
Physica A 275 (2000) 325–335
www.elsevier.com/locate/physa

On the Stokes–Einstein relation in glass forming
liquids

Patricia Goldsteina , L.S. Garc��a-Col��na ;∗; 1, L.F. del Castillob
aFacultad de Ciencias, Departamento de F ��sica, Universidad Nacional Aut�onoma de M�exico, 04510,

M�exico, D. F. Mexico
bInstituto de Investigaciones en Materiales, Universidad Nacional Aut�onoma de M�exico, 04510, M�exico,

D. F. Mexico

Received 28 June 1999

Abstract

Nowadays, the experimental evidence of a crossover between two dynamical regimes for
supercooled glass-forming liquids at a temperature Tc; Tc ¿Tg, where Tg is the glass transition
temperature, has been widely reported in the literature. On one hand, it is a well-known fact
that in the region Tg ¡T ¡Tc, fragile glass forming liquids do not follow the Vogel–Fulcher–
Tammann law. On the other hand, in the same region the Stokes–Einstein relation between the
viscosity and the translational di�usion coe�cient breaks down. Using the temperature derivative
analysis, we present, for three glass-forming liquids, an empirical law for log10 f, where f is
the frequency, and we exhibit the break down of the Stokes–Einstein relation. c© 2000 Published
by Elsevier Science B.V. All rights reserved.

1. Introduction

The nature of the relaxation processes that occur in a viscous supercooled liquid as
it approaches the glass temperature Tg has been extensively studied in the past years.
The glass transition point has been usually de�ned by the temperature Tg at which the
viscosity � reaches values of 1013 poise.
Di�erent experimental techniques have been used to examine the response function

of the system to an external perturbation. In general, it may be described by a stretched
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exponential function, the Kohlrausch–Williams–Watts law [1,2]:

�(t) = �(0)exp(−t=�)� ;
where �(0) = �(t = 0); 0¡�61, and the parameter �, which is a function of the
temperature, is identi�ed as the average relaxation time of the relevant processes that
occur during the glass transition.
Several empirical equations have been proposed to account for the inuence of the

temperature on the relaxation time which may be also used to describe the behavior
of the viscosity of the supercooled liquid. Two of the most important ones emerged
through the study of the logarithmic shift factor (LSF),

log aT = log
(
�(T )
�(Ts)

)
; (1)

where �(Ts) is a reference relaxation time at a temperature Ts, and have lead to the
Vogel–Fulcher–Tamann (VFT) and the Williams–Landel–Ferry (WLF) equations.
The VFT equation was formulated over 70 years ago to describe the non-Arrhenius

behavior of the LSF and the viscosity of several classes of supercooled liquids [3–5],
mainly fragile, as they approach the glass temperature Tg,

�(T ) = �s exp
(

B
T − T0

)
; (2)

where �s is a reference relaxation time, and B and T0 are two independent parameters
taken to be nonnegative. T0 corresponds to the temperature at which � is in�nity. In
fact, T0 has been interpreted as the isentropic temperature, that is, the temperature at
which the con�gurational entropy vanishes.
Thirty years later, Williams et al. [6] proposed an empirical equation to deal with the

form for the LSF, specially in polymeric liquids, at a temperature T taking a reference
temperature Ts in terms of two parameters, C1 and C2,

log aT =
−C1(T − Ts)
C2 + T − Ts : (3)

This equation may be expressed in a semi-universal form if the value of Ts is such
that for a large number of glass-forming substances, C1 and C2 have constant values
[6]. Both VFT, Eq. (2), and WLF, Eq. (3), deal with experimental data corresponding
to slow di�usional relaxation processes and have been used to �t data within a range
of temperatures Tg ¡T ¡Tg + 50o.
Recently, experiments have indicated the presence of fast dynamical relaxation pro-

cesses that take place in the supercooled liquid, and which suggest a new threshold in
the glass transition [7–29]. A temperature Tc above Tg, in the range 1:18Tg¡Tc¡1:28Tg
has been found where a cross-over between the two di�erent regimes for the super-
cooled liquid appears and in which several properties of glass-forming liquids have
visible changes in their behavior. Even though the relaxation times do not exhibit any
special critical behavior in the vicinity of Tc, a cross-over may be detected by analyzing
the derivatives of the relaxation times with temperature. The cross-over becomes more
evident in the case of several other experimentally measured properties of the system.
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Two of the main features of this cross-over behavior are exhibited on one hand, by
the fact that for T ¡Tc, the VFT equation does no longer �t the experimental data for
the relaxation times, and on the other hand, a change in the di�usion mechanisms in
the glass-forming liquids occurs at temperatures below Tc.
In order to probe the validity of the VFT equation for logf, where f is the fre-

quency, f∼ �−1, as an appropriate �t for experimental data Stickel et al. [23,24],
proposed the temperature-derivative analysis. The frequency f corresponds to the peak
of the loss function �′′(!) the imaginary part of the complex dielectric function [23],

�∗(!) = �′(!)− i�′′(!) :
The method consists in evaluating three derivatives of a given empirical form for

logf: (
d log10 f
dT

)−1=2
; (4)

d
dT

[(
d log10 f
dT

)−1=2]
; (5)

�=
d logf=dT
d2 logf=dT 2

: (6)

In particular, the function � represents a very useful mathematical tool to analyze
the di�erent regimes in the vicinity of Tc since it supplies information on the rate
between the �rst and second derivatives. If these derivatives are applied to the VFT
equation the results are the following:

log10(fVFT ) = A− B
T − T0 ; (7)

(
d log10 fVFT

dT

)−1=2
= B−1=2(T − T0) ; (8)

d
dT

[(
d log10 fVFT

dT

)−1=2]
= B−1=2 ; (9)

�VFT =−T − T0
2

: (10)

Thus, the evaluation of � may be used to compare a given empirical law with the
VFT equation through linearization or by changing the values of the parameters.
Moreover in the last decade, a large amount of experimental studies on the proper-

ties of tracer di�usion in supercooled liquids in the glass transition region have been
undertaken. The Stokes–Einstein relation between the viscosity and the translational
di�usion coe�cient,

D ∼ �−1 (11)
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breaks down for T ¡Tc. Instead, it appears that,

D ∼ �−� (12)

with �¡ 1. The value of � depends of the glass-forming liquid and of the size of the
speci�c tracer particle [25–29].
In the case of several glass-forming liquids, using the three derivatives Eqs. (4)–(6),

it is found that the experimental data for logf within a range of temperatures T ¿Tc,
satisfy the VFT equation. Nevertheless, for T ¡Tc, even though the experimental val-
ues for logf satisfy Eq. (7), the derivatives, (4)–(6) do not have the form for VFT
namely, Eqs. (8)–(10). One can thus identify a temperature Tc below which the VFT
empirical law is not a good �t.
In this work, using the temperature-derivative analysis proposed by Stickel et al.

[23,24], we analyze the behavior of three glass-forming liquids, namely, phenyl salicy-
late (salol), phenolphthaleine-dimethyl-ether (PDE), and orthoterphenyl (OTP). Using
experimental data, [23,24,26,28,30], we present a mathematical form for logf in the
region between Tg and Tc that does not correspond to a VFT equation, and for T ¿Tc
a form which may be actually represented by a VFT type equation. The results ob-
tained for the mathematical form of logf may be easily extended to �nd the analytical
form of the viscosity in both regions since,

log
f(T )
f(T ∗)

= log
�(T ∗)
�(T )

; (13)

where T ∗ may be considered as a reference temperature. We have chosen for T ∗

the closest available temperature to the corresponding value of Tg for which we have
experimental values for the di�usion coe�cient in each glass forming liquid.
The value of Tc is generally reported from experiment as the temperature where

evidence of a crossover between dynamical regimes appears, specially in the di�usion
mechanism. We thus �nd the value of a temperature T ′

c as the temperature where both
our empirical forms intersect each other. On the other hand, we study the di�usion
mechanisms for both regions by analyzing the validity of the Stokes–Einstein relation
by means of the evaluation of the exponent �.

2. Results

We have examined the experimental data for logf in salol and PDE [23,24] and
for log 1=� in OTP [30] both in the T ¡Tc and T ¿Tc regions.
As far as the behavior in the T ¡Tc region is concerned, we may propose that for

these three liquids an empirical equation of the form

log
f(T )
f(T ∗)

= log
�(T ∗)
�(T )

= A(Ta − T )n + B (14)

�ts the experimental data. Indeed, in Table 1 we summarize the information on the
values of A; Ta; n, and B for the three substances.
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Table 1
Values for the coe�cients A and B, the exponent n and the temperatures Ta and T∗ in Eq. (14), the values
of Tg and the reported experimental value for Tc and the intersection temperature T ′

c for salol, PDE and
OTP

Substance n A B Tg (K) Ta (K) T∗ (K) Tc (K) T ′
c (K)

Salol 2.0 −0:00251 8.6989 220 282 223.33 265 260
PDE 1.5 −0:02506 6.7626 294 340 298.24 325 327
OTP 2.0 −0:00244 10.4113 243 310 244.67 290 283

Table 2
Values for the coe�cients C and E and the temperature T0 in Eq. (15)
for salol, PDE and OTP

Substance C E (K) T0 (K)

Salol 11.585 148 224
PDE 12.161 324 278
OTP 15.253 345 230

On the other hand, in the T ¿Tc region, the experimental data actually obey a VFT
type equation,

log
�(T ∗)
�(T )

= C − E
T − T0 ; (15)

where the values of C; E and T0 for the three supercooled liquids are given in Table 2.
It is important to point out that in the case of the VFT equation, the temperature T0
is usually interpreted as the temperature where the con�gurational entropy vanishes,
with T0¡Tg. Strangely enough in the case of salol we �nd that T0¿Tg, thus for this
liquid T0 may be considered just as a �tting parameter whose interpretation should be
reconsidered.
In Figs. 1–3 we present the plots of Eq. (14) for T ¡Tc (solid line) and Eq. (15)

(dashed line) for T ¿Tc for salol, PDE and OTP respectively. It is easily seen that
there is a small region in the vicinity of Tc where both descriptions overlap. Since Tc
is interpreted as the temperature where the crossover between two dynamical regimes
occurs, we must �nd the temperature where both the empirical descriptions Eq. (14)
for T ¡Tc and Eq. (15) for T ¿Tc intersect each other. Since the description in terms
of the derivatives has proved to be useful to distinguish the di�erences between both
regimes, we proceed to �nd a temperature T ′

c where the derivatives �, Eq. (6), for
both descriptions intersect each other, that is,

�T¡Tc(T
′
c) =�T¿Tc(T

′
c) : (16)

We �nd that for salol, T ′
c =260 K, for PDE T

′
c =327 K, and for OTP, T

′
c =283 K.

If we compare these values with the experimentally reported ones, we �nd that they
are in good agreement (see Table 1).



330 P. Goldstein et al. / Physica A 275 (2000) 325–335

Fig. 1. Plot of log �(T∗)=�(T ) vs. T in salol given by Eq. (14) in the region T ¡Tc (solid line) and
Eq. (15) for T ¿Tc (dashed line).

Fig. 2. Plot of log �(T∗)=�(T ) vs. T in PDE given by Eq. (14) in the region T ¡Tc (solid line) and
Eq. (15) for T ¿Tc (dashed line).

As mentioned earlier, due to the fast processes that take place for temperatures below
Tc, the di�usion processes are such that the Stokes–Einstein relation, Eq. (11) between
the viscosity and the di�usion coe�cient breaks down, thus obeying the relationship
exhibited by Eq. (12).
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Fig. 3. Plot of log �(T∗)=�(T ) vs. T in OTP given by Eq. (14) in the region T ¡Tc (solid line) and
Eq. (15) for T ¿Tc (dashed line).

We have analyzed the relationship between our values of the viscosity, in both re-
gions obtained through our proposed empirical equations and the experimental values
for the di�usion coe�cient [26,28] as a function of the temperature also in both re-
gions. In order to carry out this analysis, in Figs. 4–6 we plot log �(T ∗)=�(T ) vs.
logD(T )=D(T ∗) for salol, PDE and OTP, respectively, using Eq. (14) for T ¡Tc, and
Eq. (15) for T ¿Tc, and �nd that indeed, if we compare the slopes in the T ¿Tc re-
gion, � is nearly one for the three glassformers, whereas for T ¡Tc we obtain a value of
�¡ 1, where the value of � depends both on the tracer and on the substance. In Table 3
we present the values of � for both regions and indicate the tracer particle in each case.
The form for the di�usion coe�cient clearly indicates that in the range Tg ¡T ¡Tc

we have a case of an anomalous di�usion process [31]. The exponent � may be inter-
preted as a fractionary scaling parameter in the cross-over region within the framework
of a percolation model where the system switches from a translational-rotational cou-
pling regime to a noncoupled regime where a di�erent relaxation process appears. This
process may be understood as a progressive freezing of the translational degrees of
freedom [32].

3. Discussion

Summarizing, we have exhibited two of the main aspects that indicate the change
of the dynamical behavior of a glass forming liquid below Tc, using salol, PDE and
OTP as good representative fragile glass-forming liquids.
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Fig. 4. Experimental translational di�usion coe�cient logD(T )=D(T∗) for TTI as particle tracer in salol
[25], � for T ¡Tc and N for T ¿Tc, plotted as a function of the viscosity, log �(T∗)=�(T ) given by Eq.
(14) for T ¡Tc and by Eq. (15) for T ¿Tc. The solid lines represent the best linear �ts in both regions,
where the slope are in the T ¡Tc region � = 0:93 and for T ¿Tc; �′ = 1:06.

For T ¡Tc we have found an empirical form for log(�(T ∗)=�(T )), Eq. (14), which
indeed deviates from the Vogel–Fulcher–Tammann law. This fact is emphasized by the
evidence that in this region the derivative � is positive, while the corresponding �
of a VFT kind of equation is negative [23]. As far as the T ¿Tc region, a VFT kind
of equation, Eq. (15) may be �tted. It still remains to �nd the proper identi�cation of
the temperature T0, which is not necessarily an easy task. There has been a tendency
of identifying T0 with the isoentropic temperature, but this fails in the case of salol
since Tg ¿T0. Why this is so is not so clear at present. It is important to point out
that as we have seen, there is a small region around Tc where both descriptions, Eqs.
(14) and (15) are almost undistinguishable. This may be one of the main reasons for
which for many years the VFT description was taken as valid for all temperatures
above Tg.
However, it is important emphasize that the empirical law given by Eq. (14) is not

necessarily obeyed by any kind of supercooled liquid. In fact, another kind of fragile
glasses, propylene carbonate (PPC) and 1-propanol [24], follow a di�erent type of
empirical law:

log
�(T ∗)
�(T )

= F − G
(T − Tb)m (17)
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Fig. 5. Experimental translational di�usion coe�cient logD(T )=D(T∗) for ONS-A as particle tracer in PDE
[25], � for T ¡Tc and N for T ¿Tc, plotted as a function of the viscosity, log �(T∗)=�(T ) given by Eq.
(14) for T ¡Tc and by Eq. (15) for T ¿Tc. The solid lines represent the best linear �ts in both regions,
where the slope are in the T ¡Tc region � = 0:87 and for T ¿Tc; �′ = 1:06.

whose � is negative. As far as the T ¿Tc region is concerned, a VFT kind of equation
may be �tted.
We have also presented evidence of the failure of the Stokes–Einstein relation when

the temperature falls beyond Tc. Our results are in general agreement with those re-
ported in the literature [25–29].
A theoretical description to deal with the dependence of the relaxation times with

the temperature is nowadays a great challenge. Several e�orts [17,18,23,24,33–35] to
explain the role of fast dynamics in terms of the excitation spectrum of glasses have
presented two features. On one hand, an anharmonic relaxation-like contribution seems
to appear, and on the other, harmonic quasi-local vibrational excitations show up as the
“boson peak”. Depending on the ratio between both contributions, di�erent temperature
dependences for the relaxation times may be found [33]. A full theoretical interpretation
of the proposed equation for the temperature dependence of the relaxation times in the
T ¡Tc region Eq. (14) is an important task in the near future.
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Fig. 6. Experimental translational di�usion coe�cient logD(T )=D(T∗) for TTI as particle tracer in OTP
[27], � for T ¡Tc and N for T ¿Tc, plotted as a function of the viscosity, log �(T∗)=�(T ) given by Eq.
(14) for T ¡Tc and by Eq. (15) for T ¿Tc. The solid lines represent the best linear �ts in both regions,
where the slope are in the T ¡Tc region � = 0:76 and for T ¿Tc; �′ = 1:05.

Table 3
Values of the exponents � in the T ¡Tc region and �′ for T ¿Tc in Eq. (12) obtained
from Figs. 4–6 for salol, PDE and OTP

Substance Tracer �T ¡Tc �′T ¿Tc

Salol TTI 0.93 1.06
PDE ONS-A 0.87 1.06
OTP TTI 0.76 1.05
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