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The thermal Marangoni instability of a fluid film coating a de-
formable membrane has been investigated by taking into account
the deformation of the fluid free surface. Numerical calculations
for different thermal boundary conditions are presented. The pre-
stressed membrane is supposed to be very thin and therefore its
behavior is similar to that of an isothermal fluid free surface with
a surface tension but with a different mechanical boundary condi-
tion; that is, the fluid should stick on its surface and thus the fluid
velocity is zero. An important assumption is that the membrane has
no temperature dependence and therefore that only one Marangoni
number exists for the free surface of the fluid. Numerical results are
presented for stationary and oscillatory thermocapillary instability
in both the sinuous and the varicose modes. It is shown that mem-
brane deformation has important implications on the Marangoni
instability of the fluid layer for positive and negative Marangoni
numbers. C© 2001 Academic Press

Key Words: Marangoni convection; thermocapillary convection;
membrane; surface deformation.
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I. INTRODUCTION

The problem of fluid motion due to temperature differen
across a fluid film has important consequences in the fin
ing of coated surfaces. It is of interest to find out the temp
ture gradient necessary to destabilize the fluid layer in ord
avoid any motion which may cause waves on the free sur
It has been found that these waves are related to the un
ness found after the coating film has solidified. Therefore,
important to investigate the instability of the film under diffe
ent thermal and mechanical boundary conditions. If the fl
layer is very thin buoyancy effects are not important and o
thermocapillary or thermal Marangoni (that is, surface ten
changes due to a temperature gradient) effects need be
into account. The stationary case of this problem was firs
vestigated by Pearson (1) for a lower flat wall and an up
free surface without deformation. A variety of mechanical
thermal boundary conditions were used. It was shown nu
ically by Vidal and Acrivos (2) that the marginal state for s
face tension induced convection is stationary as assume
Pearson (1).
1060021-9797/01 $35.00
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Free surface deformation was taken into account for the
time by Scriven and Sternling (3) in the stationary case and
a lower flat solid wall. They also used different mechanical a
thermal boundary conditions. As shown for the flat free surfa
by Vidal and Acrivos (2), it was shown numerically by Castil
and Velarde (4) that the Marangoni number of the marginal s
of stationary convection is smaller than the corresponding
for oscillatory convection in the presence of surface deformat
That is, stationary convection appears first.

Funada (5) investigated the thermocapillary instability o
static liquid sheet, that is, a thin liquid layer which has two fr
deformable surfaces that are both susceptible to tempera
gradients. In this case, two Marangoni numbers are neces
to describe the instability of the sheet. Funada investigated
cases typical in the theory of liquid sheets, that is, the sinu
and the varicose deformation modes. In the first one the wa
on the free surfaces are in phase and in the second one the
out of phase by 180◦.

Dávalos-Orozco (6) investigated the thermocapillary insta
ity of a liquid sheet in motion from the point of view of the mo
unstable mode. There, it was shown how the sinuous defor
tion mode may be the most unstable in the presence of a l
enough temperature gradient. Note that the sinuous and
cose modes of instability also may appear before the ruptur
isothermal thin liquid films (7).

In this paper, the thermal Marangoni instability of a thin flu
layer coating a deformable prestressed membrane is inv
gated. The idea is to investigate, in a simple way, the eff
a deformable wall may have on the thermocapillary instabi
in comparison to classical results found in earlier papers (1–
The membrane is supposed to be very thin but with a prescr
tension. It is assumed that this tension does not change
to temperature gradients and therefore behaves as an isoth
free liquid surface. However, the important difference it has w
respect to a free surface is that the fluid coating the memb
sticks to it due to viscous effects and thus the nonslip bou
ary condition is applied to make the velocity zero on it. Th
assumption is what makes the difference between the resul
the paper by Funada (5) and those of the present one. Here,
one Marangoni number, that of the free surface, describes
thermocapillary instability but again two crispation numbers
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THERMAL MARANGONI CON

available to account for the relative inverse tensions of the
surface and the membrane. These crispation numbers also r
sent the ability of the free surface and the membrane to defo

Note that the membrane is the simplest model an elastic
may have as boundary condition for a fluid system. The res
given herein will show that deformable boundaries have in f
important consequences on the instability of coating fluid lay
and in particular on their thermocapillary convection instabil

The structure of the paper is as follows. In Section II t
equations of motion and boundary conditions are presente
Section III the stationary and oscillatory instabilities are inv
tigated. Section IV is the discussion and conclusions.

II. EQUATIONS OF MOTION

We investigate the Marangoni instability of a thin liquid lay
coating a deformable prestressed membrane. The physica
tem is sketched in Fig. 1. In the figure it is seen that the memb
is located atz= 0 and the fluid free surface is located atz= d.
The membrane is presented as being hotter than the free su
but, as will be shown presently, instability may also occur wh
the situation is reversed, that is, when the layer is heated f
above.

Two kinds of instability are investigated as shown in Fig.
They are the sinuous and varicose deformation modes. In the
uous mode both the membrane and the free surface are defo
in phase. In the varicose mode the membrane and free su
are out of phase by 180◦. The stabilities of these two modes we
also investigated by Funada (5) and D´avalos-Orozco (6) unde
different conditions.

The equations governing the flow of the system are the foll
ing. The balance of inertial forces with the pressure and visc
forces is expressed by the Navier–Stokes equation,

ρ

[
∂ Eu
∂t
+ Eu · ∇ Eu

]
= −∇ p+ µ∇2Eu. [1]

The continuity of the velocity is expressed by the incompre
ibility condition,

∇ · Eu = 0. [2]

FIG. 1. Sketch of the system under research. It is composed of a free

formable surface and a deformable membrane. The fluid layer has an impo
temperature gradient.
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FIG. 2. Two modes of deformation investigated: The sinuous and the v
cose modes.

The heat transfer is described by the diffusion equation for
temperature,

∂T

∂t
+ Eu · ∇T = κ∇2T, [3]

where Eu is the velocity vector which in two dimensions h
components (u, w), p is the pressure,ρ is the density,µ is the
viscosity,T is the temperature of the fluid layer, andκ is the
heat diffusivity.

The boundary conditions of the problem are as follows.
the membrane, located atz= δ, whereδ is the membrane de
formation displacement from its equilibrium position atz= 0,
the conditions are that the fluid should stick to the surface
to friction, that is,

u = 0. [4]

The membrane follows the fluid motion and therefore satis
the kinematic boundary condition,

w = ∂δ

∂t
, [5]

where use has been made of the condition Eq. [4] and
sequently the missing termu∂δ/∂x is zero. The heat transfe
through the thin membrane from the fluid to the atmospher
given by

k∇T · Enδ = −qδ(T − T0−1T). [6]

The stress jumps at the membrane are related to its curv
and to its tensionσδ by(

Sf
i j − Sa

i j

) · nδi = nδ j Kδσδ [7]

Enδ = (δx,−1)/Nδ. [8]

At the free surface, located atz= 1+ η, whereη is the free
surface deformation from the equilibrium position atz= 1, the
kinematic boundary condition is
sed w= ∂η
∂t
+ u

∂η

∂x
. [9]
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The heat transfer through the free surface is expressed by

k∇T · Enη = −qη(T − T0). [10]

The stress jumps due to free surface curvature, surface te
σ , and thermocapillary effects are given by

(
Sf

i j − Sa
i j

) · nηi = nη j Kησ −
(
−dσ

dT

)
(∇T · Etη)tη j [11]

Enη= (−ηx, 1)/Nη, Etη = (1, ηx)/Nη, [12]

where the condition for the normal stresses is found by multi
ing by the vector normal to the free surfaceEnη and the condition
for the tangential stresses is obtained by multiplying by the
gential vectorEtη. The subindexes ofδ andη indicate the partia
derivative inx.

Here,k is the thermal conductivity of the fluid andqδ and
qη are the heat transfer coefficients of the membrane and
free surface, respectively.Kδ = δxx/N3

δ andKη = ηxx/N3
η are

the curvatures of the membrane and the free surface, re
tively, andNδ = (1+ δ2

x)1/2, Nη = (1+ η2
x)1/2. The stresses o

the fluid and the air areSf
i j = −pδi j + τ f

i j andSa
i j = −pδi j , re-

spectively whereδi j is the Kronecker delta. The termτ f
i j is the

viscous stress tensor of a Newtonian fluid. The viscous stre
of air are neglected and only its pressure is taken into accou
the case of the membrane only the normal stresses are need
cause use has been made of the stick boundary condition Eq
Note that−dσ/dT is positive for almost all fluids.

The above equations of motion are linearized after givin
perturbation to the variables. The linear equations of motio
the perturbation are those for a fluid layer heated from belo
the absence of gravity and are the same as those used by Pe
(1) and Scriven and Sternling (3). The differences with our pr
lem appear at the boundary conditions. The boundary condi
must be expanded in Taylor series ofδ andη aroundz= 0 for
the membrane andz= 1 for the free surface, respectively.

The variables are made nondimensional by means of the th
ness of the layerd for length,d2/κ for time, κ/d for velocity,
ρoνκ/d2 for pressure and stresses, and1T for temperature
Here,ρo is a reference density,ν is the kinematic viscosity, an
1T is the temperature difference between the membrane an
free surface, which is at a reference temperatureTo. The time
and velocity have been made nondimensional by usingκ be-
cause the thermal diffusivity determines the magnitude of t
and speed of heat conduction from the lower boundary to
upper one which deforms with a change in temperature aff
ing the strength of the resulting motion after the perturbat
In this way, after nondimensionalization, the thermal diffusiv
appears in the term of the Navier–Stokes equation contai
the Prandtl number which measures the relative importanc
viscosity and thermal diffusivity. Note that under hydrosta

conditions the nondimensional temperature profile of the ba
state isT̄ = −z+ 1+ T0/4T .
-OROZCO
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The linear equations are combined, eliminating the press
to obtain two equations for the vertical component of the vel
ity perturbationw and for the temperature perturbationθ . The
solutions of those equations are obtained by separating varia
by means of normal modes of the form (w, θ , δ, η)= (W,2,1,
H ) exp i (ax− ωt) wherei = √−1,a is the wavenumber, an
ω is the frequency. Upon substitution, the equations of mot
and heat transfer are

(D2− a2)

(
D2− a2+ i

ω

Pr

)
W = 0 [13]

(D2− a2+ iω)2 = −W, [14]

whereW and2 are the amplitudes of thez-component of the
velocity and the temperature, respectively, andD = d/dz.1and
H are the amplitudes of the membrane and surface deformat
respectively.

The boundary conditions in normal modes and in nondim
sional form are
At the deformable membrane, atz= 0:

W = −iω1 [15]

DW = 0 [16]

D2 = Bδ(2−1) [17](
iω

Pr
+ D2− 3a2

)
DW = a4

Cδ

1. [18]

At the free surface, atz= 1:

W = −iωH [19]

D2 = −Bη(2− H ) [20](
iω

Pr
+ D2− 3a2

)
DW = a4

Cη

H [21]

(D2+ a2)W = −Ma2(2− H ). [22]

Note that the amplitudes1 and H in Eqs. [17], [20], and [22]
appear due to linearization after taking a Taylor expansion
temperature aroundz= 0 and 1, respectively.

The nondimensional parameters which appear in the e
tions and boundary conditions are defined as follows.Pr= ν/κ
is the Prandtl number.Bδ =qδd/k and Bη=qηd/k are the
Biot numbers of the membrane and free surface, respecti
Cδ = ρoνκ/σδd andCη= ρoνκ/σd are the crispation number
of the membrane and free surface, respectively. The Maran
number at the free surface isM = γ1T d/ρoνκ, whereγ =
−dσ/dT is positive.

In the next section the results of the numerical calculati

sicare presented. The stationary convection is considered before
oscillatory convection.
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III. STATIONARY AND OSCILLATORY SOLUTIONS

The boundary value problem represented by the syste
equations given above can be solved analytically as in the c
of Refs. (1, 3, 5, 6). After obtaining a large formula forM it is
necessary to calculate its value numerically because of the
culty in obtaining some physical insight into the terms. Howe
simple analytical formulas will be given when an adequate l
process is possible.

A. Stationary Marangoni Convection

The formula obtained forM in the case of stationar
Marangoni convection includes all the parameters involve
the problem. Thus,M is

M =
8a(a− sinha cosha)[Bδ(a+ Bη tanha)+a(Bη+a tanha)]

BδM1+aM2
.

[23]

Here,M1 andM2 are

M1 = a3− tanha sinh2 a+ 8Cδa
2 tanha− 8Cηa

3 [24]

M2 = a3 tanha− a2+ 2a tanha− sinh2 a− 8Cηa
3 tanha.

[25]

This equation is simpler than that for the oscillatory case. N
that a change of sign in front ofCδ corresponds to the varicos
mode.

Some particular cases are found in whichM reduces to the
previous results:

(1) WhenCδ =Cη= 0 the problem reduces to that of Pears
(1) for a solid wall and a free nondeformable surface.

(2) WhenCδ = 0 the problem reduces to that of Scriven a
Sternling (3) for a solid wall and a free deformable surface.

(3) WhenBδ = 0 the problem reduces to that of Scriven a
Sternling (3) for the same Biot number. This means that the
or membrane deformation has no influence on the statio
instability when the heat flux passing through it is fixed.

There are also some analytical results obtained when the
a→ 0 is taken in Eq. [23]. The general formula in this limit

M = 2

3

Bδ(1+ Bη)+ Bη
Bδ(Cη ± Cδ)

a2. [26]

Note that the plus sign corresponds to the varicose mode an
minus sign to the sinuous mode. This Marangoni number o
sinuous mode is positive whenCδ ≤ Cη, is negative when the in
equality is reversed, and tends to zero whena→ 0.

Another interesting limit of Eq. [23] whena→ 0 is obtained

only for the sinuous mode when the two crispation numbers
equal, that is,Cη=Cδ. Under these conditions the Marango
VECTION OF A FLUID FILM 109
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number for the sinuous mode,

M = 2
Bδ(1+ Bη)+ Bη

Cη(3+ Bδ)
, [27]

has a finite value. This Marangoni number of the sinuous m
has no counterpart in previous papers because both the m
brane and the free surface have deformations. When the m
brane is a very good conductor,Bδ →∞, the Marangoni num-
ber in Eq. [27] tends toM = 2(1+ Bη)/Cη.

In addition, whenCη=Cδ the result for the varicose mod
may be obtained directly from Eq. [26] using the plus sig
Therefore,M for the varicose mode also tends to zero asa→ 0.

As explained above, the membrane deformation has no in
ence on the stability whenBδ = 0. In this case, the limita→ 0
gives

M = 2

3

Bη
Cη

, [28]

a finite value forM , and whenBδ = Bη= 0 the limit is

M = 2

3

1

Cη

a2, [29]

whereM tends to zero. Here, both Eqs. [28] and [29] are
same as those obtained by Scriven and Sternling (3) unde
same conditions.

The numerical results for the marginal curves of t
Marangoni number against the wavenumber will be presen
in what follows. First, results for the varicose mode and th
those of the sinuous mode will be given. Two values,Bδ = 1
and∞, were investigated for each mode with variation of t
magnitudes of the other parameters.

1. Varicose mode.The varicose mode has two interestin
properties. One is that the calculated marginal curves of
Marangoni number against the wavenumber are always sm
(more instability) than those corresponding to the flat wall. T
marginal Marangoni numbers of the flat wall were calcula
again to be able to compare them numerically with our n
results. The second property is that the varicose mode also
smaller values of the marginal Marangoni number compare
those of the sinuous mode. The results of the sinuous mod
presented for reasons which will be explained presently.

In general, the behavior of the marginal curves is similar
that of the flat case (3) as seen in Fig. 3 forBδ = 1. Figure 3a
for a strong membrane tension withCδ = 0.0001 shows how all
the curves ofM tend to zero asa tends to zero. However, forCη

smaller than 0.01 local minima appear for all the values ofBη
calculated. A comparison of our numerical results with those
the flat wall shows that for small wavenumbersM may have half
of the value of the flat case. When the wavenumber incre
are
ni
both values approach each other but with theM of the varicose
mode always smaller.



t

rtain

h
hat
more
t
er
rane

the
110 L. A. DÁVALO

FIG. 3. Stationary convection, varicose mode. Marginal curves of
Marangoni number against the wavenumber forBδ = 1, three different values
of Cη, and two different values ofCδ : (a)Cδ = 0.0001, (b)Cδ = 1.

Calculations were made also forCδ = 0.01. The behavior of
the curves is similar but it seems that the local minima begin to
undetectable with increasingCδ. The minima already disappea
in Fig. 3b forCδ = 1.

Note that the starred curves (Cη = 1) are almost the same fo
the values ofCδ in Figs. 3a and 3b. This is the origin of th
interesting result that, whenCδ = 1 (small membrane tension
in Fig. 3b and the wavenumbers are smaller than a certain va
the fluid layer withCη = 1 (small surface tension) is more stab
than other fluids with stronger surface tension.
The behaviors of the curves of Fig. 4 seem to be similar
those of Fig. 3. However, a detailed comparison of them lead
S-OROZCO
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interesting conclusions. For wavenumbers lower than a ce
value and depending on the magnitude ofCη the curves for
Bδ =∞ are lower (more instability) than those ofBδ = 1. For
example, in Fig. 4a the curves corresponding toCη = 0.01 and
Bη= 0 are smaller than those of Fig. 3a below a wavenumbera ≤
0.09 where they intersect, and forBη = 1 below an intersection
a ≤ 0.83. Here, the value ofa at which the curves cross eac
other will be called the intersection wavenumber. Above t
point the curves behave as expected; that is, the system is
unstable when the wall Biot numberBδ is smaller because i
is more difficult for the perturbation to leave the fluid lay
through the membrane. However, it seems that the memb

FIG. 4. Stationary convection, varicose mode. Marginal curves of

to

s to
Marangoni number against the wavenumber forBδ = ∞, three different val-
ues ofCη, and two different values ofCδ : (a)Cδ = 0.0001, (b)Cδ = 1.
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FIG. 5. Stationary convection, varicose mode. Curves of the intersec
wavenumbera againstBη, the free surface Biot number. They show the value
a below which the marginal curves corresponding toBδ = ∞ are lower (more
instability) than those ofBδ = 1.

deformation contributes to the instability of the fluid layer a
makes it more unstable for very large Biot number and sm
enough wavenumbers. See Fig. 5 for plots of the intersec
wavenumber againstBη, corresponding to the results shown
Figs. 3 and 4 and forCδ = 0.01.

In Fig. 5 the results forCδ = 1 are not presented. Note th
the curves in Fig. 4b show that the fluid layer is more unsta
for Bδ =∞ than forBδ = 1 in the entire range of wavenumbe
presented (but checked untila= 15). In fact, if all the numerica
tables of the curves of Figs. 3b and 4b are compared it ma
seen that no crossing occurs (in the range 0.01≤ a ≤ 15) but
it is found that the corresponding curves in both figures ten
the same magnitude (within four decimals) for a very largea.
Figure 5 shows that the intersection wavenumber increases
Bη andCδ. As explained above,a tends to very large values (n
intersection) whenCδ = 1.

Note that the intersection of the curves occurs also for o
values ofBδ. However, the reason this intersection exists has
been discussed. As explained above, whenBδ = 0 the stationary
problem reduces to that of the flat wall which is more stable t
the results given here indicate. Therefore, when the memb
Biot number is greater than zero the marginal curves are lo
than those of the flat wall due to the new degrees of freed
given by the membrane to the fluid layer. This effect is stron
whenBδ is very large and the marginal Marangoni numbers
be smaller but, as can be seen by comparison of Figs. 3 and 4
result is only allowed below certain intersection wavenumb
as shown in Fig. 5.
As discussed above, Eq. [26] was obtained by an expans
of M in terms of very small wavenumbers. By means of th
VECTION OF A FLUID FILM 111
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equation it may be observed that in the limit of very smala
the Marangoni number forBδ = 1 is again larger than that fo
Bδ =∞. This could not be detected numerically in this lim
Consequently, this equation confirms our results. The finite l
found in Eq. [28] supports the numerical result which shows
for Bδ > 0 the Marangoni number in Eq. [26] is smaller (ten
to zero) than that whenBδ is zero.

2. Sinuous mode.It is found that the sinuous mode h
larger values of the marginal Marangoni numbers (more
ble) than the varicose mode. However, this only occurs w
M is positive. It will be shown presently that the sinuous mo
is also unstable to negative Marangoni numbers. In the vari
mode this property is absent and therefore only the sinuous m
will appear whenM is negative and large enough for a giv
wavenumber.

The negative Marangoni number appears here as a res
the deformation of the membrane which gives an extra de
of freedom to the motion of the fluid layer. If a perturbati
is given to the free surface when it is heated from above,
free surface moves and the perturbation is transmitted to
membrane which only opposes the motion by friction and
the degree to which its tension increases. However, depen
on the magnitude of the wavenumber this opposition may
may not be important. For relatively small wavenumbers
only viscous but also surface tension and tension effects ar
very important and the membrane can follow the free surf
perturbation stimulating its growth. Therefore, the perturba
is not dissipated like in a flat wall. From the results given bel
it seems that for negative Marangoni numbers and relati
small wavenumbers the easiest way for the free surface an
membrane to move along is by means of the sinuous mode

The case forBδ = 1 of the stationary sinuous mode is pr
sented in Fig. 6. Figure 6a shows the marginal curves w
Cδ = 0.0001 and for three different values ofCη. The contin-
uous curves corresponding toCη= 0.0001 have a very larg
finite limit value whena is small as expected from Eq. [27]. I
the curves for other Bη the Marangoni number tends to zero
a→ 0. Notice that the curves forCη = 0.0001 andBη = 1 to 5
have a local minimum at a finite value ofa, which is still present
when Cη = 0.01 andBη = 5.

The results corresponding to the value ofCδ = 1 are plotted in
Fig. 6b. In this figure it is shown that a singular value ofa appears
where the denominator ofM given in Eq. [23] becomes zero an
changes sign. ForCη = 0.0001 and 0.01 this particular value
arounda = 2.3. At this point the value of the Marangoni numb
changes from negative to positive whena is increased from
zero. The negative Marangoni numbers have very large va
whena < 2.3 and tends to zero from below asa→ 0. When
the wavenumber is larger than the singular one the marg
M drops from a very large positive value to a local minimu
for a finite value of the wavenumber and then increases a
smoothly. The starred curves ofCη= 1 have a finite limit as

ion
is
a→ 0 and also have a minimum for a value of the wavenumber
which is zero in this particular case.
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FIG. 6. Stationary convection, sinuous mode. Marginal curves of
Marangoni number against the wavenumber forBδ = 1, three different values
of Cη, and two different values ofCδ : (a)Cδ = 0.0001, (b)Cδ = 1.

Calculations were made also for ofCδ = 0.01. It has been
shown that only the curves ofCη= 0.0001 have a singularity
and therefore have negative values of the Marangoni num
for wavenumbers smaller than a singular one arounda= 0.8.
To the right they also show a minimum for finite values of t
wavenumber. Only the curves forCη= 0.01 have limits ofM
different from zero asa→ 0 and their minima are at a finit
value ofa.

In Fig. 7 the value of the Biot number of the membrane
changed into that of a very good conductor,Bδ =∞. The be-

havior of the curves in Fig. 7 is similar to that found in Fig. 6
However, it is interesting to see how the singularity values
S-OROZCO

he

ers

e

is

the wavenumber have been displaced to the right with respe
the previous figure.

In Fig. 7a it is found again that the curves are smaller than t
corresponding in Fig. 6a for wavenumbers smaller than a ce
magnitude, as discussed in Figs. 3 and 4. Exception is mad
the continuous curves ofCη= 0.0001. For the larger magnitud
of Cδ shown in Fig. 7b the behavior of the curves above tha
of singularity is as expected. However, below the singulara it
is found that the negative curves are smaller in magnitude
Bδ =∞ than for Bδ = 1. This means that the marginal curv
of the negative Marangoni number are more unstable whe

FIG. 7. Stationary convection, sinuous mode. Marginal curves of

.
of
Marangoni number against the wavenumber forBδ = ∞, three different val-
ues ofCη, and two different values ofCδ : (a)Cδ = 0.0001, (b)Cδ = 1.
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TABLE 1
Comparison of the Marginal Marangoni Numbers against Wavenumber a (First Column) for the Stationary Case of a Flat Wall (Scriven

and Sternling, 1964, Second and Ninth Columns, S&S), Oscillatory Case for a Flat Wall (Castillo and Velarde, 1982, Third and Tenth
Columns), Oscillatory Sinuous Case of a Deformable Membrane (Fourth and Fifth Columns), and Oscillatory Varicose (Var) Case of a
Deformable Membrane (Sixth Column)

Pr = 7, Bδ = Bη = 0

Cδ = 0 Cδ = 1 Cδ = 0.001 Cδ = 0 Cδ = 1 Cδ = 0.001
Cη = 0.0001 Cη = 0.0001 Cη = 0.0001 Cη = 0.01 Cη = 0.01 Cη = 0.01

Sinuous Sinuous Sinuous Sinuous
Stat Flat Var Var Stat Flat Var Var
S&S Osc. Osc. Osc. Osc. Osc. Osc. Osc. S&S Osc. Osc. Osc. Osc. Osc. Osc.

a M M M1 M2 M M1 M2 M M M M1 M2 M M1 M2 M

0.01 0.584 — 0.375 −1.94 0.029 0.385 −2.98 0.048 0.007 — 0.003 −1.87 0.028 0.014−233 0.048
0.02 2.730 — 1.502 −2.38 0.097 1.481 −11.1 0.194 0.027 — 0.018 −2.37 0.096 0.056−232 0.192
0.05 12.47 14.32 9.862 −3.06 0.341 10.08 −20.8 1.234 0.166 — 0.118 −3.25 0.115 0.368−277 1.230
0.065 2.143
0.1 27.97 51.60 38.84 −4.31 0.772 39.31 −40.0 21.91 0.658 — 0.469 −4.33 0.470 1.570−218 —
0.2 40.82 201.2 143.3 −6.35 1.454 142.7 −123 57.21 2.545 — 1.879 −6.06 1.876 6.797−207 —
0.3 44.75 397.9 290.0 −8.27 1.988 286.1 −926 132.1 5.422 6.36 4.196 −7.66 1.995 16.96 −209 —
0.4 46.47 562.1 461.8 −10.4 2.394 456.0 −7515 237.3 8.975 10.25 7.406 −9.42 2.402 33.88 −218 —
0.5 47.49 763.0 650.2 −13.4 2.672 648.8 −6897 303.3 12.89 15.41 11.49 −11.6 2.686 59.57 −231 —
0.6 48.25 1010 850.6 −17.5 2.800 864.3 −6377 292.4 16.92 21.94 16.45 −14.5 2.826 96.25 −250 —
0.7 48.95 1308 1060 −24.3 2.749 1103 −6214 279.6 20.87 29.92 22.27 −18.9 2.783 146.9 −273 —
0.8 49.64 1656 1277 −37.2 2.459 1366 −6396 407.7 24.65 39.40 28.97 −26.3 2.500 215.5 −301 —
0.9 50.35 2047 1500 −70.7 1.857 1654 −6897 654.1 28.20 50.26 36.54 −40.9 1.897 307.8 −335 —
1.0 51.13 2462 1728 −287 0.835 1967 −7765 1158 31.52 62.25 45.00 −81.4 0.873 432.1 −377 —
1.1 51.97 2861 1959 233.9 −0.59 2308 −9137 2534 34.61 75.17 54.38 −382 −0.51 601.3 −428 —
1.3 40.27 104.3 75.89 116.3 −3.68 1174 −567
1.4 55.04 3597 2672 97.34−2.23 3505 −21177 −2918 —
1.5 56.27 3745 2915 106.8 −6.20 3970 −34818 −2214 45.44 139.1 101.1 114.1−7.46 2563 −781 —

Note:The values of the crispation numbersCδ andCη are as shown above the columns. ToCδ = 0 corresponds two sets of two columns each. The other colum

for Cδ > 0 (from the 7th to 9th and from the 12th to 17th columns) show results for the values of the crispation numbers shown above them. The sinuous mode
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always shows two marginal curves. Blanks mean that no calculations wer

membrane is a very good conductor than when it is a poor
This is confirmed by Eq. [26].

B. Oscillatory Marangoni Convection

The oscillatory thermocapillary convection is investiga
here. It is supposed that the Biot numbers of both the memb
and the free surface are zero. This means that the heat flux is
in both boundaries. Note again that whenBδ = 0 the membrane
deformation has no importance in the stationary case. There
the marginal Marangoni numbers of oscillatory thermocapil
convection calculated here will be compared with the res
of the stationary problem investigated by Scriven and Stern
(1) for a lower rigid flat wall and with the results of Castil
and Velarde (4) for oscillatory convection with a lower flat wa
No numerical data are available from these papers because
only show graphs ofM againsta. Consequently, all data we
calculated numerically again for the sake of comparison.

The equation for the explicit analytical expression of the co
plex Marangoni number is far larger than that for the station
case. Therefore, the result will not be given here. The nume
method to calculate the marginal Marangoni number agains

wavenumber involves looking for the frequency which mak
the imaginary part ofM equal to zero for a fixeda. When two
made. Dashes mean that no value was found.
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values are obtained for different frequencies where bothM ’s are
positive, that which corresponds to a smallerM is selected. If
the twoM ’s have different sign both are selected as physic
possible.

The numerical results are presented in Table 1 along w
discusion of the consequences the change of parameters
on them. A table is an easy way to show the difference am
very similar quantities. That difference is important to de
mine, from the stability point of view, if the stationary or t
oscillatory convection will be the first unstable mode when
Marangoni number is increased for a fixed wavenumber. In
dition, it will clearly show if the wall or membrane deformatio
contributes to destabilize even more the liquid layer in com
ison with the well-known results published in the literature
a nondeformable flat wall.

Table 1 shows results for a variety of situations whenPr= 7.
It is divided in two parts. In the first one results are shown
Cη= 0.0001 and in the second one forCη= 0.01. In the first
part calculations were made forCδ less than or equal toCη. In
the second one, calculations were made forCδ less than, equa
to, and greater thanCη. The first column corresponds to th
wavenumbera, the second and tenth columns to the marg
esMarangoni number of the stationary case with free surface defor-
mation and flat wall (3), and the third and eleventh columns toM
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of the oscillatory case with surface deformation and flat wall
respectively. The following columns are separated in sets of t
columns each. The first set of the first part of Table 1 correspo
toCδ = 1 and the second toCδ = 0.001, respectively, but result
were obtained also forCδ = 0.01 andCδ = 0.0001. The same
explanation corresponds to the second part of Table 1, sta
from column 12. The first two columns of each set correspon
the sinuous mode and the third one to the varicose mode, re
tively. In Table 1 the blanks mean that the calculations were
made and the dashes mean that no marginal Marangoni nu
was found; that is, the imaginary part ofM never changed sig
over a very wide range of frequencies investigated.

From the second, third, tenth, and eleventh columns of Tab
it is easy to see that the results of Castillo and Velarde (4)
correct; that is, for a flat wall the stationary convection occ
first. Thus, under these conditions it is of interest to know
the membrane deformation may contribute to destabilize
liquid layer more than in the stationary case of the flat wall
or in other words, if the Marangoni number might be smal
Note that in the third column, for wavenumbers belowa = 0.05,
and in the eleventh column, for wavenumbersa ≤ 0.2, it was
not possible to find a change of sign of the imaginary par
the Marangoni number. Therefore, no oscillatory convectio
possible froma→ 0 up to a wavenumber belowa = 0.05 and
2, respectively.

The discussion starts with the first part of Table 1 where res
are given whenCη = 0.0001. The first set of three columns f
Cδ = 1 shows that all the magnitudes ofM tend to zero as the
wavenumber tends to zero but at different rates. It is shown
the varicose mode is the more unstable for all wavenumbe
the range presented and that the value of the Marangoni nu
is far smaller than that of the stationary case of the flat wall

It is interesting to see that, as in our sinuous stationary
of the last section, the second column of this set shows th
is possible to destabilize the fluid layer in the sinuous m
by a relatively small negative Marangoni number. This has
counterpart in the stationary case ofBδ = 0 and therefore it will
always be oscillatory.

Another characteristic of the varicose mode of this set is
the value ofM changes sign when the wavenumber is betw
a = 1 and 1.1. Therefore, for a positiveM the oscillatory vari-
cose mode will be the more unstable whena is smaller than a
certain value (here arounda = 1), but for a larger value station
ary convection will be the first to appear. IfM < 0 the sinu-
ous oscillatory mode M2 will appear but, upon increasing
wavenumber, the oscillatory varicose mode will be the first to
cur after a wavenumber betweena = 1 and 1.1. M2 also change
sign, from negative to positive, at a wavenumber betweena = 1
and 1.1 by means of an abrupt jump (at a singulara). After that
point the positive M2 decreases witha until a minimum value
is reached arounda = 1.4 after which it increases again.

Calculations were made also forCδ = 0.01. Some similari-
ties in the behavior with the case discussed above were fo

but some important differences deserve discussion. Again,
oscillatory varicose mode is the more unstable but not for
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wavenumbers. Very neara = 0.5 the stationary case for a fl
wall becomes the more unstable. In the range of wavenum
presented the Marangoni number remains positive. Howeve
second sinuous Marangoni number M2 changes sign at a sm
singular wavenumber between 0.7 and 0.75. The magnitu
M2 is larger than that ofCδ = 1 for all a.

The second set of columns forCδ = 0.001 shows a behav
ior similar to that forCδ = 0.01. Here, the oscillatory varicos
mode is the more unstable in a smaller range of wavenum
which ends betweena = 0.1 and 0.2. A difference is that th
magnitudes of the Marangoni numbers are larger than tho
Cδ = 0.01, with the exception of the values M1 and M2 cor
sponding toa = 0.01. In the range of wavenumbers presen
M for the varicose mode changes sign arounda = 1.1. The value
of M2 may change sign aftera = 1.5 as can be understood d
to the large magnitude of the numerical result which approa
to the singulara.

Calculations were made also forCδ = 0.0001, where the ef
fect of similar large tensions at both the free surface and
membrane is present. The oscillatory varicose mode is the
unstable only untila = 0.02, a value after which it was not po
sible to find solutions for oscillatory convection in a broad ra
of frequencies investigated. In this way, the sinuous mode
is the more unstable froma > 0.02 up to a wavenumber be
tweena = 0.05 and 0.1. After that value theM for stationary
convection on a flat wall is the more unstable. The negative m
nitude of M2 is very large even for smalla. This might show
that, asa→ 0, a finite Marangoni number is attained, as w
shown under some special conditions in the previous se
for the stationary case. It was found that the absolute valu
M2 has a maximum and two local minima in the range oa
values investigated. However, its overall magnitude is so m
larger that the liquid layer may be considered very stable
negativeM .

The second part of Table 1 shows results corresponding
free surface crispation numberCη = 0.01. Two sets of column
are presented for Cδ = 1 andCδ = 0.001, but calculations wer
also made forCδ = 0.01 andCδ = 0.0001.

The tenth column shows that here stationary convectio
more unstable than in the first part of Table 1 because the te
of the free surface is smaller. The same can be said of the re
of the oscillatory convection of the eleventh column, wher
is shown that no marginal Marangoni number was found
wavenumbers smaller thana = 0.3.

The first set of three columns forCδ = 1, starting from the
twelfth column, shows that the values ofM are smaller than
those corresponding to the first part of Table 1. The behavio
these Marangoni numbers is similar except for some partic
but important points. For wavenumbers from zero toa < 0.05
the sinuous mode M1 is the more unstable. After this value
varicose mode will be the first to appear. For negativeM the
sinuous mode M2 is the more unstable untila is almost 1, after
which the varicose mode is the first to appear, that is, fora > 1.

the
all

The results calculated here forCδ = 0.01 already present dif-
ferences with respect to those corresponding toCη = 0.0001.
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Here it is not clear which mode, the sinuous or the varicos
the more unstable for very small wavenumbers. However, w
increasinga the varicose mode is the first to appear but only
wavenumbers up toa = 0.181, which is the last point whereM
could be calculated. After that the oscillatory sinuous mode
comes the more unstable up to a wavenumber betweena = 0.3
and 0.4. After this value ofa only stationary convection is pos
sible. Another difference found is that here the magnitude
M2 for small wavenumbers is many times larger. It is poss
that M2 reaches a finite limit value whena→ 0. In the range of
wavenumbers calculated the magnitude of M2 does not ch
much.

The second set of columns of the second part of Tab
for Cδ = 0.001 presents a behavior similar to the results
Cδ = 0.01 but with an important difference. That is, stationa
convection is the one which will appear first. The magnitude
M in the tenth column are always smaller than those of M1
the sinuous mode andM of the varicose mode (which is great
than M1). The only way the fluid layer may have oscillato
convection is by means ofM < 0 as for the sinuous mode M
in the second column of this set.

In conclusion, for magnitudes ofCδ ≤ 0.001 the stationary
convection will be the first to appear. This was also verifi
with the results forCδ = 0.0001. It is only possible to hav
oscillatory instability whenCδ ≤ 0.001 if a negative Marangon
number is applied. However, as can be seen in Table 1
magnitude of the negative M2 increases considerably wheCδ

decreases, stabilizing the liquid layer. M2 seems to tend
finite value whena→ 0 and has a minimum in the range ofa
values investigated.

For the conditions of the second part of Table 1 it is conclu
that when the tension of the membrane is equal to or less
that of the free surface there is a tendency to favor statio
convection for wavenumbers larger than a particular magnit
When the membrane tension is larger than that of the free su
stationary convection will always be favored in the range
wavenumbers investigated.

The physical possibility of the appearance of oscillatory c
vective motion in the case of negative Marangoni number
explained in the same way as in the stationary sinuous m
Relatively small wavenumbers are necessary for the syste
be able to neglect viscous and membrane tension effects. In
case, the membrane is allowed to follow easily the pertu
tions of the free surface deformation. This also explains w
for large wavenumbers the preferred instability is the station
one in the results of Table 1, except those of the varicose m
for Cδ = 1. WhenCδ = 1 theM of the varicose mode become
negative for a relatively large wavenumber. However, thisCδ is
so large that it still allows for a sensible membrane deforma
at wavenumbers of order 1.

IV. CONCLUSIONS
The thermocapillary instability of a fluid layer with a de
formable free surface coating a deformable membrane has b
VECTION OF A FLUID FILM 115
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investigated. The sinuous and the varicose modes of in
bility were taken into consideration. Both expressions of
Marangoni numbers for the stationary and oscillatory conv
tion were calculated analytically. First, numerical calculati
of the marginal values ofM againsta were made for the sta
tionary case. It was shown that when the Biot number of
membrane is zero its deformation plays no role in the instab
and that the problem reduces to that of a flat wall. The beha
of M for the varicose mode is very similar to that of the fl
wall but it is always smaller. It was shown that the margi
curves forBδ = 1 are more stable than those forBδ =∞ when
the wavenumber is smaller than 1, at which the curves for e
value of Bδ intersect. Here, the correspondinga is called the
intersection wavenumber. This phenomenon, due to the m
brane deformation, is in contrast with results already know
the literature on natural and Marangoni convection where a
crease in the Biot number of the wall stabilizes the fluid la
The marginal curves for the sinuous mode also were investig
The sinuous mode is characterized by negative Marangoni n
bers below certain magnitudes of the wavenumber. In fact, t
magnitudes ofa are singularities ofM because they are roo
of the denominator of its analytic expression.M changes sign
increasinga above this value. For largera the magnitudes ofM
become positive and very similar to those of the varicose m
The negative Marangoni number brings about the possibilit
destabilizing the fluid layer changing the sign of the tempera
gradient, which under other conditions should be stabilizing
in the varicose mode, it was also found that the negative mar
curves forBδ = 1 are more stable (larger magnitude) than th
for Bδ =∞.

The marginal Marangoni numbers of oscillatory convect
present a series of complications due to the variety of poss
ties found for instability. Here, due to the large number of non
mensional parameters, only the case in which both Biot num
are zero is calculated. When the Biot number of the memb
is zero the stationary problem reduces to that describe
Ref. (3) of a flat wall. Here, the instability of this problem w
calculated numerically again, along with the oscillatory ins
bility related with Ref. (4), for the sake of comparison with t
results of the present paper. It has been confirmed that statio
convection appears before the oscillatory one when the w
flat, as suggested by the graphs of Ref. (4). It has been f
that when the tension of the membrane is smaller than or e
to that of the free surface (see Table 1) the varicose mod
oscillatory convection is the first to appear. When the tensio
the membrane is increased the range where the varicose m
more unstable than the stationary case becomes more res
in the wavenumber range. The oscillatory sinuous mode ca
excited first only when the Marangoni numbers are nega
However, the magnitude of M2 increases with the tension o
membrane, making it difficult to destabilize the fluid layer.

When the free surface tension is reduced (second pa
Table 1), a weak membrane tension may allow the first osc

-
een
tory sinuous mode M1 to be the more unstable in a small range of
wavenumbers after which the varicose mode prevails. Increasing
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the tension of the membrane limits the range in which the v
cose mode may exist, allowing the sinuous mode to be the m
unstable for a larger range ofa. However, above some mag
nitude of the wavenumber the stationary convection on the
wall will be the more unstable. When the magnitude of the m
brane tension is larger than that of the free surface, statio
convection on a flat wall is the more unstable in the range
wavenumbers shown in Table 1.

It is concluded that it is physically possible to destabil
the fluid layer with negative Marangoni numbers because o
new degrees of freedom added by the membrane deformati
perturbation given to the free surface by heating from above
duces a free surface deformation that is transmitted to the m
brane. The perturbation will be opposed by friction at the me
brane and by the degree of surface tension and membrane
sion. However, depending on the magnitude of the waven
ber this opposition may or may not be important. For relativ
small wavenumbers not only viscous but also surface ten
and membrane tension effects are not very important and
membrane can follow the motion of the free surface and e
may promote the growth of the perturbation. In this way,

perturbation is not dissipated like in a flat wall. It was foun
that for stationary convection the preferred mode for nega
S-OROZCO

ri-
ore
-
flat
m-
ary
of

ze
the
n. A
ro-
em-
m-
ten-
m-
ly
ion
the

ven
he

Marangoni numbers is the sinuous mode. For oscillatory c
vection and fixed heat flux the preferred mode forM < 0 is
again the sinuous one, but it was found that the varicose m
can also be excited for large membrane crispation numbers

This variety of possible situations speaks about the richn
of phenomena appearing when the membrane (or wall) de
mation is included in the problem of Marangoni convection.
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