or a b
dimerization.

We also applied our model to describe, in a suitable li
iting case, the neutral-ionic transition occurring in mixe
stack donor-acceptor crystals. We found that the ionic ph
is characterized by a lattice dimerization when the hopp
term is coupled to an elastic lattice deformation, whereas
neutral phase is not dimerized. A first-order phase transi
between a PM dimerized ionic phase and an AFM undim
ized ionic phase is driven by the increasing influence of
on-site Hubbard term, in the absence of nearest-neighbor
long-range Coulomb interactions.

The limitations of our approach have been discussed
the previous sections. Unfortunately we are not aware of
numerical result which specifically addresses the issue of
competition of charge and spin ordering in dimerized s
tems including the response of the lattice. This is partly d
to the difficulty in extracting the wave amplitudesms ,me in
t
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all known numerical techniques, and in studying realis
~i.e., anisotropic, but not genuinely one-dimensional! sys-
tems. Moreover, in a series of recent papers16 some authors
considered models for ferroelectric perovskites and rela
materials, which are apparently close to our model~1!, but
they neglected the effect of a self-consistent response of
lattice, so that the resulting phase diagrams cannot be
rectly compared to ours in any relevant limiting case. The
fore, only a few, well established, results of ours can
tested against numerical results, none of them concerning
competition of charge and spin ordering in dimerized mod
at issue in the present paper.

As far as the experimental situation is concerned,17 we
point out that our results excludes the possibility of cha
and spin ordering in dimerized systems, unless a chem
dimerization forces a charge-modulated state in the syst
Thus, most of the low-dimensional nesting-type~or Peierls!
CDW systems, such as the molybdenum purple bron
KMo6O17 and NaMo6O17, will not support a SDW. On the
other hand, systems such as 2H-TaSe2 or 2H-TaS2 seem
definitely non-Peierls CDW, so that other mechanisms
CDW formation must be involved. In 1T-TaS2, a strong in-
terplay between charge ordering and on-site correlation
been detected. Systems like this might be candidates for
coexistence of SDW and CDW, since the correlation-driv
~Mott-Hubbard! metal-insulator transition takes place with
a fully developed CDW state.
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