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It is shown that in site representation the hole-pair operators obey the same commutation relations (paulionic)
as the Cooper pair operators in impulse representation, although the latter describe delocalized quasiparticles.
In quasi-impulse representation the hole-pair operators are also delocalized but the exact commutation relations
correspond to a modified parafermi statistics [1] of rank 9 (M is the number of sites in a “superlattice” formed by
the centers of mass of each hole pair). From this follows that one state can be occupied by up to 9 pairs. Even
in the absence of dynamic interaction, the system of hole pairs is characterized by some immanent interaction,
named after Dyson as kinematic interaction. This interaction appears because of the deviation of the quasiparticle
statistics from the Bose (Fermi) statistics and its magnitude depends on the concentration of hole pairs. In spite
of the non-bosonic behavior, there is no statistical prohibition on the Bose-Einstein condensation of coupled hole

pairs.

At present, it is well established that the con-
ductivity in high-T, ceramics has a hole ori-
gin with charge of carriers equal to +2e. In
this paper, we present the results of our study
of statistics and some physical properties of the
hole-pair system. But before we shortly consider
the properties of isolated holes in superconduct-
ing ceramics.

1. Properties of holes in cuprate oxides

Usually, holes are described as fermions. It
came from atomic physics: the closed electronic
shell after one electron is knocked out (the “hole”
formation) has the same angular and spin mo-
mentum properties as the unclosed electronic
shell with one electron. But in general case, the
holes can have different values of spin S. For
example, in the CuQ; planes in high-T. ceram-
ics where the hole conductivity is revealed, all
spins are paired, the so-called Zhang-Rice singlet
[2,3]. The holes in high-T. ceramics (at least in
the CuOs planes) can be considered as spinless
positive charged quasiparticles. On the CuO;
plane, the hole is delocalized among Cu and four

O coupled by covalent bonding [3], schematically
we show it in Fig. 1.

In second quantization formalism in the site
representation, the model Hamiltonian for ome
type of spinless holes is

H = e bhbat Y Munblbn +
n nn'

> Vans b0, basbi, (1)

nn’
where ¢g is the energy for the hole creation in
a lattice, M, is the so-called hopping integral
and Vi, is the hole-hole interaction term. As
we showed in [4], the hole creation, b},, and hole
annihilation, b,, operators are characterized by
the paulion properties:
[bmblz']— = [bn,bu]- = [vabL']— =0,

for n # n';
[bn, 1]+ L [bn,bn)y = [0, 0})+ =0, (2)

the operators acting on different sites obey the
boson commutation relations, while the operators
acting on one site obey the fermion commutation
relations.
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Figure 1. Example of coupled hole pair on the
CuQs plane in high—T, superconducting ceram-
ics, black circles are Cu, open circles are O.

Suppose that the hole-hole interaction term in
(1) is attractive. In this case under some condi-
tions, the coupled hole pairs can be formed.

2. Statistics of coupled hole pairs

The operators of creation and annihilation of
the hole pair are defined as usual:

of = ahal,
Ay = Gnpln, (3)

where t denotes the localization point of the cen-
ter of mass of the coupled hole pair, see Fig. 1.
In high-T. ceramics, the hole-pair localization re-
gion is not large: the correlation length in the
CuO; planes is of the order of (10 — 12)A.

It is easy to verify that the hole-pair operators
aI and a; obey the same paulion commutation re-
lations (2) as the hole operators. Let us note that
the Cooper pair operators also obey the paulion
commutation relations, see [5] (the commutator
for k = k', Eq. (2.21b) in [5], is equivalent to
the fermion anticommutation relation). However,
there is an essential difference: the Cooper pair
operators are defined in the impulse space and
so they are completely delocalized, on the other
hand, the hole-pair operators aI and a; are de-
fined in the site representation and are localized
in some regions of the lattice. As we show below,

in the quasi-impulse representation, the statistics
of hole pairs radically changes.

Let us assume that the hole pairs have the same
size and the region of the hole pair localization
can be repeated in crystal so that the points t
form a “superlattice” with M sites. The model
Hamiltonian for hole pairs can be presented as

H = Z epaIat + ZMtt'aIat'a (4)
t

tt!

where €, = 2¢p + V is the energy of the coupled
hole pair, V; is the attractive potential between
holes which we assume to be the same for all pairs,
as in the BCS approach. Mp, is the hopping inte-
gral for a hole pair moving as a whole entity. The
Hamiltonian (4) can be transformed by some uni-
tary transformation:

m m
1 ¢ 1

A=——Eua, A":—Eu"aJf 5

q /_"nt=l qtt q /——mt=1 qt“t ()

to the diagonalized form in the quasi-impulse
space,

H=Y €Al Aq. (6)
q

For simple lattices with one site per cell, the
unitary transformation (5) is completely deter-
mined by the translation symmetry of the lat-
tice and the coefficients ug, = exp(—iqr,). The
self-energy of the diagonalized Hamiltonian (6) is
equal to

€q =€+ Z My expliq-(ry — ry)]. )
' (#t)

Since the operators (3) obey neither the boson
nor the fermion ‘commutation relations, the uni-
tary transformation in general case is not canoni-
cal; this means that it does not preserve the com-
mutation properties of the operators transformed.
In particular, the operators (5) do not describe
the paulion quasiparticles. As we showed in (4]
for holes in quasi-impulse space, such operators
obey the modified parafermi statistics with tri-
linear commutation relations. This statistics has
been introduced by Kaplan in 1976 [1]. It was
proved that the Frenkel excitons and magnons
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obey the modified parafermi statistics which dif-
fers from the Green parafermi statistics [6] in one
essential point: the trilinear commutation rela-
tions do not contain the Kronecker symbols and
their right-hand side is determined by the quasi-
momentum conservation law. This leads to im-
portant physical consequences, below we will dis-
cuss some of them. The results [1] for the Frenkel
excitons and magnons were extended later to po-
laritons (7], defectons in quantum crystals [8}, and
to the Wannier-Mott excitons [9].

For lattices, diagonalized by an exponential
unitary transformation, the operators (5) obey
the following trilinear commutation relations:

[[Agqu’]-)Aq”]- = ..2‘]'(—1,4_3,

d = d+q"—-q (8)
(AL, Aq]- AL = 2 AL

qd = q-q'+q 9)

which correspond to the modified parafermi
statistics of rank 91. This means that one state
can be occupied by up to N hole pairs:

AHMo) # 0, N<m (10)
o

(AH™ oy = o (11)

The state with N noninteracting pairs, each

with the same q, is defined by the usual expres-
sion

INg) = Cn(ADY(0), (12)

where the normalization factor Cy can be found
by the induction method using the operator equa-
tion obtained from the commutation relation (9)

T oAY — t i t ¥
AqAg Ay = AgAqAyr + AgnAqAy
2
oAt t
—AgAqgAq — ‘J'(A‘_*’
9 = d+q"—q (13)

The expression for Cy differs from that for a Bose
system and is given by:

On = N1 = )1 - 2) - (1= Ty 1

Now, it is easy to find

ALING) = 4/(Nq+1)(1— Na/?)|Ng+1)
(15)

AqINg) = y/No(1 = (Ng—1)/M)|Ng—1).
(16)

As M — oo, relations (15) and (16) turn into the
well known relations for bosons. From Eqs. (15)
and (16) it follows that

AL Aq|Ng) = Na(1 — (Ng — 1)/0). (1)

Thus, the operator A} Aq is not a particle num-
ber operator in a state q, as in the case of boson,
fermion or paulion operators. It can be proved
that for the modified parafermi statistics, the op-
erator of particle number in a state q does not
exist, see [1] or [4]. This is the consequence of the
absence of the Kronecker symbols in the commu-
tation relations (8) and (9). What can be defined
is the operator of the total number of hole pairs,
N. For the commutator, the following relation is
valid [1,4]:

(A Al)- =1~ 27, (18)

Only for small concentrations, <N > /M <<1, the
hole pairs satisfy the Bose statistics.

3. Some properties of the hole-pair system

As we showed above, the operator AI,Aq is not
the hole-pair number operator, so, the diagonal-
ized Hamiltonian (6) does not describe the hole-
pair ideal gas, the latter does not exist. Even
in the absence of dynamical interactions, some
immanent interaction in the hole-pair system is
always present. The origin of this interaction,
which called after Dyson {10] the kinematic inter-
action, is in the deviation of the hole-pair statis-
tics from the Bose (Fermi) statistics.

Let us estimate the magnitude of the kine-
matics interaction in the state (12) with N non-
interacting hole pairs, each pair with energy ¢q
(7). Using the equation (13) for shifting the op-
erator Aq to the right, after straightforward al-
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though cumbersome calculations, we obtain [1,4]

E(Ng) = <Nq > eq Al Ag Nq>
q
N-1_
= Nleq+ n (€ —eq)ls (19)
where € = ml_ ~ > €q is the mean energy of the

q9'#q
hole-pair band. The second term in the last line

of Eq. (19) is the kinematic interaction. It is pro-
portional to the concentration of hole pairs and
its magnitude is larger the larger is the difference
between the ¢ and the mean energy of the hole
pair band. According to Eq. (19), there is an
immanent coupling among all states of the hole
pair band. Therefore, we cannot define the inde-
pendent quasi-particles in some particular state.
As we mentioned above, the ideal gas of the hole
pairs does not exist fundamentally. It can exist
only in the low concentration limit in which the
kinematic energy becomes small and we get the
case of the Bose statistics, cf. Eq. (18).

In real cuprate ceramics, the maximum 7T is
achieved for a hole concentration in CuO; planes
equal to 0.2 — 0.25 per CuOz unit [11,12]. The
same order of magnitude has to be for the hole-
pair concentration because the latter is counted
not per CuQOs units, but per the number of sites
N in the superlattice (Fig. 1). Thus, the devi-
ations from the Bose statistics for the hole-pair
system are not negligible and have to be taken
into account.

As we showed above, the hole pairs obey the
modified parafermi statistics of rank N, so, one
state can be occupied by up to 9 hole pairs.
The number of hole pairs N cannot exceed the
number of sites 91 in the superlattice. This
means that, in spite of the non-bosonic behavior
of the hole-pair system, there is no statistical pro-
hibition of the Bose-Einstein condensation. On
the other hand, the hole-pair system is always
non-ideal (because of the kinematic interaction).
For a rigorous study of the Bose-Einstein con-
densation phenomenon, we have to include also
a dynamic interaction and consider an interplay
between kinematic and dynamic interactions to
study the stability of the Bose condensate, as

was done for the molecular exciton system in Ref.
[13].
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