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We investigate the statistics of the coupled hole pairs in a crystal lattice in high 7. superconduc-
tors, following the previously developed approach for the collective charge state (holon). The exact
commutation relations for the hole pair operators correspond to a modified parafermi statistics of
rank M’ (M’ is the number of sites in a “superlattice” formed by centers of mass for each hole
pair), i.e. one state can be occupied by up to M’ pairs. Even in the absence of dynamic interaction,
the system of hole pairs is characterized by some immanent interaction (kinematic interaction),
which depends on the hole-pairs concentration. In spite of the kinematic interaction, there is no
statistical prohibition on the Bose-Einstein condensation of coupled hole pairs.

Introduction Contrary to the conventional (low temperature) superconductivity, the
charge carriers in the high-7, cuprates are positive. Although some important aspects
of the physical origin of this cuprates remain controversial, a set of characteristic fea-
tures is well established. It is found that the pairing is between holes instead of elec-
trons with a short coherence length. The other important peculiarity of the cuprate
superconductivity is its anisotropy.

The holes are usually described as fermions and the Hamiltonian in the second quan-
tization formalism is constructed from operators obeying the Fermi anticommutation
relations [1]. Theoretical models which consider the local interactions seem appropriate
to describe the short-range electron or hole pairing. The Hubbard model is one of the
simplest and general models expressed in terms of local interactions and used to study
the many-body aspects of the electronic properties in solids.

The single-band extended Hubbard Hamiltonian (EHH) can be written as [1, 2]

H——f<2> CloC;a+U2”zmw+‘2/an”j7 1)
ij
where ¢ is the hopping integral, r > 0, (i, j) denotes nearest-neighbor sites, ¢, (i) is
the creation (annihilation) operator with spin ¢ = | or | at site i, and n; = ”z,T +n;
being n; ; = ci*gc,-,o. It is important to mention that in principle the on-site, U, and
inter-site, V, interaction terms are positive because they are direct Coulomb integrals
between charges with the same sign. However, U and V could be negative if attractive
indirect interactions through phonons or other type of excitations are included and they
are stronger than the direct Coulomb repulsion.
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When a particle—hole transformation [2] is made in the EHH, cifo — hj g, the Hamil-
tonian becomes

v
H=(U+2ZV)(N= Y nl,)+t > hihio+ U; nlonl |+ 7 <Zn§1n}‘,

i,o (i,)),0 i,J)
(2)

where N is the total number of sites, Z is the lattice coordination number, hif(,(hi‘g) is
the hole creation (annihilation) operator, and nf = n, +n| with nf, = h h; ;. The
first term in equation (2) only contributes to a shift in the total energy, and so the holes
can be also described via the Hubbard Hamiltonian. However, there are two crucial
differences between the electron and the hole cases: the density of holes is 1 —n in
terms of the electron density # and the sign of the hopping matrix is opposite, which is
irrelevant for the band structure of a bipartite lattice. The latter is a network that can
be divided into two sublattices such that the first nearest-neighbors to one site of a
sublattice belong to the other sublattice, like the square and simple cubic lattices. For a
nonbipartite lattice (e.g., the triangular and face center cubic lattices), there are some
peculiar behaviors of the electronic instabilities [3]. For instance, a strong-coupling ana-
lysis on a triangular lattice indicates that the charge density wave state cannot be
formed for any band filling due to frustration [4].

As we already mentioned, usually holes are considered as fermion particles with spin
1/2 and positive charge. But in real systems holes are located on many-electron atoms
or molecules and can have different values of spin S. For example, holes in the CuO,
planes in high 7, cuprates oxides have S = 0, the so-called Zhang-Rice singlet [5, 6]. In
this study, we consider holes as positively charged atoms (molecules) with S =0, or as
spinless quasiparticles in the second quantization formalism.

As we showed in Ref. [7], the holes in a crystal lattice can be described as spinless
particles with the paulion properties

(b, bb] = [bu,bw]_ = b, bl =0 for n#n',

n>“n'l—

(b, byl =1; [bu, ba), = [b),b}],. =0, (3)

n, Uy n»'“n

the operators acting on different sites obey the Bose commutation relations while the
operators acting on one site obey the Fermi commutation relations. Similar properties
are valid for electron and spin excitation operators in crystal lattices [8, 9].

In the absence of interaction between holes, the model Hamiltonian for an arbitrary
lattice with one type of holes can be written as follows:

H=¢e) blb,+ Y Mub' by, 4)
n nn'

where b, b, are the hole creation and annihilation operators, respectively; ¢ is the
energy of the hole creation in a lattice and M,,, is the so called hopping integral, char-
acterizing the efficiency of charge transfer (hopping) from site n to site n’. According to
the theory of resonance interaction (see Section 1.2.3 in [10]), the hopping integral can
be expressed by the resonance integral in the form

My = (Po(A)) Wo(A)| Vind [WPo(Aw) Po(A))) (5)

where ¥y(A,) and ¥((A,) are the ground-state many-electron wave functions for neu-
tral and ionized atoms (monomers) located at site n. In the case of one-electron wave
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function the expression (5) has the same physical sense as the hopping integral in the
Hubbard Hamiltonian, cf. Ref. [11].
When a hole-hole interaction is included, the Hamiltonian in site representation is
H=¢)Y biby+Y Muyb by+> Vuybbbyb,, (6)
n nn' nn'

where V,,, is the hole—hole interaction term. We consider the case of one hole per site,

so we have not a term similar to the U term in Eq. (2). Let us assume that the interac-

tion between holes is attractive, so they can form coupled hole pairs.

Some Properties of the Hole-Pair System In site representation, the hole pair creation
and annihilation operators can be introduced as a;" = b'b/ and a, = b,,b,, respectively,
where ¢ denotes the location point of the center of mass of the coupled hole pair, which
not necessarily coincides with a crystal lattice site. Suppose that the location points ¢
form a “superlattice”. If we denote the number of sites in the original lattice by M,
then the number of sites in the “superlattice” is given by M’ = M/m, where m is the
number of sites in the region of localization of two coupled holes, see Fig. 1.

The hole pair operators a and a, obey the same commutation relation, Eq. (3), as
the hole operators, so they describe paulion particles (note: the same is true for the
Cooper pair operators, see Ref. [12], Egs. (2.21), although they are constructed from
delocalized fermion operators). Using the pair operators, the model Hamiltonian for
hole pairs can be presented as

H=3 eaa+ Myajay, (7)
t t

where the hole—hole interaction energy is included as a self-energy, &, = 2¢9 + Vo, Vo is the
attractive potential between holes which we assume to be the same for all pairs, like in the
BCS theory, and M, is the hopping integral for a coupled hole pair moving as a whole entity.

Let us consider some aspects of the many-pair problem. The Hamiltonian (7) can be
transformed by some unitary transformation

1

4 T S ®

+
Ay =

1
"

to the diagonalized form in quasi-momentum space

H=Y eAjA,, (9)
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Fig. 1. Coupled hole pair on the CuO; plane in
high-T. superconductors ceramics
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where, for a lattice of one atom (molecule) per cell, the pair energy is given by

eq=¢ + Y Myexpliq-(r, —1,)]. (10)
1 (#1)

Since the operators g; and 4, are neither bosons nor fermions, the transformation (8)
is not canonical, in other words, it does not preserve the commutation properties. As
we proved in Ref. [7], the operators (8) obey the modified parafermi statistics of rank
M’ with trilinear commutation relations. This statistics was introduced by Kaplan in
1976 [8] for molecular exiton and magnon systems. According to its properties, one
state in g-space can be occupied by up to M’ hole pairs. The number of hole pairs
cannot be larger than the number M’ of sites in the “superlattice”. Thus, there are no
statistical prohibitions on the Bose-Einstein condensation phenomenon in a system of
coupled hole pairs.

Another important consequence from the parafermi properties of the operators (8) is
that the Hamiltonian (9) does not describe independent quasiparticles. Although it has
no dynamical interaction terms, it always contains an immanent interaction, named Kki-
nematic interaction [13], whose magnitude depends on the deviation of quasiparticle
statistics from the Bose (Fermi) statistics.

For the case of N hole-pairs with the same q, the wave function is given by

Ng) = Cn(Ag)"[0) - (11)
Using this state vector it can be calculated the expectation value of the Hamiltonian
(9), as it was performed for holes in Ref. [7], it is equal to

N-1) _
E(Ng) = (Ng| Z;SqrA$Aqr INg) = N |&q —|—% (F—¢q)|. (12)
q

where € = 57 ; eq is the mean energy of the hole-pair band. The second term in
q7#q
(12) describes the kinematic interaction and depends on the concentration of hole pairs.

Conclusions We have studied the statistical properties of the collective hole-pair states
in a periodical lattice using the exact trilinear commutation relations for the pair opera-
tors. As was shown, the hole-pairs obey the modified parafermi statistics of rank M’
where M’ is the number of lattice sites on which the pair can be created, i.e. one state
can be occupied by up to M’ pairs. The number of hole-pairs cannot be larger than the
number M’ of sites. Thus, there is no statistical prohibition on the Bose-Einstein con-
densation phenomenon in a hole-pair system.

The second important conclusion of this study is that, in general, the system of dynami-
cally non-interacting hole-pairs cannot be considered as an ideal gas. In the hole-pair
system, the immanent interaction and coupling of all states of the pair band (the so called
kinematic interaction) is always present. The magnitude of the kinematic interaction is
proportional to the hole-pair concentration, 4%, and has the same order as the corrections
for the non-Bose behavior in the commutation relations for the pair operators.
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