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Abstract

The system of coupled hole pairs in a crystal lattice is studied. The exact commutation relations for the hole pair
operators correspond to a modi"ed parafermi statistics of rank MM (MM is the number of sites in a `superlatticea formed by
centers of mass for each hole pair), i.e. one state can be occupied by up to MM pairs. Even in the absence of dynamic
interaction, the system of hole pairs is characterized by some immanent interaction (kinematic interaction). In spite of the
kinematic interaction, there is no statistical prohibitions on the Bose}Einstein condensation of coupled hole
pairs. ( 2000 Elsevier Science B.V. All rights reserved.
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In contrary to the conventional (low temperature)
superconductivity, the charge carriers in the high ¹

#
cu-

prates are positive. The holes are usually described as
fermions and the Hamiltonian in the second quantization
formalism is constructed from operators obeying the
Fermi anticommutation relations [1]. As we showed in
Ref. [2], the holes in a crystal lattice can be described as
spinless particles with the paulion properties:
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the operators acting on di!erent sites obey the Bose
commutation relations while the operators acting on one
sites obey the Fermi commutation relations. Similar
properties are valid for electron and spin excitations
operators in crystal lattices [3,4]

In this report we discuss statistical properties of hole
pairs and physical consequences from it. The Hamil-
tonian for holes in site representation is
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where e
0

is the hole energy, M
nn{

is the hopping integral
and <

nn{
is the hole}hole interaction term. Let us assume

that the interaction between holes is attractive, so they can
form coupled hole pairs. For one-pair problem, using
Hamiltonian (2) in momentum space, we obtain the same
result for the binding energy as that one for the Cooper pair.
Let us consider some aspects of the many-pair problem.

In site representation, the hole pair creation and anni-
hilation operators can be introduced as a`
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, respectively, where t denotes the location

point of the center of mass of the coupled hole pair, which
not necessarily coincides with a crystal lattice site. The
location points t form a `superlatticea. If we denote the
number of sites in the original lattice by M, then the
number of sites in the `superlatticea is given by
MM "M/m, where m is the number of sites in the region of
localization of two coupled holes.

It can be shown that the hole pair operators a`
t

and
a
t

obey the same commutation relation, Eq. (1), as the
hole operators, so they describe paulion particles (note:
the same is true for the Cooper pair operators, see Ref. [5,
Eqs. (2.21)], although the latter are constructed from
delocalized fermion operators). Using the pair operators,
the model Hamiltonian for hole pairs can be presented as
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where the hole}hole interaction energy is included as
a self-energy, e
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is the attractive potential

0921-4526/00/$ - see front matter ( 2000 Elsevier Science B.V. All rights reserved.
PII: S 0 9 2 1 - 4 5 2 6 ( 9 9 ) 0 1 9 9 3 - 6



between holes which we assume to be the same for all
pairs, like in the BCS theory, and MM

tt{
is the hopping

integral for a coupled hole pair moving as a whole entity.
Hamiltonian (3) can be transformed by some unitary

transformation:
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to the diagonalized form in quasi-momentum space
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q

eqAq̀ Aq . (5)

Since the operators a
t
and a`

t
are neither bosons nor

fermions, transformation (4) is not canonical, in other
words, it does not preserve the commutation properties.
As we proved in Ref. [2], the operators (4) obey the
modi"ed parafermi statistics of rank MM with trilinear
commutation relations. This statistics was introduced by
Kaplan in 1976 [3]. From this follows that one state in q-
space can be occupied by up to MM hole pairs. The number
of hole pairs cannot be larger than the number MM of sites
in the `superlatticea. Thus, there are no statistical prohib-
itions on the Bose}Einstein condensation phenomenon
in a system of coupled hole pairs.

Second important consequence from the parafermi
properties of the operators (4): Hamiltonian (5) does not
describe independent quasiparticles. Although it has no
dynamical interaction terms, it always contain an imma-
nent interaction, named kinematic interaction [6], whose
magnitude depends on the deviation of quasiparticle
statistics from the Bose (Fermi) statistics. The

expectation value of Hamiltonian (5) in the state with
N hole pairs with the same q, DNqT, can be calculated as it
was performed for holes in Ref. [2] and is equal to
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where e6"(1/(MM !1))+q{Eqeq{
is the mean energy of the

hole-pair band. The second term in Eq. (6) describes the
kinematic interaction and depends on the concentration
of hole pairs.
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