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Pairing of three holes in a one-dimensional lattice within the generalized
Hubbard model
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Within the generalized Hubbard model, the pairing problem of a system of three correlated holes in a one-
dimensional lattice is studied. This study has been done by extending the previously reported real-space mapping
method [1], in order to incorporate the bond-charge interactions. The system is solved in a non-perturbative way
for different values of the hopping parameters as well as the on-site {(U) and nearest-neighbor (V) interaction. It
is found an electron-hole pairing asymmetry, contrary to that for a bipartite lattice We also obtained, for some
values of the Hubbard parameters, that the hole-singlet pairing is not always stronger than the electron case, in

contrast with that for a non-bipartite lattice like the triangular one.

Within the models for correlated electron sys-
tems, that attempt to capture the essential
physics of high-temperature superconductors and
parent compounds, the simple Hubbard model
[2], is the crudest approximation to include elec-
tronic interaction between band-electrons, by re-
taining only the on-site interaction U. This
model also assigns the same hopping rate, ¢, to
three different hopping processes regardless of
the occupation of the two sites involved. Be-
sides the on-site interaction, other contributions
of the electron-electron interaction are required
[3], such as the nearest-neighbor interactions and
the bond-charge interaction term. The Hamil-
tonian which includes these interactions is of-
ten called the generalized Hubbard Hamiltonian
(GHH) and has been studied previously by sev-
eral authors {4-7]. This Hamiltonian is
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where < , 7 > denotes nearest-neighbor sites, cg,'c
(¢1,0) is the creation (annihilation) operator with
spin 0 =| or T at site ¢, and n; = n; 1 + N4
where n;, = cf,' »Ci,o- The parameters U and V

are the Coulomb integrals. In Eq. (1), the gener-
alized hopping amplitude, t7 ., is given by
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tf.j = tA(l - n1',__o')(1 - nj,_,,) +tgn, —onj, ot
taBnj,—o(1 —ni,—o) + 15,61 —nj ). (2)

The three parameters t4, tg, and t4p are the
hopping amplitudes from a singly occupied to an
empty site, from a doubly occupied to a singly
site and from a doubly occupied to an empty site
respectively. The special case t4 =tgp =tsp =1
corresponds to the t — U — V extended Hubbard
model, which has been studied intensively by an-
alytical and numerical methods [2]. The essential
difference between electrons and holes within the
GHH, besides a minus sign in the generalized hop-
ping term, is that the hopping amplitude t4 for
electrons should be changed by tp for the case of
holes in Eq. (2).

In this paper, we analyzed the paring of three
non-parallel (7]1) holes and also the case of three
non-parallel (1]1) electrons in a one-dimensional
lattice using the GHH. The analysis has been
done by extending the mapping method previ-
ously reported [1] in order to include the gener-
alized hopping. Let us see how this modification
take place in the problem of three electrons, two
with up-spin and one with down-spin in a lin-
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ear chain. In this case, the network of the three-
electron states belongs to a three-dimensional lat-
tice with site- and bond-impurities, where taking
advantage of the translational symmetry of this
network of states, it can be projected onto a two-
dimensional triangular lattice of effective states
and effective hopping (,Bf{, ﬁg and ,BfB) [7].

For the ground state we have that: 8} = 8; =
ta, By = Bz = tp and Bfp = Bap = tas.
With these new values, analytical solutions can
be obtained for some particular cases; for exam-
ple, when the hopping amplitude from a doubly
occupied to an empty site is forbidden (t45 = 0),
the solution is:

1
D? —16V2

where D = |22t|. In Eq. (3), Eimp gives the en-
ergies of the localized states. The binding energy
(gap) is given by A = max(|Eimp|) — D.

Below, we show numerical solutions for varia-
tions of the hopping parameters and of the inter-
action terms. The numerical diagonalization were
done in a truncated two-dimensional triangular
lattice of 551 effective states. The matrix sizes
for numerical diagonalizations were chosen as the
minimum size so that the physical quantities have
not an important variation with the matrix size.

The numerical calculation for A versus U for
two different values of the t4p parameter are
shown in Fig. 1, a) for holes and b) for elec-
trons. Here the nearest-neighbor interaction has
the values V = 0 and V = 1.0|t|. In this figure,
it can be observed an electron-hole pairing asym-
metry caused by the frustration in our triangu-
lar lattice of effective states. It is also obtained,
for different values of the t4p hopping parame-
ter, that the pairing strength between electrons
is stronger than the hole case. It happen because
the great number of bond-impurities dominates
over the frustration in the triangular lattice of
effective states. We can also see the hyperbolic
behavior of the gap which show us the strong de-
pendence on the correlated hopping.

Therefore, the effects of a strong competition
between the bond-charge interaction and the frus-
tration of antibonding states in the three-body
problem are definitely relevant on the binding en-

Eimp = {-32v®+ D(8V2 - D*)},(3)

ergy. Particularly, we obtained that the hole pair-
ing is not always stronger than the electron case,
in contrast with that for a triangular lattice in
the Hubbard model [8].
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Fig. 1. Binding energy vs. the repulsive
interaction U for holes a) and for electrons b).

Acknowledgment: This work was par-
tially supported by grants from DGAPA-UNAM
IN109998 and by CONACyT 25582-E.

REFERENCES

1. O. Navarro and C. Wang, Solid State Com-
mun. 83 (1992) 473.

2. R. Micnas, et al., Rev. Mod. Phys. 62 (1990)
113.

3. J.E. Hirsch and F. Marsiglio, Phys. Rev. B
41 (1990) 2049.

4. R. Strack and D. Vollhardt, Phys. Rev. Lett.
70 (1993) 2637.

5.  A.A. Ovchinikov, Mod. Phys. Lett. B 7 (1993)
21.

6. L. Arrachea and A.A. Aligia, Phys. Rev. Lett.
73 (1994) 2240.

7. O. Navarro, et al., Current Problems in Con-
denced Matter, edited by J.L. Moran-Lépez.
Plenum Press, New York, p. 73 (1998).

8. L.A. Perez, O. Navarro and C. Wang, Phys.
Rev. B 53 (1996) 15389.



