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Free surface deformation was taken into account for the fir
time by Scriven and Sternling (3) in the stationary case and fc
a lower flat solid wall. They also used different mechanical an
thermal boundary conditions. As shown for the flat free surfac
by Vidal and Acrivos (2), it was shown numerically by Castillo

The thermal Marangoni instability of a fluid film coating a de-
formable membrane has been investigated by taking into account
the deformation of the fluid free surface. Numerical calculations
for different thermal boundary conditions are presented. The pre-
stressed membrane is supposed to be very thin and therefore its

behavior is similar to that of an isothermal fluid free surface with
a surface tension but with a different mechanical boundary condi-
tion; that is, the fluid should stick on its surface and thus the fluid
velocity is zero. An important assumption is that the membrane has
no temperature dependence and therefore that only one Marangoni
number exists for the free surface of the fluid. Numerical results are
presented for stationary and oscillatory thermocapillary instability

and Velarde (4) that the Marangoni number of the marginal sta
of stationary convection is smaller than the corresponding or
for oscillatory convectioninthe presence of surface deformatiol
That is, stationary convection appears first.

Funada (5) investigated the thermocapillary instability of ¢
static liquid sheet, that is, a thin liquid layer which has two free
deformable surfaces that are both susceptible to temperatt

in both the sinuous and the varicose modes. It is shown that mem-
brane deformation has important implications on the Marangoni
instability of the fluid layer for positive and negative Marangoni
numbers. © 2001 Academic Press

Key Words: Marangoni convection; thermocapillary convection;
membrane; surface deformation.

gradients. In this case, two Marangoni humbers are necess:
to describe the instability of the sheet. Funada investigated tv
cases typical in the theory of liquid sheets, that is, the sinuot
and the varicose deformation modes. In the first one the wav
on the free surfaces are in phase and in the second one they
out of phase by 180

Davalos-Orozco (6) investigated the thermocapillary instabil
ity of a liquid sheet in motion from the point of view of the most
unstable mode. There, it was shown how the sinuous deform
tion mode may be the most unstable in the presence of a lar

The problem of fluid motion due to temperature differencemnough temperature gradient. Note that the sinuous and va
across a fluid film has important consequences in the finistese modes of instability also may appear before the rupture
ing of coated surfaces. It is of interest to find out the tempersothermal thin liquid films (7).
ture gradient necessary to destabilize the fluid layer in order toln this paper, the thermal Marangoni instability of a thin fluid
avoid any motion which may cause waves on the free surfat@yer coating a deformable prestressed membrane is inves
It has been found that these waves are related to the unevgaied. The idea is to investigate, in a simple way, the effe
ness found after the coating film has solidified. Therefore, it &deformable wall may have on the thermocapillary instabilit
important to investigate the instability of the film under differin comparison to classical results found in earlier papers (1-4
ent thermal and mechanical boundary conditions. If the fluithe membrane is supposed to be very thin but with a prescrib
layer is very thin buoyancy effects are not important and ontgnsion. It is assumed that this tension does not change d
thermocapillary or thermal Marangoni (that is, surface tensida temperature gradients and therefore behaves as an isother
changes due to a temperature gradient) effects need be takeea liquid surface. However, the important difference it has witl
into account. The stationary case of this problem was first irespect to a free surface is that the fluid coating the membral
vestigated by Pearson (1) for a lower flat wall and an uppsticks to it due to viscous effects and thus the nonslip boun
free surface without deformation. A variety of mechanical araty condition is applied to make the velocity zero on it. This
thermal boundary conditions were used. It was shown numassumption is what makes the difference between the results
ically by Vidal and Acrivos (2) that the marginal state for surthe paper by Funada (5) and those of the present one. Here, o
face tension induced convection is stationary as assumeddmnge Marangoni number, that of the free surface, describes t
Pearson (1). thermocapillary instability but again two crispation numbers ar

I. INTRODUCTION
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THERMAL MARANGONI CONVECTION OF A FLUID FILM 107

available to account for the relative inverse tensions of the free SINUOUS

surface and the membrane. These crispation numbers also repre- T T~ T~
sent the ability of the free surface and the membrane to deform. T~

Note that the membrane is the simplest model an elastic wall
may have as boundary condition for a fluid system. The results VARICOSE

given herein will show that deformable boundaries have in fact — T T~ T

important consequences on the instability of coating fluid layers

and in particular on their thermocapillary convection instability. T T~ T T~

The_ structure _Of the Paper Is as fOIIQWS. In Section Il the FIG.2. Two modes of deformation investigated: The sinuous and the var
equations of motion and boundary conditions are presented Qe modes.

Section Il the stationary and oscillatory instabilities are inves-

tigated. Section IVis the discussion and conclusions. The heat transfer is described by the diffusion equation for tt

temperature,
1. EQUATIONS OF MOTION

aT
We investigate the Marangoni instability of a thin liquid layer T +0-VT =« V2T, [3]
coating a deformable prestressed membrane. The physical sys-

temis sketchedinFig. 1. Inthefigureitis seen thatthe membraggere i is the velocity vector which in two dimensions has
The membrane is presented as being hotter than the free sur{aggosity, T is the temperature of the fluid layer, ards the
but, as will be shown presently, instability may also occur whefbat diffusivity.

the situation is reversed, that is, when the layer is heated fromrpe houndary conditions of the problem are as follows. A
above. _ N _ _ ~_ the membrane, located at=§, wheres$ is the membrane de-
Two kinds of instability are investigated as shown in Fig. Z%prmation displacement from its equilibrium positionza 0,

They are the sinuous and varicose deformation modes. In the $i{s conditions are that the fluid should stick to the surface dt
uous mode both the membrane and the free surface are deforgaagction, that is,

in phase. In the varicose mode the membrane and free surface

are out of phase by 180T he stabilities of these two modes were Uu=0. [4]

also investigated by Funada (5) andvalos-Orozco (6) under

different conditions. The membrane follows the fluid motion and therefore satisfie
The equations governing the flow of the system are the folloyse kinematic boundary condition,

ing. The balance of inertial forces with the pressure and viscous

forces is expressed by the Navier—Stokes equation, 38 c
i W= [3]
CL Vi|=-V V2 [1]
Pl ot +u - P pVid. where use has been made of the condition Eg. [4] and co

sequently the missing termms/ax is zero. The heat transfer
The continuity of the velocity is expressed by the incompresgwough the thin membrane from the fluid to the atmosphere

ibility condition, given by

V.i=0. 2] KVT - fis = —qs(T — To — AT). (6]

Free surface with deformation 7 The stress jumps at the membrane are related to its curvat
To and to its tensiows by

(S] — §) - nai = Ny Koy [7]

A s = (8x, —1)/N;. [8]

z =0 At the free surface, located at=1+ n, wherey is the free

To + AT surface deformation from the equilibrium positiorzat 1, the

membrane with deformation & kinematic boundary condition is

FIG. 1. Sketch of the system under research. It is composed of a free de- 9
formable surface and a deformable membrane. The fluid layer has an imposed W= — + u_n. [9]
temperature gradient. at aX
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The heat transfer through the free surface is expressed by The linear equations are combined, eliminating the pressu
to obtain two equations for the vertical component of the veloc
KVT - i, = —q,(T — To). [10] ity perturbationw and for the temperature perturbatiénThe
solutions of those equations are obtained by separating variab
. by means of normal modes of the form,, é, n) = (W, ©, A,
The stress jumps due to free surface curvature, surface tensipn_ =~ . . .
. . expi(ax — wt) wherei = /-1, a is the wavenumber, and
o, and thermocapillary effects are given by ! L . .
w is the frequency. Upon substitution, the equations of motio

and heat transfer are

do >
(S: _ sﬁ‘) Ny =N, Kyo — <—ﬁ>(VT )ty [11]

w
. . (D2—a2)(D2—a2+i—>W=O [13]
n, = (=nx, 1)/Nna t, = (L, nx)/ N,, [12] Pr
(D2 —a +iw)® = —W, [14]
where the condition for the normal stresses is found by multiply-
ing by the vector normal to the free surfatgeand the condition whereW and® are the amplitudes of thecomponent of the

for the tangential stresses is obtained by multiplying by the tan-, ~ . :
gential vectoft,,. The subindexes df andy indicate the partial velocity and the temperature, respectively, ne- d/dz A and

s H are the amplitudes of the membrane and surface deformatiol
derivative inx.

. - . respectively.
Here, k is the thermal cond_uc_:tlwty of the fluid arg} and The boundary conditions in normal modes and in nondimer
g, are the heat transfer coefficients of the membrane and the 1
free surface, respectivelils = 8xx/NS andK, = nx/N?2 are slonattorm are
! 8 = Ixx/ 7% 7 hed At the deformable membrane, at= 0:
the curvatures of the membrane and the free surface, respec-

tively, andN; = (1 + 82)%2, N, = (1 + n2)"/2. The stresses of

the fluid and the air arg}; = —ps;j + 7 andS = —psj, re- W= —iwA (15]
s_pectwely wheré;; is the Kroneckt_ar delt_a. The te_rrd is the DW =0 [16]
viscous stress tensor of a Newtonian fluid. The viscous stresses

of air are neglected and only its pressure is taken into account. In DO = B;(® — A) [17]
the case of the membrane only the normal stresses are needed be- o ) ) at

cause use has been made of the stick boundary condition Eq. [4]. (W + D“—3a > DW = C_aA' (18]

Note that—do/dT is positive for almost all fluids.

The above equations of motion are linearized after giving a
perturbation to the variables. The linear equations of motion ’8‘f
the perturbation are those for a fluid layer heated from below in
the absence of gravity and are the same as those used by Pearson W= —iwH [19]
(1) and Scriven and Sternling (3). The differences with our prob- DO = —B,(® — H) [20]
lem appear at the boundary conditions. The boundary conditions 7 y
must be expanded in Taylor seriessadindn aroundz = 0O for iw a
the membrane anzl= 1 for the free surface, respectively. (ﬁ +D* - 3a2> DW = c, H [21]

The variables are made nondimensional by means of the thick- s 5 )
ness of the layed for length,d?/« for time, «/d for velocity, (D*+a)W = —Ma*(® — H). [22]
povk /d? for pressure and stresses, and for temperature.

Here,p, is a reference density,is the kinematic viscosity, and Note that the amplitudea andH in Egs. [17], [20], and [22]
AT isthe temperature difference between the membrane anddippear due to linearization after taking a Taylor expansion
free surface, which is at a reference temperaifiyrerhe time temperature arourzi=0 and 1, respectively.

and velocity have been made nondimensional by usirig- The nondimensional parameters which appear in the equ
cause the thermal diffusivity determines the magnitude of tintiens and boundary conditions are defined as folldws= v/«
and speed of heat conduction from the lower boundary to tlsethe Prandtl numberB; =qsd/k and B, =q,d/k are the
upper one which deforms with a change in temperature affeBiot numbers of the membrane and free surface, respective
ing the strength of the resulting motion after the perturbatio@; = povk /osd andC, = povk /o d are the crispation numbers
In this way, after nondimensionalization, the thermal diffusivitpf the membrane and free surface, respectively. The Marangc
appears in the term of the Navier—Stokes equation containingmber at the free surface M =y ATd/povk, Wherey =
the Prandtl number which measures the relative importance-edio/d T is positive.

viscosity and thermal diffusivity. Note that under hydrostatic In the next section the results of the numerical calculation
conditions the nondimensional temperature profile of the basite presented. The stationary convection is considered befc
stateisT = —z+ 14 To/AT. oscillatory convection.

the free surface, a&t=1:
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111. STATIONARY AND OSCILLATORY SOLUTIONS number for the sinuous mode,
The boundary value problem represented by the system of Bs(1+ B,)+ B,
equations given above can be solved analytically as in the cases M= C,3+B;) [27]

of Refs. (1, 3, 5, 6). After obtaining a large formula fidr it is

necessary to calculate its value numerically because of the diffiis 3 finite value. This Marangoni number of the sinuous mox
culty in obtaining some physical insightinto the terms. Howeveigs no counterpart in previous papers because both the me
simple analytical formulas will be given when an adequate limifrane and the free surface have deformations. When the me
process is possible. brane is a very good conduct®; — oo, the Marangoni num-
ber in Eq. [27] tends tdM =2(1+ B,)/C,.

In addition, whenC,, = C; the result for the varicose mode

The formula obtained forM in the case of stationary may be obtained directly from Eq. [26] using the plus sign
Marangoni convection includes all the parameters involved fhereforeM for the varicose mode also tends to zeraas 0.

A. Stationary Marangoni Convection

the problem. ThusM is As explained above, the membrane deformation has no infl
ence on the stability wheBs = 0. In this case, the lim&a — 0
M = gives
8a(a — sinhacosha)[Bs(a+ B, tanha) + a(B, + atanha)] ’B
BsM; +aM, ’ M :——n, [28]
3C,
[23]

a finite value forM, and wheiB; = B, =0 the limit is
Here,M; andM, are

21
M; = a® — tanhasinf? a 4 8C;a® tanha — 8C,a° [24] M=z C—az, [29]
n

M, = a®*tanha — a? + 2atanha — sini? a — 8C,a> tanha.
[25] where M tends to zero. Here, both Egs. [28] and [29] are th
same as those obtained by Scriven and Sternling (3) under |

This equation is simpler than that for the oscillatory case. Not@Me conditions. _
that a change of sign in front &; corresponds to the varicose 1€ numerical results for the marginal curves of the
mode. Marangoni number against the wavenumber will be presentt
Some particular cases are found in whighreduces to the in what follows. First, results for the varicose mode and the
previous results: those of the sinuous mode will be given. Two valuBs=1
and oo, were investigated for each mode with variation of the
(1) WhenC; = C, = 0the problem reduces to that of Pearsomagnitudes of the other parameters.

(1) for a solid wall and a free nondeformable surface.' 1. Varicose mode. The varicose mode has two interesting
(2) WhenC,; =0 thg problem reduces to that of Scriven anBroperties. One is that the calculated marginal curves of tt
Sternling (3) for a solid wall and a free deformable surface. %

B . arangoni number against the wavenumber are always smal
(3) _\NhenBa =0the prob_lem reduces tc_> that of Scriven an ore instability) than those corresponding to the flat wall. Th
Sternling (3) for the same Biot number. This means that the w.

. ) , arginal Marangoni numbers of the flat wall were calculate
or membrane deformation has no influence on the Stat'on%{é(ain to be able to compare them numerically with our ne
instability when the heat flux passing through it is fixed.

results. The second property is that the varicose mode also |

There are also some analytical results obtained when the liginaller values of the marginal Marangoni number compared
a — 0 is taken in Eq. [23]. The general formula in this limit isthose of the sinuous mode. The results of the sinuous mode :
presented for reasons which will be explained presently.

In general, the behavior of the marginal curves is similar t
that of the flat case (3) as seen in Fig. 3 Byr=1. Figure 3a
for a strong membrane tension witly = 0.0001 shows how all
Note that the plus sign corresponds to the varicose mode andttiecurves oM tend to zero aa tends to zero. However, f@,
minus sign to the sinuous mode. This Marangoni number of temaller than 0.01 local minima appear for all the value8pf
sinuous mode is positive whé€ly < C,, is negative when the in- calculated. A comparison of our numerical results with those «
equality is reversed, and tends to zero when- 0. the flat wall shows that for small wavenumbéfamay have half

Another interesting limit of Eq. [23] whea — 0 is obtained of the value of the flat case. When the wavenumber increas
only for the sinuous mode when the two crispation numbers dreth values approach each other but with khef the varicose
equal, that isC,, = C;. Under these conditions the Marangonimode always smaller.

_2B(1+B)+B, ,

T3 By(C, £GCy) [26]
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interesting conclusions. For wavenumbers lower than a certa
value and depending on the magnitudeGyf the curves for
B; = oco are lower (more instability) than those Bf =1. For
example, in Fig. 4a the curves correspondin@jo= 0.01 and

B, = Oare smallerthan those of Fig. 3a below a wavenuralzer
0.09 where they intersect, and fB, = 1 below an intersection
a < 0.83. Here, the value o at which the curves cross each
other will be called the intersection wavenumber. Above the
point the curves behave as expected; that is, the system is mi
unstable when the wall Biot numbd; is smaller because it
is more difficult for the perturbation to leave the fluid layer
0.1 d*+, B = 1, C = 0.0001 through the membrane. However, it seems that the membra

continuous Cn = 0.
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stars =1
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FIG. 3. Stationary convection, varicose mode. Marginal curves of the
Marangoni number against the wavenumberBgr= 1, three different values
of C,, and two different values &@;: (a) Cs = 0.0001, (b)C;s = 1.

10

Calculations were made also f65 = 0.01. The behavior of
the curvesis similar but it seems that the local minima beginto k
undetectable with increasirigy. The minima already disappear
in Fig. 3b forCs; = 1.

Note that the starred curveS( = 1) are almost the same for 0.01
the values ofC; in Figs. 3a and 3b. This is the origin of the
interesting result that, whe@; = 1 (small membrane tension)

. ) ) 0.001 L AR AR LA AN AN NN N A RN N R
in Fig. 3b and the wavenumbers are smaller than a certain valt 0.0 0.5 1.0 1.5 2.0 25 3.0 35 4

.5
the fluid layer withC,, = 1 (small surface tension) is more stable d
than other f|U!dS with stronger Surfa(_:e tension. o FIG. 4. Stationary convection, varicose mode. Marginal curves of the
The behaviors of the curves of Fig. 4 seem to be similar i@arangoni number against the wavenumber Bgr= oo, three different val-
those of Fig. 3. However, a detailed comparison of them leadsuks ofC,, and two different values dEs: (a) C; = 0.0001, (b)Cs = 1.
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3.0 . _ equation it may be observed that in the limit of very snaall
Cont(ljnu%uz %% R %‘%0101 the Marangoni number foB; = 1 is again larger than that for
a5 asnhe A B; = oo. This could not be detected numerically in this limit.

Consequently, this equation confirms our results. The finite lim
found in Eq. [28] supports the numerical result which shows th:
for B; > 0 the Marangoni number in Eq. [26] is smaller (tend:
to zero) than that wheB; is zero.

2.0

2. Sinuous mode.lt is found that the sinuous mode has
larger values of the marginal Marangoni numbers (more st
ble) than the varicose mode. However, this only occurs whe
M is positive. It will be shown presently that the sinuous mod
is also unstable to negative Marangoni numbers. In the varico
mode this property is absent and therefore only the sinuous ma
will appear whenM is negative and large enough for a giver
wavenumber.

The negative Marangoni humber appears here as a result
the deformation of the membrane which gives an extra degr

Bn of freedom to the motion of the fluid layer. If a perturbation
is given to the free surface when it is heated from above, tt

FIG. 5. Stationary convection, varicos_e mode. Curves of the intersectiffiee syrface moves and the perturbation is transmitted to |
wavenumb(leaagamstBn,‘the free surface Blotngmber. They show the value ohembrane which only opposes the motion by friction and b
a below which the marginal curves correspondingsfo= oo are lower (more .. AR .
instability) than those oB; — 1. the degree to which its tension increases. However, dependi

on the magnitude of the wavenumber this opposition may

may not be important. For relatively small wavenumbers nc
deformation contributes to the instability of the fluid layer andnly viscous but also surface tension and tension effects are |
makes it more unstable for very large Biot number and smatkry important and the membrane can follow the free surfac
enough wavenumbers. See Fig. 5 for plots of the intersectiparturbation stimulating its growth. Therefore, the perturbatio
wavenumber againd,, corresponding to the results shown iris not dissipated like in a flat wall. From the results given below
Figs. 3 and 4 and fo€s = 0.01. it seems that for negative Marangoni numbers and relative

In Fig. 5 the results foCs =1 are not presented. Note thasmall wavenumbers the easiest way for the free surface and:
the curves in Fig. 4b show that the fluid layer is more unstahieembrane to move along is by means of the sinuous mode.
for B; = oo than forB; =1 in the entire range of wavenumbers The case foB; =1 of the stationary sinuous mode is pre-
presented (but checked urdik= 15). In fact, if all the numerical sented in Fig. 6. Figure 6a shows the marginal curves whe
tables of the curves of Figs. 3b and 4b are compared it may Gg=0.0001 and for three different values 6f,. The contin-
seen that no crossing occurs (in the range G0 < 15) but uous curves corresponding @, =0.0001 have a very large
it is found that the corresponding curves in both figures tend fiaite limit value whena is small as expected from Eq. [27]. In
the same magnitude (within four decimals) for a very laage the curves for other Bthe Marangoni number tends to zero as
Figure 5 shows that the intersection wavenumber increases véth> 0. Notice that the curves f@, = 0.0001 andB, = 1t0 5
B, andC;. As explained above, tends to very large values (nohave a local minimum at a finite value@fwhich is still present
intersection) wheiC; = 1. when G, = 0.01 andB,, = 5.

Note that the intersection of the curves occurs also for otherThe results corresponding to the valu€gt= 1 are plotted in
values ofBs. However, the reason this intersection exists has neig. 6b. In this figure itis shown that a singular valuaaippears
been discussed. As explained above, wBgs: 0 the stationary where the denominator & given in Eq. [23] becomes zero and
problem reduces to that of the flat wall which is more stable thahanges sign. FaZ,, = 0.0001 and 0.01 this particular value is
the results given here indicate. Therefore, when the membraeunda = 2.3. At this point the value of the Marangoni number
Biot number is greater than zero the marginal curves are lowsranges from negative to positive wharis increased from
than those of the flat wall due to the new degrees of freedararo. The negative Marangoni numbers have very large valu
given by the membrane to the fluid layer. This effect is strongethena < 2.3 and tends to zero from below as— 0. When
whenB; is very large and the marginal Marangoni numbers cahe wavenumber is larger than the singular one the margin
be smaller but, as can be seen by comparison of Figs. 3 and 4, Mislrops from a very large positive value to a local minimurr
result is only allowed below certain intersection wavenumbeffer a finite value of the wavenumber and then increases age
as shown in Fig. 5. smoothly. The starred curves @f, =1 have a finite limit as

As discussed above, Eg. [26] was obtained by an expansimr> 0 and also have a minimum for a value of the wavenumbe
of M in terms of very small wavenumbers. By means of thishich is zero in this particular case.

0.5

O
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a 600 the wavenumber have been displaced to the right with respect
. the previous figure.
- InFig. 7aitis found again thatthe curves are smaller than tho:
M 907 corresponding in Fig. 6a for wavenumbers smaller than a certa
] magnitude, as discussed in Figs. 3 and 4. Exception is made |
200 the continuous curves @, = 0.0001. For the larger magnitude
] of Cs shown in Fig. 7b the behavior of the curves aboveahe
1 /’/ == ﬂ‘,u;;‘ it of singularity is as expected. However, below the singalér
B T is found that the negative curves are smaller in magnitude fc
i Bs = oo than for B; = 1. This means that the marginal curves
] of the negative Marangoni number are more unstable when tl
~200+
1 Bo6 = 1, Cé6 = 0.0001
] continuous Cn = 0.0001 a 600
—400+ dashed = 0.01 .
] stars =1 ]
] 400
"600 T LR N A R A N NN SRR AER M T
0.0 2.0 25 3.0 35 4.0 45 5 1
q 4
200 1
b 600 ]
] 0
VR Bn = 1
] —200-
200 1 Bo = o, Cé = 0.0001
T Pt ] 1
] — o Lt b continuous Cn = 0.0001
] B _mu*"“l’*‘*‘*' =400 dashed = 0.01
0+ pap 23S ] stars =1
: - O —SOOOO|||O|||x|1||||l|||||2|||||l|||||||||3||||||||||||5|||5|||||l|5
—2001] . 5 2 . 5 5.
] B6 = 1, C6 = 1 a
] continuous C7 = 0.0001 b 600
—400 dashed = 0.01
] stars = 1 ]
1 | 400+ Bn =
—-8600 TTV T T T T T[T T T T [ FTT T[T R T T[T ATV T I T[T T T [F V7T T TTTIT]TTTT] M N
0.0 1.5 2.0 5 5.0 55 ]
d i
200
FIG. 6. Stationary convection, sinuous mode. Marginal curves of the ] 877 =
Marangoni number against the wavenumberBgr= 1, three different values ] T
of C,, and two different values a&;: (a) Cs = 0.0001, (b)Cs = 1. 0 et o S L
: ] Bn
Calculations were made also for 6 =0.01. It has been ]
shown that only the curves @, =0.0001 have a singularity —2007
and therefore have negative values of the Marangoni numbe ]
for wavenumbers smaller than a singular one aroard0.8. 2001
To the right they also show a minimum for finite values of the .
wavenumber. Only the curves f@, =0.01 have limits ofM 4
dlﬁerentfromZeroaa%oandthelrmlnlmaareataflnlte _600 lrlT[Tlll|llII|}l||||ll|||l\I|Il?l]IIII|IIII|III[1I!\I]
value ofa. 0.0 05 1.0 1.5 5 3 35 4 5. 5

In Fig. 7 the value of the Biot number of the membrane is

changed into that of a very good conductBf,= co. The be-

FIG. 7. Stationary convection, sinuous mode. Marginal curves of the

havior of the curves in Fig. 7 is similar to that found in Fig. 6marangoni number against the wavenumber Bgr= oo, three different val-
However, it is interesting to see how the singularity values oés ofC,, and two different values ;: (a) C; = 0.0001, (b)Cs = 1.
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TABLE 1

113

Comparison of the Marginal Marangoni Numbers against Wavenumber a (First Column) for the Stationary Case of a Flat Wall (Scriven
and Sternling, 1964, Second and Ninth Columns, S&S), Oscillatory Case for a Flat Wall (Castillo and Velarde, 1982, Third and Tenth
Columns), Oscillatory Sinuous Case of a Deformable Membrane (Fourth and Fifth Columns), and Oscillatory Varicose (Var) Case of a
Deformable Membrane (Sixth Column)

Pr=7,B,=B,=0

C;=0 C=1 Cs; = 0.001 Cs=0 Cs = Cs = 0.001
C, =0.0001 C, =0.0001 C, =0.0001 C, =001 C,=001 C, =001
Sinuous Sinuous Sinuous Sinuous
Stat Flat Var Var Stat Flat Var Var
S&S Osc. Osc. Osc. Osc. Osc. Osc. Osc S&S Osc Osc. Osc. Osc. Osc. Osc.
a M M M1 M2 M M1 M2 M M M M1 M2 M M1 M2 M
0.01 0.584 — 0.375 -1.94 0.029 0.385 —2.98 0.048 0.007 — 0.003 -1.87 0.028 0.014 —233 0.048
0.02 2.730 — 1.502 -2.38 0.097 1481 -11.1 0.194 0.027 — 0.018 -—2.37 0.096 0.056 —232 0.192
0.05 12.47 14.32 9.862 -3.06 0.341 10.08 —20.8 1.234 0.166 — 0.118 -3.25 0.115 0.368 —277 1.230
0.065 2.143
0.1 27.97 51.60 38.84 —-431 0.772 39.31 —40.0 2191 0.658 — 0.469 —4.33 0470 1.570-218 —
0.2 40.82 201.2 143.3 —6.35 1.454 142.7 —123 57.21 2.545 — 1.879 —-6.06 1.876 6.797 —-207 —
0.3 44.75 397.9 290.0 -8.27 1.988 286.1 —926 132.1 5.422 6.36 4.196 —-7.66 1.995 16.96 —209 —
0.4 46.47 562.1 461.8 -10.4 2.394 456.0 —7515 237.3 8.975 10.25 7.406 —-9.42 2402 3388 -218 —
0.5 47.49 763.0 650.2 134 2.672 648.8  —6897 303.3 12.89 15.41 11.49 -116 2.686 59.57 -231 —
0.6 48.25 1010 850.6 —17.5 2.800 864.3 —6377 292.4 16.92 21.94 16.45 -145 2.826 96.25 —-250 —
0.7 48.95 1308 1060 —24.3 2.749 1103 —6214 279.6 20.87 29.92 22.27 -18.9 2.783 1469 -273 —
0.8 49.64 1656 1277 —-37.2 2.459 1366 —6396 407.7 24.65 39.40 28.97 -26.3 2.500 2155 -301 —
0.9 50.35 2047 1500 —70.7 1.857 1654 —6897 654.1 28.20 50.26 36.54 —40.9 1.897 307.8 -335 —
1.0 51.13 2462 1728 —287 0.835 1967 —7765 1158 31.52 62.25 45.00 -81.4 0.873 432.1 -377 —
1.1 51.97 2861 1959 233.9 —-0.59 2308 —9137 2534 34.61 75.17 54.38 —382 -0.51 601.3 —428 —
1.3 40.27 104.3 75.89 116.3 —3.68 1174 —567
1.4 55.04 3597 2672 97.34-2.23 3505 —21177 —2918 —
15 56.27 3745 2915 106.8 —6.20 3970 —34818 —2214 45.44 139.1 1011 114.1-7.46 2563 -781 —

Note: The values of the crispation numb&gsandC, are as shown above the columns o= 0 corresponds two sets of two columns each. The other columr
for Cs; > 0 (from the 7th to 9th and from the 12th to 17th columns) show results for the values of the crispation numbers shown above them. The sinuot
always shows two marginal curves. Blanks mean that no calculations were made. Dashes mean that no value was found.

membrane is a very good conductor than when it is a poor onalues are obtained for different frequencies where bbthare
This is confirmed by Eq. [26]. positive, that which corresponds to a smalléris selected. If
the twoM'’s have different sign both are selected as physicall
possible.

The numerical results are presented in Table 1 along with

The oscillatory thermocapillary convection is investigatediscusion of the consequences the change of parameters h
here. Itis supposed that the Biot numbers of both the membramethem. A table is an easy way to show the difference amor
andthe free surface are zero. This means that the heat flux is fixedy similar quantities. That difference is important to deter
in both boundaries. Note again that whgn= 0 the membrane mine, from the stability point of view, if the stationary or the
deformation has no importance in the stationary case. Therefarsgillatory convection will be the first unstable mode when th
the marginal Marangoni numbers of oscillatory thermocapillatiarangoni number is increased for a fixed wavenumber. In a
convection calculated here will be compared with the resuliition, it will clearly show if the wall or membrane deformation
of the stationary problem investigated by Scriven and Sternliegntributes to destabilize even more the liquid layer in compa
(1) for a lower rigid flat wall and with the results of Castilloison with the well-known results published in the literature fol
and Velarde (4) for oscillatory convection with a lower flat walla nondeformable flat wall.
No numerical data are available from these papers because thelable 1 shows results for a variety of situations wRens= 7.
only show graphs oM againsta. Consequently, all data werelt is divided in two parts. In the first one results are shown fo
calculated numerically again for the sake of comparison.  C, =0.0001 and in the second one Gy, =0.01. In the first

The equation for the explicit analytical expression of the conpart calculations were made f@; less than or equal tG,,. In
plex Marangoni number is far larger than that for the stationatiye second one, calculations were madeQgiess than, equal
case. Therefore, the result will not be given here. The numeri¢a) and greater thag,. The first column corresponds to the
method to calculate the marginal Marangoni number against thavenumben, the second and tenth columns to the margine
wavenumber involves looking for the frequency which makeédarangoni number of the stationary case with free surface defc
the imaginary part oM equal to zero for a fixed. When two mation and flat wall (3), and the third and eleventh columrid to

B. Oscillatory Marangoni Convection
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of the oscillatory case with surface deformation and flat wall (4yavenumbers. Very near = 0.5 the stationary case for a flat
respectively. The following columns are separated in sets of threall becomes the more unstable. In the range of wavenumbe
columns each. The first set of the first part of Table 1 corresponuesented the Marangoni number remains positive. However, t
toCs; = 1andthe second ©; = 0.001, respectively, but results second sinuous Marangoni number M2 changes sign at a smal
were obtained also fd€; = 0.01 andC; = 0.0001. The same singular wavenumber between 0.7 and 0.75. The magnitude
explanation corresponds to the second part of Table 1, startvg is larger than that ofs = 1 for all a.

from column 12. The first two columns of each set correspond toThe second set of columns f@; = 0.001 shows a behav-
the sinuous mode and the third one to the varicose mode, respecsimilar to that forC; = 0.01. Here, the oscillatory varicose
tively. In Table 1 the blanks mean that the calculations were nobde is the more unstable in a smaller range of wavenumbe
made and the dashes mean that no marginal Marangoni numigbich ends betweea = 0.1 and 0.2. A difference is that the
was found; that is, the imaginary part Bf never changed sign magnitudes of the Marangoni numbers are larger than those
over a very wide range of frequencies investigated. Cs = 0.01, with the exception of the values M1 and M2 corre-

From the second, third, tenth, and eleventh columns of Tablegonding toa = 0.01. In the range of wavenumbers presentec
it is easy to see that the results of Castillo and Velarde (4) avkfor the varicose mode changes sign aroard 1.1. The value
correct; that is, for a flat wall the stationary convection occurf M2 may change sign after= 1.5 as can be understood due
first. Thus, under these conditions it is of interest to know tb the large magnitude of the numerical result which approach
the membrane deformation may contribute to destabilize tteethe singulaa.
liquid layer more than in the stationary case of the flat wall (3), Calculations were made also 6§ = 0.0001, where the ef-
or in other words, if the Marangoni number might be smallefect of similar large tensions at both the free surface and tr
Note thatin the third column, for wavenumbers bebow 0.05, membrane is present. The oscillatory varicose mode is the mc
and in the eleventh column, for wavenumbars 0.2, it was unstable only untia = 0.02, a value after which it was not pos-
not possible to find a change of sign of the imaginary part sfble to find solutions for oscillatory convection in a broad rang
the Marangoni number. Therefore, no oscillatory convection @ frequencies investigated. In this way, the sinuous mode M
possible froma — 0 up to a wavenumber beloav= 0.05 and is the more unstable frora > 0.02 up to a wavenumber be-
2, respectively. tweena = 0.05 and 0.1. After that value thil for stationary

The discussion starts with the first part of Table 1 where resuttsnvection on a flat wall is the more unstable. The negative ma
are given wher€, = 0.0001. The first set of three columns fomitude of M2 is very large even for smaidl This might show
Cs = 1 shows that all the magnitudes Bf tend to zero as the that, asa — 0, a finite Marangoni number is attained, as was
wavenumber tends to zero but at different rates. It is shown tisfiown under some special conditions in the previous secti
the varicose mode is the more unstable for all wavenumberdam the stationary case. It was found that the absolute value
the range presented and that the value of the Marangoni numbiZ has a maximum and two local minima in the rangeaof
is far smaller than that of the stationary case of the flat wall. values investigated. However, its overall magnitude is so muc

It is interesting to see that, as in our sinuous stationary cdagger that the liquid layer may be considered very stable fc
of the last section, the second column of this set shows thahé&gativeM.
is possible to destabilize the fluid layer in the sinuous modeThe second part of Table 1 shows results corresponding tc
by a relatively small negative Marangoni number. This has rieee surface crispation numb&y, = 0.01. Two sets of columns
counterpart in the stationary caseRf= 0 and therefore it will are presented for,C= 1 andCs = 0.001, but calculations were
always be oscillatory. also made fo€; = 0.01 andC; = 0.0001.

Another characteristic of the varicose mode of this set is thatThe tenth column shows that here stationary convection
the value ofM changes sign when the wavenumber is betweemore unstable than in the first part of Table 1 because the tensi
a=1and 1.1. Therefore, for a positi the oscillatory vari- of the free surface is smaller. The same can be said of the rest
cose mode will be the more unstable wteeis smaller than a of the oscillatory convection of the eleventh column, where i
certain value (here arourad= 1), but for a larger value station-is shown that no marginal Marangoni number was found fo
ary convection will be the first to appear. M < 0 the sinu- wavenumbers smaller than= 0.3.
ous oscillatory mode M2 will appear but, upon increasing the The first set of three columns f@; = 1, starting from the
wavenumber, the oscillatory varicose mode will be the first to otwelfth column, shows that the values bf are smaller than
cur afterawavenumber betwean= 1 and 1.1. M2 also changesthose corresponding to the first part of Table 1. The behavior
sign, from negative to positive, at a wavenumber betveeenl these Marangoni numbers is similar except for some particul:
and 1.1 by means of an abrupt jump (at a singa)aAfter that but important points. For wavenumbers from zerate 0.05
point the positive M2 decreases wihuntil a minimum value the sinuous mode M1 is the more unstable. After this value tf
is reached arouna = 1.4 after which it increases again. varicose mode will be the first to appear. For negatiwehe

Calculations were made also f@ = 0.01. Some similari- sinuous mode M2 is the more unstable uatit almost 1, after
ties in the behavior with the case discussed above were foundhich the varicose mode is the first to appear, that isafer 1.
but some important differences deserve discussion. Again, théhe results calculated here 105 = 0.01 already present dif-
oscillatory varicose mode is the more unstable but not for d@rences with respect to those correspondin@fc= 0.0001.
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Here it is not clear which mode, the sinuous or the varicose,ifwestigated. The sinuous and the varicose modes of ins
the more unstable for very small wavenumbers. However, witlility were taken into consideration. Both expressions of th
increasinga the varicose mode is the first to appear but only fdvlarangoni numbers for the stationary and oscillatory conve«
wavenumbers up ta = 0.181, which is the last point whefd tion were calculated analytically. First, numerical calculation
could be calculated. After that the oscillatory sinuous mode bef the marginal values oM againsta were made for the sta-
comes the more unstable up to a wavenumber betaee.3 tionary case. It was shown that when the Biot number of th
and 0.4. After this value od only stationary convection is pos-membrane is zero its deformation plays no role in the instabilit
sible. Another difference found is that here the magnitude ahd that the problem reduces to that of a flat wall. The behavi
M2 for small wavenumbers is many times larger. It is possibt# M for the varicose mode is very similar to that of the fla
that M2 reaches a finite limit value whan— 0. In the range of wall but it is always smaller. It was shown that the margina
wavenumbers calculated the magnitude of M2 does not charmgeves forB; = 1 are more stable than those By = co when
much. the wavenumber is smaller than 1, at which the curves for ea

The second set of columns of the second part of Tablevalue of Bs intersect. Here, the correspondiags called the
for Cs = 0.001 presents a behavior similar to the results fantersection wavenumber. This phenomenon, due to the mel
Cs = 0.01 but with an important difference. That is, stationarprane deformation, is in contrast with results already known i
convection is the one which will appear first. The magnitudes tife literature on natural and Marangoni convection where an i
M in the tenth column are always smaller than those of M1 afease in the Biot number of the wall stabilizes the fluid laye
the sinuous mode and of the varicose mode (which is greateiThe marginal curves for the sinuous mode also were investigate
than M1). The only way the fluid layer may have oscillatoryrhe sinuous mode is characterized by negative Marangoni nu
convection is by means dfl < 0 as for the sinuous mode M2bers below certain magnitudes of the wavenumber. In fact, tho
in the second column of this set. magnitudes oh are singularities oM because they are roots

In conclusion, for magnitudes @s; < 0.001 the stationary of the denominator of its analytic expressidn.changes sign,
convection will be the first to appear. This was also verifieidcreasinga above this value. For largarthe magnitudes ofl
with the results forC; = 0.0001. It is only possible to have become positive and very similar to those of the varicose mod
oscillatory instability wherC; < 0.001 if a negative Marangoni The negative Marangoni number brings about the possibility «
number is applied. However, as can be seen in Table 1, thestabilizing the fluid layer changing the sign of the temperatul
magnitude of the negative M2 increases considerably v@yen gradient, which under other conditions should be stabilizing. A
decreases, stabilizing the liquid layer. M2 seems to tend tdrethe varicose mode, it was also found that the negative margir
finite value whera — 0 and has a minimum in the rangeaf curves forB; = 1 are more stable (larger magnitude) than thos
values investigated. for By = oo.

For the conditions of the second part of Table 1 itis concluded The marginal Marangoni numbers of oscillatory convectiol
that when the tension of the membrane is equal to or less thaesent a series of complications due to the variety of possibi
that of the free surface there is a tendency to favor stationdigs found for instability. Here, due to the large number of nond
convection for wavenumbers larger than a particular magnituageensional parameters, only the case in which both Biot numbe
When the membrane tension is larger than that of the free surface zero is calculated. When the Biot number of the membra
stationary convection will always be favored in the range @ zero the stationary problem reduces to that described
wavenumbers investigated. Ref. (3) of a flat wall. Here, the instability of this problem was

The physical possibility of the appearance of oscillatory comalculated numerically again, along with the oscillatory insta
vective motion in the case of negative Marangoni numbershdity related with Ref. (4), for the sake of comparison with the
explained in the same way as in the stationary sinuous modesults of the present paper. It has been confirmed that station
Relatively small wavenumbers are necessary for the systenctmvection appears before the oscillatory one when the wall
be able to neglect viscous and membrane tension effects. In flas, as suggested by the graphs of Ref. (4). It has been fou
case, the membrane is allowed to follow easily the perturbidrat when the tension of the membrane is smaller than or eqt
tions of the free surface deformation. This also explains why that of the free surface (see Table 1) the varicose mode
for large wavenumbers the preferred instability is the stationamgcillatory convection is the first to appear. When the tension
one in the results of Table 1, except those of the varicose mdte membrane is increased the range where the varicose mod
for Cs = 1. WhenC; = 1 theM of the varicose mode becomesanore unstable than the stationary case becomes more restric
negative for a relatively large wavenumber. However, @iiss  in the wavenumber range. The oscillatory sinuous mode can
so large that it still allows for a sensible membrane deformati@xcited first only when the Marangoni numbers are negativ

at wavenumbers of order 1. However, the magnitude of M2 increases with the tension of tt
membrane, making it difficult to destabilize the fluid layer.
IV. CONCLUSIONS When the free surface tension is reduced (second part

Table 1), a weak membrane tension may allow the first oscill:
The thermocapillary instability of a fluid layer with a de-tory sinuous mode M1 to be the more unstable in a small range
formable free surface coating a deformable membrane has bagivenumbers after which the varicose mode prevails. Increasi
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the tension of the membrane limits the range in which the vaMarangoni numbers is the sinuous mode. For oscillatory cor
cose mode may exist, allowing the sinuous mode to be the meeztion and fixed heat flux the preferred mode fdr< 0 is
unstable for a larger range af However, above some mag-again the sinuous one, but it was found that the varicose mo
nitude of the wavenumber the stationary convection on the flzn also be excited for large membrane crispation numbers.
wall will be the more unstable. When the magnitude of the mem-This variety of possible situations speaks about the richne
brane tension is larger than that of the free surface, stationafyphenomena appearing when the membrane (or wall) defc
convection on a flat wall is the more unstable in the range ofation is included in the problem of Marangoni convection.
wavenumbers shown in Table 1.

It is concluded that it is physically possible to destabilize
the fluid layer with negative Marangoni numbers because of the
new degrees of freedom added by the membrane deformation. /Phe author thanks DGAPA-UNAM for support through project IN119200.
perturbation given to the free surface by heating from above promnks are also due to Mr. Raul Reyes for technical support.
duces a free surface deformation that is transmitted to the mem-
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