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Electrorheology of nematic liquid crystals

in uniform shear flow

Abstract A hydrodynamic model
for the electrorheological effect in a
polymeric nematic confined in a
rectangular cell is studied. The
competition between a constant
electric and a uniform shear flow is
explicitly considered. For the final
stationary state where the induced
reorientation of the director has
already occurred, we show that the
averaged viscosity is enhanced. For
this same state several rheological
properties such as the first normal
stress difference and the force

between the cell plates are also
analytically calculated as a function
of position, the applied field, and
Reynolds’ number. These results
are compared with those obtained
previously for a pressure driven
flow. The scope and limitations of
the model and methods employed
are discussed.

Introduction

In a previous paper (Rodriguez et al. 1999) we have
shown that liquid crystals are indeed interesting fluids
for electrorheological applications (Tao 1992; Block and
Kelly 1988). We studied a simple analytical model for
the reorientation of a thin film of the polymeric nematic
poly(n-hexyl isocyanate) (PHIC), when acted upon by an
external electric field and an externally imposed plane
Poiseuille flow on a liquid crystal planar cell with a
separation of a few microns between its plates. We
showed that the induced reorientation induced by both
fields, produce an electrorheologic effect (ER), that is, an
increase of almost three orders of magnitude in the
apparent viscosity of PHIC. Our model shows that the
reorientation of the nematic is the physical mechanism
leading to the existence of the ER effect in this model.
This same material was originally used by Yang and
Shine (1992) to show the feasibility of liquid crystal
systems to produce a practical ER in a rotational
rheometer.

In this paper we consider the case of uniform flow. By
assuming that director’s reorientation in the presence of a

constant electric field and flow is a relaxation process, we
derive a coupled set of nonlinear hydrodynamic equa-
tions for the director and the velocity field (San Miguel
and Sagués 1987; Rodriguez and Reyes 1995; Rodriguez
et al. 1996). The equation for the stationary orientational
profile is solved in an approximate but analytical way by
using boundary layer methods. Using this solution the
apparent (orientational) viscosity is calculated and plot-
ted as a function of the dimensionless external field for
different values of the Reynold’s number. As in Rodri-
guez et al. (1999), this curve shows a large increase in the
viscosity (ER). It is also shown that the ER vanishes when
a critical value of the Mason number, M¢, is exceeded.
Our analytical approach allows us to calculate this critical
value and express it in terms of material properties and
flow parameters. Some rheological properties are then
calculated in terms of the orientational profile, for
instance, the stress tensor as a function of the flow
strength; the first normal stress difference N; as a function
of the position within the cell, the applied field and the
Reynolds’ number of the flow, and the force /' between
the plates of the cell as a function of the Reynolds number
for different values of the electric field. We find that, in
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contrast to the observed behavior of N; for plane
Poiseuille flow where N; presents regions of negative
values (Rodriguez et al. 1999), for simple shear this
situation does not arise for the considered values of
electric field and flow shear rates. This would only be
possible for a strong electric field and a weak flow,
conditions which are not attainable within the present
analytical approach. Then the force on the plates is also
calculated as a function of the velocity gradient and for
different electric field strengths. We find that the net force
increases with the electric field and remains almost
constant with the velocity gradient for high values of
the electric field. However, for some values of the field the
magnitude of the force decreases as the velocity gradient
increases and vanishes for a definite value of the
dimensionless shear rate. A similar behavior presents
the shear stress, which shows a steep drop at around the
same value of the shear rate. It is very interesting to note
that /' becomes zero only for a specific value of the ratio
between shear rate and field strength. This critical ratio
signals the limit of existence of the electrorheological
effect, in such a way that it corresponds to a regime of
complete alignment of the director with the velocity.
Finally, we close the paper by discussing the limitations
and advantages of our approach.

Model and governing equations

A quiescent nematic layer of thickness / is contained
between two parallel conducting plates, as depicted in
Fig. 1. The transverse dimensions of the cell, L, along the
x and y axes are large compared to /, so that the cell has a
large aspect ratio but a finite volume V = L% If the
initial orientation of the director is planar, when an
external d.c. electric field E is applied along the z
direction, the director # will reorient inside the cell for
values of E > E_, where E_ is the critical field that has to
be exceeded to initiate the reorientation. Owing to the
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Fig. 1 Schematics of a planary aligned liquid crystal film in the
presence of a constant electric field. The velocity profile of a uniform
shear flow is also shown

low aspect ratio of the cell, it is reasonable to assume this
reorientation occurs only in the x—z plane. If in order to
simplify the description, spatial homogeneity in the x
direction is assumed, then # = [sin 0(z, 1), 0,cos 0(z,1)],
where it is also assumed that the reorientation angle 6
satisfies strong anchoring conditions at the plates:

0(z:ié>:ig : (1)

In addition to the electric field we assume that the
plates may move relative to each other to produce an
uniform shear flow in the x—z plane and along the x
direction (Fig. 1). Then the only relevant component of
the velocity field is v which will be assumed to satisfy
the following no-slip boundary conditions:

(—ié) 0. 2)

As usual, the reorientation of the director will be
considered to be an isothermal process and, therefore, its
equilibrium states may be described in terms of the
associated Helmholtz free energy functional, which for
the assumed geometry and in MKS units takes the form
(Khoo 1988)

K (dO\* E MR B
F/VdV{2 <dz) fjso(sLJrsacos 0)+§pvx(z) )

3)
where in writing this expression the assumption of equal
elastic constants for the splay, bend and twist elastic
deformations, K = K; = K, = K5 has been made. Here
&, = ¢ — ¢. stands for the dielectric anisotropy of the
nematic, &, denotes the permittivity of the vacuum, and
p(z,1) denotes the local mass density of the fluid. The last
term in this equation represents the contribution to F
due to the uniform shear flow along the x direction.

Following the usual procedure to derive nematody-
namic equations (de Gennes 1964; San Miguel and
Sagués 1987) from Eq. (3) we arrive at the following set
of coupled dynamical equations for 0 and v, (Rodriguez
et al. 1996):
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where the variational derivative 0F/d0 is given explicitly
by
oF

50~ a2
In these equations 7y;, 7,, v3, with A = y/y,, denote the
various viscosity coefficients of the nematic.

4’0 egea , .
——8028 E*sin20 . (6)
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Strictly speaking, Eqgs. (4), (5), and (6) provide for a
closed set of hydrodynamic equations for a low
molecular weight nematic (thermotropic), since in this
case the director is the only additional hydrodynamic
variable, apart from the usual conserved variables of
mass, specific entropy and momentum densities (Rod-
riguez and Reyes 1996). Since for a polymeric nematic
(Iyotropic) the corresponding description is much more
involved owing to the large number of degrees of
freedom that may contribute to the dynamics in the
hydrodynamic limit, its complete formulation is still an
open issue. Therefore, as a first approximation, we
shall use the above formalism to describe the hydro-
dynamic behavior of a polymeric nematic solution of
PHIC, as described by Yang and Shine (1992). It is
important to stress that this is, indeed, a strong
approximation; however, it is expected to be a reason-
able one owing to the fact that molecular weight of
PHIC (~10°) is not too large. If in addition the system
is always away from a critical point, it is not necessary
to account for the dynamics of an order parameter,
which is not a hydrodynamic variable, and therefore its
behavior can be described by considering the director
field as the only additional hydrodynamic variable.
This approximation has the great advantage of keeping
the description simple enough so that an analytical
treatment is possible and specific calculations can be
carried out.

In this work we only consider the final stationary
state characterized by the fact that the reorientation has
already occurred, but flow effects are still present. For
this case the calculation of some rheological properties,
such as the viscometric functions, can be carried out
explicitly (Rodriguez and Camacho 1998), as we shall
see below. The final stationary state is defined by setting
the left hand sides of Egs. (4) and (5) equal to zero,
which yields a closed equation for the final stationary
orientational configuration. We shall carry out this
procedure explicitly for a particular flow, namely, the
uniform shear flow.

Uniform shear flow

This flow occurs when the plates move in opposite
directions with constant velocity =+ v, in such a way that
the velocity gradient (dv,({)/d{) =7 = const. In terms
of the dimensionless variable { = z//, Eq. (5) reduces to

2
d U; _0,
d¢
whose solution satisfying the boundary conditions
x({ = £1/2)= v is given by vy =20v¢(/l. By inserting
this solution into the orientational equation (Eq. 4) we
arrive at the following closed equation for 6:

(7)

2
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with the dimensionless field strength
p=qE’ ©)
where
q = eoe EX7 2K (10)

and a dimensionless shear rate is given by

m = Ry,v3(1 — 1)/pK . (11)
Here E = 1;%’ where E. =7 1/2K /e,& is the critical field
(Khoo 1988) and is such that reorientation occurs if
E > 1. It is essential to emphasize that there are two
important physical parameters in Eq. (8). On the one
hand, p is proportional to the ratio between the energy
of the incident field and the nematic’s elastic energy.
Therefore, it is a measure of the strength of the coupling
between the external field and the induced orientational
configuration. On the other hand, the parameter m,
given by Eq. (11) contains the effects due to the
hydrodynamic flow through the Reynolds number
R = pupl/vs.

Although the exact analytical solution of Eq. (8) can,
in principle, be written in terms of elliptical functions, in
this work we only shall consider its asymptotic solution
for strong fields and large values of m. Thus, if we
assume that p =~ m > 1, and follow the same boundary
layer procedure sketched in Rodriguez et al. (1999), we
find that the outer solution 0,,, is given by Bender and
Arszog (1978) and Schilchting (1968):

(12)

To determine the inner solution note that the terms
psin20 and mcosf) are no longer dominant near the
boundaries 0 = +x/2, where there should be boundary
layers. Near these regions it is convenient to express the
inner solution o = 6;,, £ 7/2 in terms of the fast variable
n=/p({£1/2). For small values of « this leads to

. m
0, = arcsin— .
2p

2

—a—sin2ocj:m/(2p)sinzx:0 .

3 (13)

The general solutions of this equation can be expressed
as

% = dexp|[v/2p = Sign[CJm(||
+ Bexp {—\/mléﬂ )

where 4 and B are arbitrary constants to be determined
by the matching condition for the adjusted solution 0,

eadj = Bout + Hin - (15)

(14)

Hmatch .
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If 0,,,4;¢1, 1s calculated in such a way that 0,,,(z) and 0,,(z)
join asymptotically, and if the resulting expression
together with 0,,, and o are substituted into Eq. (15),
we finally arrive at

0(L;m, p) = arcsin [zﬂp} + (Sign[C]%- [%D
sinh [\/m\il]
sinh [ \/2p—Sign[Cim/2]

Notice from this equation that 6 is continuous in the
asymptotic limit of strong fields and flows, even though
its first derivative is discontinuous. It is important to
point out that this boundary layer method can be used
only when the values of p and m are of the same order of
magnitude, that is, when 2 ~ 1. Actually, for future
reference it is convenient to express this ratio in terms of
the Mason number, M,, which is a measure of the
relative magnitude of hydrodynamic and electrostatic
forces. For the case of a simple shear flow it is defined as

~ 26,(BE)?

where 7 is the shear rate, #, is the shear viscosity and FE is
the magnitude of the electrostatic field.  is the dipole
coefficient defined as

g — 1

(16)

a

= 18
p=ts (18)
being ¢, the dielectric constant ratio

&
= — . 19
o= (19)

Here ¢ is the dielectric constant of the liquid crystal and
&, 18 that of the solvent. Thus, it follows that

m 4y](1 —2) ssﬁz
P Vi 80&q

Note that M, is expressed in terms of material properties
and geometrical and flow parameters.

M, . (20)

Results and discussion
Electrorheological effect

Let us consider first the orientational profile. Figure 2
illustrates a plot of the orientation angle 0 vs (, as
obtained from Eq. (16) for various values of the
parameters m and p. 0 presents a considerable increase
in the region close to the walls, up to the boundary value
of p/2. Notice that the orientation of the director is
constant in most of the bulk central region of the cell,
and its magnitude depends on the ratio m/p or Mason
number. As the velocity gradient increases, i.e., as m
increases, the orientation of the director tends to be
more aligned with the direction of the fluid velocity in

0 (Rads)
16

Fig. 2 Orientational configuration 6 vs { of PHIC for different values
as calculated from Eq. (16). (—) m= 50, p = 160; (-) m= 100, p = 160;
() m=160, p=160; (—) m =160, p= 100

the central region of the cell. On the other hand, the
electric field direction is normal to that of the flow, and
therefore it opposes the alignment of the director with
the flow direction. In the particular case when p=m,
Eq. (16) implies that in the center of the cell the
orientation is fixed to the value 0 =arcsin (1), meaning
that the orientation angle at the center becomes
multivalued. This multivalued solution implies that
there are many different values of the velocity gradient
and electric field compatible with the same orientation of
the director at the channel center; in this sense it allows
for a non-limited growth of the angle. The curve
corresponding to m =160, p =160 in Fig. 2 also shows
that dO/d{ 1is discontinuous, although this is not
noticeable in the other curves.

It should be pointed out that the above result is in
contrast to the one obtained in the case of Poiseuille flow
where the orientation angle presents a sharp increase in a
very narrow region around the central part of the
channel and a small variation in the remaining of the
cell; see Fig. 2 in Rodriguez et al. (1999). The orienta-
tion of the director is almost parallel to the walls in most
of the cell and only in the cell’s center, where the velocity
gradient is zero, is aligned with the electric field. In
contrast, in simple shear flow, where a constant velocity
gradient is imposed, the orientation of the director
changes rapidly and attains a specific value dependent
on the ratio m/p in most of the central region. Only in
the situation when this ratio is large, the orientation of
the director remains almost parallel to the flow direction.

The apparent viscosity relates the shearing force per
unit area with the magnitude of the local shear. Its
dependence on the orientation of the director occurs

through the expression (Carlsson 1984)
n(0(0); E) = oy cos? 0sin® 0 + 1y, + (02 + 03) sin* 0, (21)

where o, oy, az are the Leslie coefficients, and 7, is the
transverse Miesowicz viscosity (Miesowicz 1935). Since
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Fig. 3 Orientation viscosity 1 vs { as calculated from Eq. (17) for
PHIC. (—) m=50, p=160; (-) m=100, p=160; () m=160,
p=160; (—) m=10, p=10

the orientation angle 0 is given by Eq. (16), the way in
which 5 depends on 0 indicates that the system is non-
Newtonian, since 7 is strongly dependent on the driving
force. From Egs. (16) and (17) we obtain the spatial
variation of # within the cell. Figure 3 shows a plot of
nl0({); E] vs ¢, as given by Eq. (17), for different values
of p and the non-dimensional velocity gradient m. The
shear viscosity remains almost constant in most of the
cell width and decreases towards the walls, giving rise to
a narrow low-viscosity region next to them. The low
viscosity region reflects the alignment of the director
parallel to the flow direction in the neighborhood of the
walls. The variation of the viscosity is sharper as the flow
strength diminishes, since the electric field orientation
(normal to the flow direction) dominates the director
orientation as the ratio m/p decreases. On the other
hand, when the flow dominates the director orientation,
the viscosity diminishes as m increases; this is specially
noticeable for m=p=10. This gives rise to a strong
dependence of the viscosity on the shear rate, i.e., a clear
non-Newtonian behavior. The required viscosity coeffi-
cients and other material parameters of PHIC are taken
from the predictions of Doi’s theory (Doi 1981) and
Yang and Shine (1992), a; =-2590 Pa s, o, =—3770 Pa
s, az=169 Pas, n.,=3640 Pas and ¢eo= 6.19 %
107 N/V? (Yang and Shine 1992). Here we have also
taken K~ 102N for the elastic constant and
I=4x 10" m for the separation distance between the
plates.

The ER effect in simple shear flow may be exhibited by
showmg the variation of the spatially-averaged viscosity
i(E fcf { , 1(0; E)d{ as a function of the electric field
strength »), parametnzed by the shear rate (m). The
variation of this quantity as a function of the electric field
is shown in Fig. 4. The viscosity tends to the zero shear
rate asymptote as m tends to zero. The increase in the
electric field strength gives rise to higher viscosity, since
the director tends to be aligned with the electric field
positioned normal to the flow direction, inducing higher

T T T
0 200 400 600 800 1000 1200 1400 1600 1800 2000
p

Fig. 4 Averaged viscosity 7 vs p parametrized by m/p. (—) m/p=0.1;
O mlp=1; () mp=15

resistance to flow. As in the case of Poiseuille flow
(Rodriguez et al. 1999), the nematic solution exhibits a
significant electrorheological effect, which is evidenced
by the sharp increase in the viscosity #(E). The magni-
tude of the electrorheological effect diminishes as the
flow strength rises, i.e., for larger values of m/p.

A very interesting effect is observed if we plot 77 as a
function of m in a logarithmic scale. This is shown in
Fig. 5 for high velocity gradients, where the viscosity
decreases sharply for a given value of m. This critical
velocity gradient depends on the magnitude of the field
strength (p) in such a way that it increases for larger
magnitudes of the electric field. The abrupt drop in the
average viscosity is related to a negligible mean resistance
to flow, which implies that the director orientation, on
the average, is close to that of the fluid velocity. Since the
viscosity depends entirely on the orientation angle 0, the
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Fig. 5 Averaged viscosity 7§ vs m parametrized by p. (—) p=500; (-)
p=200; () p=100; (—) p=40
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Fig. 6 Logarithmic plot of the stress 7 vs m for different values of the
electric field. (—) p=160; (-) p=100; (--) p=150

flow is able to orient the director in the fluid velocity
direction easier as the electric field strength decreases.

To estimate a typical value of the applied field, take,
for instance, a saturation value p=2800 in the curve
corresponding to m/p=0.1 in Fig. 4. Then, from the
above-mentioned definitions of p, ¢, and E., and using
the values of K and &, corresponding to PHIC, we find
that the critical field E.=1.41 x 103 V/m and that the
applied field is E=1.274 x 10° V/m~90E,. This shows
that for rather small applied fields, a strong electrorhe-
ological effect may be produced in the cell.

Rheological properties

For flows that are simple variations of uniform shear
flow, the stresses are uniform throughout the fluid and
the material functions depend on the shear rate alone. In
steady simple shear flows all transient stresses have died
out and the steady stress depend on the shear rate 7. The
behavior of the stress t vs m for different values of the
electric field is shown in Fig. 6. First note that the initial
slope of the curves is one, since the viscosity is constant
for low values of m. At relatively high velocity gradients
and for low electric fields, the stress reaches a maximum
and shows a sharp drop at a critical velocity gradient, as
also observed in the viscosity curves of Fig. 5. It is well
known that fluids which exhibit a maximum in the stress
may present a mechanical instability, since for a given
stress there are two available values of the velocity
gradient. In other words, regions of low and high
viscosity co-exist for a given stress, implying that two
average orientations also co-exist for the same stress.
The hydrodynamic treatment by Carlsson (1984) in the

Fig. 7 First normal stress difference N, vs { for different values of m
and p. (—) m= 150, p=160; (-) m= 100, p = 160; () m= 160, p = 160;
(—)m=10, p=10

absence of electric fields also allows for multiple values
of the velocity gradient for a given stress. It is interesting
that this effect induced by both flow and electric fields
has been predicted by this model analytically; however,
to our knowledge, there are no experimental data
available to compare with.

In simple shear flow, the effects produced by the
stresses generated during the reorientation process are
qualitatively different to those obtained in pressure
driven flows (Rodriguez et al. 1999). The first normal
stress difference N; defined as Ny = o, — 0, for shear
flow is given explicitly by

K|. . d% do\? 5
MO)] = —/11—2 lsmwd—éz—i- cos 20 <d_C> —qgcos (9]

(22)

Figure 7 shows the N; profile across the cell for
different values of m and p. In contrast to the observed
behavior of N; for plane Poiseuille flow where N,
presents regions of negative values (Rodriguez et al.
1999), in simple shear this situation would only be
possible with a strong electric field and weak flow,
conditions which are not attainable within the present
analytical approach which is restricted to values m ~ p.
Notice that the N, profile is similar in form to that of the
viscosity in Fig. 3. Most of the variation resides in the
region close to the wall, increasing from zero at the wall
and approaching a constant level in the central region of
the cell. The value of N; at the center depends on the
magnitude of the velocity gradient () and that of the
electric field (p). For a fixed electric field, N, decreases at
the center for higher velocity gradients, since the average
director orientation tends to align itself with the velocity
direction. Simultaneously, the width of the boundary
layer increases due to a predominant orientation in the
flow direction or parallel to the wall. Moreover, in the
limit of very weak electric fields (p =10), the curve at
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Fig. 8 The force f = [1/132 N[0(0)]d( as a function of m paramet-

rized by p. (—) p=160; () p=100; () p=150; (—) p=10

the bottom also reveals a predominant orientation with
the flow, corresponding to negligible N;.

In Fig. 8, the integration of the first stress difference
profile over the whole cell renders the net force between
the plates, f = fl/liz N (0(0))d{ as a function of the
velocity gradient (m) for varying electric field strength
(p). The net force increases with the electric field and
remains almost constant with the velocity gradient for
high values of p. The external field forces the average
director orientation to be aligned perpendicular to the
flow direction, producing a larger orientation gradient in
the velocity gradient direction, and hence increasing the
magnitude of the first normal stress difference. It is
interesting to note that when p =50, the magnitude of
the force, f, decreases as the velocity gradient increases,
and vanishes at m = 100. A vanishing N is ascribed to a
complete alignment of the director, on the average, with
the flow direction. This situation agrees with results
presented in Fig. 6 where, for p=>50, the shear stress
presents a steep drop at around m = 100.

To investigate the regions where the force becomes
negligible, Fig. 9 presents the variation of the force f'as a
function of the electric field strength p for several values
of the velocity gradient m. It is very interesting to note
from these curves that f becomes zero if and only if the
ratio m/p = 2. By (17), this implies that the critical value
of the Mason number, M¢, is

¢ V3 €0€q

T

This critical ratio signals the limit of the electrorheolog-
ical effect in such a way that when M “ is exceeded, the
ER vanishes. Our analytical approach allows us to
calculate this critical value and express it in terms of
material properties and flow parameters. It corresponds
to a regime of complete alignment of the director with
the velocity. Observation of Fig. 4 reveals that the
magnitude of the average viscosity in the plateau region
decreases as the ratio m/p =2 is approached.

(23)
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Fig. 9 f vs p parametrized by m. (—) m=160; (-) m=100; ()
m=50; (—) m=1

Carlsson and Sharp (1981) have also analyzed the
stabilizing effect of an electric field on the shear flow
of nematic liquid crystals. They showed that the
presence of an ac field across the sample produces a
stable boundary layer type of flow. They obtained
explicit expressions for the flow alignment angle, the
boundary layer and the relaxation time as functions of
the electric field. Although their physical situation is
essentially the same as the one considered in this
work, there are important differences in the goals of
both works. The solutions of the respective orienta-
tional equations for the final stationary state, our Eq.
(8) and their Eq. (10), yield different orientational
configurations because they neglect the influence of
the walls. Therefore, a direct comparison is not
feasible.

We conclude that the hydrodynamical model stud-
ied in this work showed that the reorientation induced
by both, a simple shear flow and an external dc
electric field on a nematic confined in a planar cell,
may produce a dramatic increase in the viscosity
known as the electrorheological effect. The analytical
approach presented here allows for predictions of
more than one possible value of the velocity gradient
for a given value of the stress in the presence of an
electric field. Also, our results provide the conditions
under which the ERE vanishes due to complete
alignment, on the average, of the director with the
velocity field. These conditions depend on the ratio m/
p and are such that for p = m/2, the viscosity shear
stress and the first normal stress difference approach
zero. In addition, at this particular value of the ratio
m/p, the orientation of the director at the cell’s center
is the same for multiple values of m and p but keeping
the fixed value m/p = 2.
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