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We investigate the dynamical origin of the statistical properties of boiling in a short capillary tube.
Two different models are proposed~Markov model and rotational model!. We show that the
behavior of each model may be related to different properties of the physical phenomenon. We
conclude with a suggestion of a new experimental measurement which can help to adjust several
aspects of the models. ©2001 American Institute of Physics.@DOI: 10.1063/1.1368196#
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Boiling dynamics presents a complex behavior, passing
through chaotic, intermittent, quasi-periodic, or periodic
regimes in function of the experimental parameters
„heating power, capillary geometry…. Despite the complex
behavior observed, it is possible to characterize some sta
tistical properties from the experimental data at each re-
gime. The goal of the present study is to investigate the
dynamical origin of the statistical features shown in ex-
periments. Doing so, we are able to determine the rela
tionship between each statistical indicator and the corre-
sponding dynamical properties of our models. Our
approach suggests new experimental measurements tha
will help to determine more features of the models.

I. INTRODUCTION

Experimental studies of boiling have revealed a gr
variety of qualitative behaviors. Depending on the expe
mental parameters the pattern of bubbles production is
otic, intermittent, quasi-periodic, or periodic~see Ref. 1 and
references therein!. This variety of regimes has been exte
sively described and documented, but there are a numbe
fundamental aspects that remain unclear. In the present s
we investigate the dynamical origin of the statistical featu
shown in experience. In doing so, we are able to determ
the relationship between each statistical indicator and
corresponding dynamical properties of the models.

From the experimental sample characteristics, three
tistical indicators are defined. The fact that discrete a
continuous-time-like statistics are relevant leads naturally
the choice of a suspension as the model dynamical sys
Once this is fixed, we consider the constraints that each
tistical indicator imposes on the parameters of the model
two particular cases, the Markov model and the rotatio
model~to be defined later!. In the first one, topological con
straints are immediately imposed from data~a grammar is
imposed!, and we show that some correlations between
two phenomena considered are needed. The rotati
3441054-1500/2001/11(2)/344/7/$18.00

ownloaded 05 Feb 2010 to 132.248.12.226. Redistribution subject to AIP li
t
i-
a-

of
dy
s
e
e

a-
d
o
m.
ta-
in
l

e
al

model would imply long-range correlations between bo
processes, and is compatible with the topological constra
imposed by experimental data. The comparison of the
models suggests the consideration of other statistical ind
tors, such as the entropy of experimental samples, to de
mine which of them is most useful in modeling the proce
In particular, we are faced with the question whether a m
ing or a zero entropy dynamics fits better the characteris
of the experiment. This is a question that we cannot ans
due to the actual lack of experimental evidence, as we s
see. Therefore, this approach suggests new experime
measurements that at the same time help to determine m
features of the models. This is a characteristic of dynam
modeling. Similar methods has been used by R. Lima and
Ugalde to model turbulence.2,3

In Sec. II we give a short description of the experimen
arrangement. In Sec. III we define the statistical indicat
that will be the bridge between the experiment and the m
els. The experimental behavior of the statistical indicator
described in Sec. IV. Section V is devoted to the mode
description and the constraints that experimental data
pose. The last section contains the conclusions.

II. EXPERIMENTAL SETUP

The experimental arrangement used to obtain the d
for the present study has been described in detail befo1

Here we give only the information required to understand
physical conditions under which the time series analyz
were obtained.

Bubbling at a chosen location in a vessel was achie
by immersing a short capillary tube~0.7 mm in diameter and
8 mm length! inside a large container~3 l! filled with dis-
tilled water at boiling temperature. The formation of vap
bubbles inside the tube is triggered by a heating wire pla
at its lower end which is also sealed with ceramic pas
Supplying a small electric current to the heating wire gen
ates water vapor that moves upwards due to buoyancy fo
© 2001 American Institute of Physics
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and leaves the capillary tube forming bubbles. The depar
of the bubbles is recorded by shining a laser beam thro
the water in the vessel, just above the upper end of the
where the bubbles form and detach. In the absence
bubbles, the beam passes practically undisturbed and i
corded at the opposite end by a photo-transistor. The p
ence of the bubbles refracts the beam and most of the l
light deviates from the sensitive area of the photo-transis
The output of the photo-transistor is recorded and sto
digitally in a PC to be analyzed after concluding the expe
ment. Care was taken to use a large enough sampling ra
capture the most of the important physical events in
bubble growth and detachment process. Typically, the se
output displays a series of peaks representing the forma
and departure of trains of bubbles. The time between
departure of two consecutive bubbles can be easily reco
by determining the time between a well-defined feature
the event; for instance, the time between two maxima~or
minima! in the time series.

III. STATISTICAL ANALYSIS OF THE RESULTS

For the analysis of the experimental results let us int
duce three statistical indicators. The first one is simply
distribution of time intervals between two consecuti
bubbles. The other two are related to the existence of
types of bubbles.

The result of an experiment is a sequence of val
$t i% i 50

N , wheret i is the time when theith bubble is detected
HereN11 is the number of bubbles of the given experime
tal sequence.

Let us define the associated sequence of time inter
between bubbles as

$Dt i% i 51
N , Dt i5t i2t i 21 . ~1!

Because of the finite experimental precision, we conside
partition D of the possible values of$Dt i%:

D5$D0 ,...,D j ,...%, ~2!

where

Dt iPD j , if j t<Dt i,~ j 11!t. ~3!

Heret is at least equal to the time increments precision.
~A! We define the first statistical indicatorhexp(Dj) as

hexp~D j !5
card$Dt iPD j ,i 51,...,N%

N
, ~4!

that is to say,hexp(Dj) is the experimental distribution of th
time interval between two bubbles. All the experimen
quantities are denoted with the subscript exp.

One observes~see Fig. 1! that for almost all the values o
the experimental parameters there are two maxima in
distribution hexp(Dj). That is to say there are typically tw
kind of bubbles: those that appear in a short lapse of t
after the preceding one~fast bubbles!, and those that appea
after a greater interval of time after the preceding one~slow
bubble!. Taking this into account we can classify the tim
intervals into two types: the fast ones~i.e.,Dt i,D limit , noted
b! and the slow ones~i.e., Dt i>D limite , noted a!, where
ownloaded 05 Feb 2010 to 132.248.12.226. Redistribution subject to AIP li
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D limit is defined in view of the experimental results~Fig. 1!.
This corresponds to the introduction of a partitionP5$a,b%
over the values ofDt i with

Dt iPa if Dt i>D limit ,
~5!

Dt iPb if Dt i,D limit .

In Fig. 1 we show an experimental sequence,V
52.41 V, where theX axis represents the sequencen
51,2,..,i ,... of theevents~emission of the 100 first bubbles!
and the Y axis the corresponding time intervalsDt i5t i

2t i 21 . Fixing D limite5120 ms we obtain the symbolic se
quence:

v5~a,a,a,a,a,b,a,...!. ~6!

It is important to remark that experimentally one cann
observe two consecutive fast bubbles. That means in s
bolic terms that the blockbb is forbidden inv.

~B! One introduces the second statistical indicator:

nexp@b#5
card$bPv%

N
, ~7!

that is to say, the frequency of fast bubbles with respec
the total number of observed bubbles.

~C! The third one is defined similarly and gives the fr
quency of appearance of the packages ofn consecutive slow
bubbles:

~8!

Finally, at this step, we characterize the experiment
the three statistical indicatorshexp(Dj), nexp@b#, andnexp(n).

The first one is defined over the possible values of
time between bubbles, and can be calculated from a parti
of time units as thin as desired~i.e., one can consider a
continuum of possible values ofDt i!, the only practical
lower bound being the acquisition frequency of the expe
mental signal.

The second and third ones are defined with a disc
event space.

FIG. 1. Experimental sequence of the time intervals forV52.41 V.
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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IV. EXPERIMENTAL RESULTS

When the applied voltage is less than 1.0 V, there m
not be bubble departure. The bubble generation experim
is performed using voltages in the rank 1–4 V. Two differe
behaviors, typically low and high heat rates, are identifie
For low heat rates the bubbles appear in groups or packa
These packages consist mostly of 4 to 11 bubbles, depar
at a constant period and separated by packages of
bubbles, leaving at a shorter period are observed. A differ
qualitative behavior, which is observed at larger heat rates
an almost periodic phenomenon.

A. Low heat rates

A typical result is for 2.41 V. The histogram of the time
intervals between bubblesD j→hexp(Dj) is shown in Fig. 2.
Two maxima appear forD j570 ms andD j5180 ms. This
result justifies the second and third statistical indicators
use. The second indicator isnexp@b#51

8.
The distributionn→nexp(n) is shown in Fig. 3. The main

maximum appears forn56 ~six consecutive slow bubbles!.
Two secondary maxima are detected forn512 andn518;
the significance of these secondary maxima will be discus
later.

FIG. 2. card$Dt iPD j ,i 51,...,N% for V52.41 V. Time unit 531023 s.
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V. THE MODELS

A. Framework and description of the models

Because a bubble detection during the experiment ca
observed at any time, it is natural to model the dynamics
the system by a flow~a continuous time dynamical system!
where such an event may happen. On the other hand, we
also interested in the statistical properties of the singu
events~distribution of fast and slow bubbles!, and so we
have to consider discrete time dynamics as well.

It is then natural to consider as a model a continuo
flow allowing a Poincare´ section. The dynamics of the sys
tem is described by the flow, and the events~production of
bubbles! take place when the orbit passes through some
face of the phase space~the Poincare´ section!. Following
Hopf’s theorem,4 all flow allowing such a Poincare´ section is
measurably isomorphic to a flow defined under a funct
~suspension!. We give now the general description of th
construction. LetT be a mapping of the unit interval an
consider a functionF(x), 0<x,1 ~we shall impose some
regularity to simplify the calculations!; the phase spaceX is
the area under the curveF(x) for xP@0,1):

X5$~x,y!:0<x,1,0<y<F~x!,

with the identification „x,F~x!…;~Tx,0!%. ~9!

Define overX the flow St , tPR1:

St~x,y!5S Tn~ t !x,y1t2 (
k50

n~ t !21

F~Tkx!D , ~10!

wheren(t) is uniquely fixed by

(
k50

n~ t !21

F~Tkx!<y1t, (
k50

n~ t !

F~Tkx!, ~11!

whereT is a map of the interval@0,1! onto itself. ActuallySt

is the composition of the mapT on the Poincare´ sectionB,
the base, with the flow that drives up the point (x,y) to
„x,F(x)… at a constant velocity equal to one. This last po
being identified with„T(x),0…, the flow goes up from this
point to „Tx,F(Tx)…, and so on~see Fig. 4!.

FIG. 4. FlowSt .
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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In this framework, the emission of a bubble correspon
to the cross of an orbit through a point of the basexPB,
more precisely through a point (x,0) of the phase space. Th
time between two bubblesDt i5t i2t i 21 is the time that the
system needs to come back to the section, i.e., the return
tB(x) to B. In particular, this time is simplytB(x)5F(x).

To classify the events in slow and fast ones like in t
preceding section, one can introduce a partitionP5$a,b%
over B so that

xPa if tB~x!5F~x!>Dt limit ,
~12!

xPb if tB~x!5F~x!,Dt limit ,

whereDt limit is chosen in accordance with the experime
To take into account the fast and slow bubble production
the experiment it is natural to takeF as an increasing func
tion. This partition defines also a codingp of the mapT of B
to the symbolic spaceV,$a,b%N. An orbit $Tix% i 50

` is
coded by symbolic sequencesv5(v0 ,v1 ,...) with v iPP
5$a,b%. The dynamics overV is the shifts and one has
obviously

p+T5s+p. ~13!

So, the intervalsa andb are

a5@c,1!, b5@0,c!, ~14!

wherec5 inf$x:F(x)>Dt limit%.
For the dynamical invariant measure, we consider

St-invariant measurem̃5m3j with m an ergodic measure
on B, andj the Lebesgue measure over the orthogonal dir
tion to B. Because of the ergodicity ofm and j, m̃ is also
ergodic.4 By the Birkhoff ergodic theorem,m̃ contains all the
asymptotic statistical information of the model.

Concerning the relation with the statistical indicato
nexp@b#, nexp(n), andhexp(Dj), we remark that these depen
only on the measurem over B and the functionF. Consider
first hexp(Dj). It is defined as the Birkhoff sum of the exper
mental sequence of time intervals between bubblesDt
5$Dt i% i 51

N of the observablex(D j ),
5 which is in correspon-

dence with the measurem overB of the model. We make the
hypothesis that the experimental result is generic for
measurem, so

hexp~D j !;m~x:tB~x!PD j !5E
x:F~x!PD j

dm~x!. ~15!

For nexp@b# andnexp(n), following the coding of the dynam
ics on B modulo the partitionP, the relation with the mea
surem is

~16!

nexp@b#;n@b#, ~17!

wheren is the induced measure byp on V.6 So, one can see
that nexp depends only on the transformationT and the mea-
surem over the base. Herehexp depends also on the functio
F. To be more precise, remark thatnexp depends indirectly on
F through the partition$a,b% of the baseB and then on the
form of F.
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s

e

.
n

n

c-

e

The properties of these three statistical indicators imp
constraints on the functionF and the measurem over B that
determine completely the model.

Let us examine the constraints that the experimental
tribution imposes on the model.

B. Constraints imposed by nexp„n…

Forgetting for the moment the time interval distributio
between bubbles@hexp(Di)#, let us analyze the constraint
that the distribution of fast and slow bubblesnexp(n) ~and
nexp@b#! imposes on the model.

We have just seen that this statistical indicator is rela
to the measuren in the symbolic spaceV. It is also related to
the functionF because it defines the codingp:B→V.

Remark that the measure onV can be defined withou
giving an explicit form ofT because only its action over th
partition appears onV, through the shifts.

In Fig. 2 we can see the experimental distributionn
→nexp(n) for V52.41 V.

There is at least one topological constraint that the
periment imposes; it is the impossibility of observing tw
consecutive fast events~fast bubbles!. The largest phase
space compatible with this fact is the subshift of finite ty
(SG ,s),6,7 defined by a grammarG:

G5S 1 1

1 0D . ~18!

It is natural to study this case first.

1. Subshift of finite type

Consider a subshift of finite type (SG ,s) with grammar
G. The family of ergodic measures the most natural to t
are the so-called Gibbs measures~see Appendix B2,8,9!.

A Gibbs measure is characterized by a potentialf. The
first property that we have to fix is the rank of the potenti
The next result restricts the set of accessible potentials.

nf~r 1k21!5eaknf~r 21!, k50,1,..., ~19!

with

~20!

and

~21!

This result implies that the rank of potential of the mod
is greater than or equal to the greater value ofn for which
nexp(n) rises a maximum. For example, after Fig. 2, and co
sidering only the main maximum (n56), we have to choose
the potential rank at least equal to 7.

Up to here, we can see the difficulties of the model. T
main difficulty that the Gibbsian model presents is that e
perimentally one observes the values ofn for which nexp(n)
has a maximum which is a function of the physical para
eters (V). This implies that either we choose the potent
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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rank to be the maximum value ofn such thatnexp
V (n) gives

rise to a maxima or the rank of the potential depends onV.
In the first case the potential rank must be at least 7~see

Fig. 3! and, even if one can find the parameters of the mod
to fit the experimental results, the model becomes heavy
hard to handle. The second option is even worse, becaus
dependence of the potential rank of the physical parame
is not very natural from a physical point of view.

We are going to define a second model in Sec. V C t
takes into account the secondary maxima.

Remark 1:In this case the absolutely continuous me
sure with respect to the Lebesgue measure~maximal entropy
measure! gives the following result:

nc~n!5~ 1
2!

n 1
3. ~22!

It is obvious that it does not reproduce the experimental d

C. Rotational model

Consider an irrational rotation of angleu as an automor-
phism overB:

Rux5$x1u%, ~23!

where$z% means the fractional part ofz.
Consider the coding defined by the partitionP

5$@0,c),@c,1)%5$b,a% with c<u.
This coding is compatible with the topological constra

that forbids the sequencebb. However, it presents othe
topological constraints. In particular, the complexity10 is
asymptotically equal top(n)52n for c, andu rationally in-
dependent andn great enough.11 Remark that this behavior i
related to the topological rigidity present in the irration
rotations. Another result that is very useful for us is t
three-gaps theorem12 ~see Appendix A!.

The rotations also present metric rigidity; the Lebesg
measure is the only invariant measure on the basisB. Thus,
the parameters of the models are the angle of rotationu and
the valuec that defines the partition.

The value ofc is fixed by the experimental value o
nexp@b#. Indeed, because the Lebesgue measure is the
invariant one, the measure of the cylinder@b# is n@b#
5 l x(p

21@b#)5c after the coding defined byP.

Thus we can reproduce the experimental maxima
nexp@n#, but they are delta peaks, which is in contradicti
with the experiment.

Besides, the rotational model presents the advantage
we can adjust the values ofn1 andn2 , and, as a consequenc
n(n), changing the rotational angle. That is to say, we ha
always n15 inf$m:$mu%<c% and n25 inf$m:$mu%.12c%.
So, we can calculate the dependence inV of u andc.

For example, for the caseV52.41 V, the experimenta
value of nexp@b#;1

8 imposes the parameter valuec to be c
5 1

8. Besides, the experimental values ofn1 andn2 are

n157, n2513. ~24!
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These values impose a constraint on the rotational angle

u5 1
71d ~25!

with

1

13•7•8
,d,

1

6•7•8
dPR\Q . ~26!

The three curves in Fig. 5 show the dependence ofn(n1

21), n(n221), and n(n11n221) on d; for d51.6
31023, they do agree with the weight of the three expe
mental picks~see Fig. 2!.

D. Constraints imposed by hexp„Dj…

The experimental values of the statistical indica
hexp(Dj) implies that theF function takes its values mostly in
two intervalsI a and I b :

F~x!PI a5@Damin
,Damax

# with Damin
>D lim ,

~27!
F~x!PI b5@Dbmin

,Dbmax
# with Dbmax

,D lim .

For theV52.41 V experience we chooseD lim50.12 s.
The exact form ofF that fits the results depends on th

measure. Let us consider the two models.

1. Subshift of finite type

For the subshift of finite type (SG ,s) with a Gibbs mea-
surenf the relationship betweenh(D j ) andF is after ~15!:

h~D j !5mf„F
21~D j !…5E

x:F~x!PD j

dmf . ~28!

To calculate this integral we can impose an additional c
dition on F such that the intervals$x:F(x)PD j% take a cy-
lindric form after the codingp:B→V. Then,h(D j ) can be
expressed as a function of the cylinders measure. T
F(x)PD j :xPp21(@a0a1¯an21#). Then

h~D j !5nf~@a0a1¯an21# !. ~29!

In the particular case of maximal entropy measure int
duced in~1! we have

FIG. 5. 2n(n121)22n(n221) and ...n(n11n221).
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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h~D j !5nc~@a0a1¯an21# !5~ 1
2!

n212#bnc@an21#,
~30!

where #b is the cardinality ofb in @a0a1¯an21#, nc@a#
5 2

3, andnc@b#5 1
3.

2. Rotations

This case is simpler than the subshift model because
only invariant measure on the basis is the Lebesgue mea
Take the partitionD5$D1D2 ,...% over the values ofF(x),
with

D j5@yj min
,yj max

!. ~31!

Recall thatF is an increasing function:

h~D j !5 l x~F21~D j !!

5E x:F~x!PD j
dlx

5 inf$x:F~x!5yj min
%2 inf$x:F~x!5yj max

%. ~32!

For all the values ofVhexp(Dj) can be reproduced by a func
tion of the form given in Fig. 6.

VI. CONCLUSIONS

The dynamical system corresponding to the two mod
discussed in this article is a flow allowing a Poincare´ section
B. In this way, we identify the production of the bubbles wi
the times when the orbit crossesB. We have seen that th
return time statistics toB can be described by the edge fun
tion F. Besides modeling the dynamics inB, we have found
that a Gibbsian model has practical~too high potential rank!
and physical problems~dependence of the rank of the pote
tial with V!. The problem of studying infinite rank potentia
or non-Gibbsian measures remains open.

For the rotational model its success depends on the
istence of the secondary maxima ofnexp(n) that would ap-
pear in longer observations. Additionally, the problem
finding a perturbation to the rotation in such a way that
delta peaks become wide remains open.

FIG. 6. F(x).
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At present, none of the models describes completely
experimental data. However, the fact that the experime
results show some properties of each one of them means
the physical phenomenon is in some sense the superpos
of two different phenomenon. Remark that the subsh
model implies that the production of slow and fast bubbles
decorrelated. On the other hand, a model based on the
tions implies an important correlation between both pheno
enon. Indeed, from the experimental observations~see Ref.
1! it is known that the slow bubbles appear by the accum
lation of air at the bottom of the capillary tube, which leav
it after attending a critical size. To observe fast bubbles, i
necessary that a thin layer of water divides the form
bubbles into two small ones, which will leave the capilla
tube within a very small interval between them. If this pr
cess appears as a consequence of the regularity of s
physical magnitudes, say temperature, pressure, etc., ar
the capillary tube, then the rotational model may be the m
natural one. On the other hand, a Gibbs model implies
this process is generated mostly random as a consequen
turbulence, instabilities or fluctuations of pressure, tempe
ture, etc., around the capillary and therefore would be a n
ral candidate for a randomlike origin of the phenomena~ir-
regularities or noise, for instance!. Thus, understanding
which of the models is more likely to fit the statistical pro
erties of the phenomenon would offer us nontrivial physi
information about the phenomenon. In other words,
would want to know where a mixing or a zero entropy d
namical system is the more appropriate choice regarding
experimental properties of the physical situation under c
sideration. Unfortunately, for the moment, our data is n
enough to exclude one of the two previous scenarios.

The main issue in deciding which of the two models,
some interpolation, is the more convenient to describe
experimental situation is the analysis of the correlation tim
of slow and fast bubbles. In order to have a definitive answ
to this alternative, longer runs in the experiment are clea
needed. This constitutes work in progress.
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APPENDIX A: THREE-GAP THEOREM

A well-known result in the theory of dynamical system
is the three-gap theorem:

Theorem 1 „Three gap theorem…:12 Let u be an irra-
tional number in#0,1@ and letbP#0,1

2@. The gaps between th
successive integers j such that$u j%,b take at most three
values, one being the sum of the other two. The three va
(n1 , n2 , and n11n2) and their asymptotic frequency are
cense or copyright; see http://chaos.aip.org/chaos/copyright.jsp
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D

n15min$n:$nu%P@0,b!%, nn1
5b2$n1u%,

n25min$n:$nu%P@12b,1!%, nn2
5b211$n2u%,

~A1!

n11n2 , nn11n2
5$n1u%112$n2u%2b.

Because of the uniqueness of the invariant measure this
sult is still true in terms of return times to all set of the ty
@a,b), and for all initial condition.

APPENDIX B: GIBBS MEASURES

In this appendix, we deal with the construction of a cla
of s-invariant ergodic measures that impose the frequen
of the admissible cylinders, namely Gibbs measures. In
ticular, this class contains Bernoulli and Markov measur
We will state the basic definitions and results of thermo
namic formalism.

A potential f is a continuous function fromS to R. In
the case whenSG is a subshift, we still denote byf its
restriction to SG . f is said to be Ho¨lder continuous if
varnf<Cfd(v,v8)n5Cfun(Cf.0), where varnf

5
def

sup$uf(v)2f(v8)u:v j5v j8,0< j ,n%.13

The topological pressure off on SG is denoted by
PSG

(f,s) and defined as follows:

PSG
~f,s!5

def

lim
n→`

1

n
log

3 (
a0:n21

@a0:n21#ùSGÞ0”

exp~Snf@a0:n21# !, ~B1!

where Snf@a0:n21#5
def

sup$Snf(v):v0:n215a0:n21% and
@a0:n21# is the shorthand notation for@a0 ,a1 ,...,an21#.

The ‘‘Gibbs inequality’’ characterizes Gibbs measur
by giving the approximate measure ofany admissiblecylin-
der. This is stated in the next Theorem. We will use
shorthand notationa;c6b to meanc21b<a<cb.

Theorem 2: Let f be a Hölder continuous potential and
SG a subshift of finite type. Then there exists a uniq
s-invariant probability measuremf such that there exists a
constant Cf , such that for anyvPSG and any n>1, we
have

mf@v0:n21#;Cf
6 exp~2nPSG

~f,s!1Snf~v!!. ~B2!

If @a0:n21# is not SG-admissible, then we se
mf@a0:n21#50. We should writemf

SG instead ofmf if there
is an ambiguity on the space where the measure is defin

Gibbs measures are ergodic~in fact, they have strongly
mixing properties!.
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A Gibbs measure can be characterized as an equilibr
state of the potentialf as follows. There is a unique
s-invariant measure for which the supremum ofh(h)
1*SG

f dh over alls-invariant measuresh ~defined onSG!

is attained and equal toPSG
(f,s), namely the measuremf .

h(h) is the metric entropy ofh.
The Gibbs inequality previously stated gives a charac

ization of Gibbs measures with cylinders. The transfer ope
tor ~sometimes called the Ruelle–Perron–Frobenius op
tor! characterizes them as the solution of an eigenva
problem. DefineLf acting on any continuous functionf as
follows:

~Lf f !~v!5
def

(
v8:sv85v

v8PS

exp~f~v8!! f ~v8!. ~B3!

This operator is linear, positive, and bounded in t
i .i`-norm.

The so-called ‘‘Ruelle–Perron–Frobenius’’ theorem a
serts the following:Lf has a unique positive eigenfunctio
r f associated with the eigenvaluel5exp„PSG

(f)…, which

is simple and maximal. The dual operatorLf* has the prob-
ability measuren as unique eigenvector, with the same e
genvaluel. The Gibbs measuremf is equal tor fn.
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