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Two models for the dynamics of boiling in a short capillary tube
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We investigate the dynamical origin of the statistical properties of boiling in a short capillary tube.
Two different models are proposd#larkov model and rotational modelWe show that the
behavior of each model may be related to different properties of the physical phenomenon. We
conclude with a suggestion of a new experimental measurement which can help to adjust several
aspects of the models. @001 American Institute of Physic§DOI: 10.1063/1.1368196

Boiling dynamics presents a complex behavior, passing model would imply long-range correlations between both
through chaotic, intermittent, quasi-periodic, or periodic processes, and is compatible with the topological constraints
regimes in function of the experimental parameters imposed by experimental data. The comparison of the two
(heating power, capillary geometry). Despite the complex models suggests the consideration of other statistical indica-
behavior observed, it is possible to characterize some sta- tors, such as the entropy of experimental samples, to deter-
tistical properties from the experimental data at each re-  mine which of them is most useful in modeling the process.
gime. The goal of the present study is to investigate the In particular, we are faced with the question whether a mix-
dynamical origin of the statistical features shown in ex- ing or a zero entropy dynamics fits better the characteristics
periments. Doing so, we are able to determine the rela- of the experiment. This is a question that we cannot answer
tionship between each statistical indicator and the corre- due to the actual lack of experimental evidence, as we shall
sponding dynamical properties of our models. Our see. Therefore, this approach suggests new experimental
approach suggests new experimental measurements that measurements that at the same time help to determine more
will help to determine more features of the models. features of the models. This is a characteristic of dynamical
modeling. Similar methods has been used by R. Lima and E.
Ugalde to model turbulence®

I. INTRODUCTION In Sec. Il we give a short description of the experimental

Experimental studies of boiling have revealed a greaffangement. In Sec. lll we define the statistical indicators
variety of qualitative behaviors. Depending on the experi-that will be the bridge between the experiment and the mod-
mental parameters the pattern of bubbles production is ch&ls. The experimental behavior of the statistical indicators is
otic, intermittent, quasi-periodic, or periodisee Ref. 1 and described in Sec. IV. Section V is devoted to the models’
references thereinThis variety of regimes has been exten- description and thg constrai_nts that experi.mental data im-
sively described and documented, but there are a number 80Se. The last section contains the conclusions.
fundamental aspects that remain unclear. In the present study
we inve_stigate the dynamicz_;il origin of the statistical featur_eﬁl' EXPERIMENTAL SETUP
shown in experience. In doing so, we are able to determine
the relationship between each statistical indicator and the The experimental arrangement used to obtain the data
corresponding dynamical properties of the models. for the present study has been described in detail béfore.

From the experimental sample characteristics, three stddere we give only the information required to understand the
tistical indicators are defined. The fact that discrete anghysical conditions under which the time series analyzed
continuous-time-like statistics are relevant leads naturally tavere obtained.
the choice of a suspension as the model dynamical system. Bubbling at a chosen location in a vessel was achieved
Once this is fixed, we consider the constraints that each stdby immersing a short capillary tud®.7 mm in diameter and
tistical indicator imposes on the parameters of the models i8 mm length inside a large containg |) filled with dis-
two particular cases, the Markov model and the rotationatilled water at boiling temperature. The formation of vapor
model (to be defined latgr In the first one, topological con- bubbles inside the tube is triggered by a heating wire placed
straints are immediately imposed from ddtagrammar is at its lower end which is also sealed with ceramic paste.
imposed, and we show that some correlations between the&upplying a small electric current to the heating wire gener-
two phenomena considered are needed. The rotationaktes water vapor that moves upwards due to buoyancy forces
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and leaves the capillary tube forming bubbles. The departure 92
of the bubbles is recorded by shining a laser beam througt .
the water in the vessel, just above the upper end of the tub1,a 0.20 ﬁ
where the bubbles form and detach. In the absence ofg’ ] -"T"

bubbles, the beam passes practically undisturbed and is reg s T ﬁ

corded at the opposite end by a photo-transistor. The pres3 .’

ence of the bubbles refracts the beam and most of the lase$
light deviates from the sensitive area of the photo-transistor
The output of the photo-transistor is recorded and storecg 14 ‘ ]
digitally in a PC to be analyzed after concluding the experi—E
ment. Care was taken to use a large enough sampling rate t
capture the most of the important physical events in the °v°°0 x A T A
bubble growth and detachment process. Typically, the sensa Event

output displays a series of peaks representing the formation

and departure of trains of bubbles. The time between the FIG. 1. Experimental sequence of the time intervals\fer2.41 V.
departure of two consecutive bubbles can be easily recorded

by determining the time between a well-defined feature of

the event; for instance, the time between two maxima
minima) in the time series.

‘ib‘v

3

0.10

Aimit is defined in view of the experimental resulisg. 1).
This corresponds to the introduction of a partitiPr{«, 5}
over the values oAt; with

Ill. STATISTICAL ANALYSIS OF THE RESULTS Atjca if A=Ay,

For the analysis of the experimental results let us intro- ) (5)
duce three statistical indicators. The first one is simply the ~Atie 8 if Ati<Ajim.

distribution of time intervals between two consecutive

bubbles. The other two are related to the existence of two I:l \flg;/vhl rweths?(owxianr e);pe“nmtenial sequennoe,
types of bubbles. =2.41V, where theX axis represents the sequence

The result of an experiment is a sequence of values 1,2,..i,... of theevents(emission of the 100 first bubbles

{t;}\,, wheret; is the time when théth bubble is detected. and the Y axis the _correspondmg time mterva&ti_—ti
HereN+ 1 is the number of bubbles of the given experimen-_tifl' .lemg Aimie=120ms we obtain the symbolic se-
tal sequence. quence-

Let us define the associated sequence of time intervals
between bubbles as

N o It is important to remark that experimentally one cannot
{Atho,,  Ati=ti—ti_g. oy . .
observe two consecutive fast bubbles. That means in sym-

Because of the finite experimental precision, we consider &olic terms that the bloclgg is forbidden inw.

o=(a,a,a,a,a,B,a,...). (6)

partition D of the possible values diAt;}: (B) One introduces the second statistical indicator:
D={Ag,...A},...}, (2 card Be w}
where Ved Bl= —— (7)
Atiedy, I jr=At=<(j+1)r © that is to say, the frequency of fast bubbles with respect to
Here 7 is at least equal to the time increments precision. the total number of observed bubbles.
(A) We define the first statistical indicatay.,{4,) as (C) The third one is defined similarly and gives the fre-
cardAtieA; i=1,..N} guency of appearance of the packages obnsecutive slow
Nexgl A}) = N , (4)  bubbles:
_ ) ) o card{,Ba'_.fn.—a,Be o} 8
that is to say»ey(4) is the experimental distribution of the Vep(M)=——n =7 ®
time interval between two bubbles. All the experimental
guantities are denoted with the subscript exp. Finally, at this step, we characterize the experiment by

One observetsee Fig. ]that for almost all the values of the three statistical indicatorge,(A;), vexd 8], andve,n).
the experimental parameters there are two maxima in the The first one is defined over the possible values of the
distribution 7e.(4;). That is to say there are typically two time between bubbles, and can be calculated from a partition
kind of bubbles: those that appear in a short lapse of tim@f time units as thin as desire@e., one can consider a
after the preceding ongast bubbles and those that appear continuum of possible values akt;), the only practical
after a greater interval of time after the preceding Gslew  lower bound being the acquisition frequency of the experi-
bubble. Taking this into account we can classify the time mental signal.
intervals into two types: the fast on@s., At;<Aj,;; , noted The second and third ones are defined with a discrete
p) and the slow onesi.e., Ati=A ., Noted a), where event space.
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IV. EXPERIMENTAL RESULTS

When the applied voltage is less than 1.0 V, there may. THE MODELS
not be bubble departure. The bubble generation experiment
is performed using voltages in the rank 1-4 V. Two different
behaviors, typically low and high heat rates, are identified. ~ Because a bubble detection during the experiment can be
For low heat rates the bubbles appear in groups or package@pserved at any time, it is natural to model the dynamics of
These packages consist mostly of 4 to 11 bubbles, departirije system by a flowa continuous time dynamical system
at a constant period and separated by packages of twhere such an event may happen. On the other hand, we are
bubbles, leaving at a shorter period are observed. A differerdlso interested in the statistical properties of the singular
qualitative behavior, which is observed at larger heat rates, igvents(distribution of fast and slow bubblgsand so we

Framework and description of the models

an almost periodic phenomenon. have to consider discrete time dynamics as well.
It is then natural to consider as a model a continuous
A. Low heat rates flow allowing a Poincaresection. The dynamics of the sys-

A typical result is for 2.41 V. The histogram of the time tem is described by the flow, and the evefgroduction of
intervals between bubbles;— 7e,(A;) is shown in Fig. 2.  bubbles take place when the orbit passes through some sur-
Two maxima appear foA;=70ms andA;=180ms. This face of the phase spadéhe Poincaresectior).,Following
result justifies the second and third statistical indicators wéHopf's theorent, all flow allowing such a Poincargection is
use. The second indicator ig,J8]=3. measurably isomorphic to a flow defined under a function

The distributiomn— ve,(n) is shown in Fig. 3. The main (suspension We give now the general description of this
maximum appears fan=6 (six consecutive slow bubbles construction. LetT be a mapping of the unit interval and
Two secondary maxima are detected for 12 andn=18; consider a functiorF(x), 0=<x<1 (we shall impose some
the significance of these secondary maxima will be discussetegularity to simplify the calculationsthe phase spack is

later. the area under the cunk(x) for xe[0,1):
X={(x,y):0=x<1,0sy<F(x),
70 with the identification (x,F(x))~(Tx,0)}. 9
60 Define overX the flowS;, te R™:
. 4 n(t)—1
. S Y)=| Txy+t— 2 F(T%) |, (10
o 9 k=0
§ wheren(t) is uniquely fixed by
8 % ] nt)—1 n(t)
20 > F(T)sy+t< >, F(Tk), (12)
k=0 k=0
104 whereT is a map of the intervdl0,1) onto itself. ActuallyS;
0_' I _ is the composition of the map on the PoincareectionB,
0 5 10 %5 220 25 the base, with the flow that drives up the pointy) to
Bubbles per package (x,F(x)) at a constant velocity equal to one. This last point
n being identified with(T(x),0), the flow goes up from this
FIG. 3. card{ 8@...dB e w} as a function of n for V=241V, point to (Tx,F(Tx)), and so orn(see Fig. 4.
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In this framework, the emission of a bubble corresponds

to the cross of an orbit through a point of the baseB,

Boiling in a short capillary tube 347

The properties of these three statistical indicators impose
constraints on the functioR and the measurg over B that

more precisely through a poink,0) of the phase space. The determine completely the model.

time between two bubblest;=t;—t;_; is the time that the

Let us examine the constraints that the experimental dis-

system needs to come back to the section, i.e., the return timtgbution imposes on the model.

7g(X) to B. In particular, this time is simplyg(x) =F(x).

To classify the events in slow and fast ones like in the. Constraints imposed by

preceding section, one can introduce a partit®r{a,B}
over B so that

Xea

Xe B

if 75(X)=F(X)=Atjmit,

_ (12
it 75(X)=F(X)<Atjinit,

where At IS chosen in accordance with the experiment.
To take into account the fast and slow bubble production in

the experiment it is natural to take as an increasing func-
tion. This partition defines also a codiagof the mapT of B
to the symbolic spac€)C{a,B8}". An orbit {T'x}i_, is
coded by symbolic sequences=(wg,wq,...) With ;e P
={a,B}. The dynamics ovef) is the shiftc and one has
obviously

moT= oo, (13
So, the intervalsy and B are
a=[c1), pB=[00), (14

wherec=inf{x:F(X)=Atjini}-

Vexp(n)

Forgetting for the moment the time interval distribution
between bubble$ 7.,{A)], let us analyze the constraints
that the distribution of fast and slow bubbleg,y(n) (and
Vexd B]) imposes on the model.

We have just seen that this statistical indicator is related
to the measure in the symbolic spac@. It is also related to
the functionF because it defines the codirngB— ().

Remark that the measure &b can be defined without
giving an explicit form ofT because only its action over the
partition appears ofl, through the shiftr.

In Fig. 2 we can see the experimental distribution
— VexN) for V=2.41V.

There is at least one topological constraint that the ex-
periment imposes; it is the impossibility of observing two
consecutive fast eventdast bubbles The largest phase
space compatible with this fact is the subshift of finite type
(2g,0),%" defined by a gramma:

o of

(18

For the dynamical invariant measure, we consider ant is natural to study this case first.

Si-invariant measurex=u X ¢ with x an ergodic measure

on B, and¢ the Lebesgue measure over the orthogonal direc=

tion to B. Because of the ergodicity gf and & u is also
ergodic? By the Birkhoff ergodic theoreny; contains all the
asymptotic statistical information of the model.

Concerning the relation with the statistical indicators

1. Subshift of finite type

Consider a subshift of finite typ&( ,o) with grammar
G. The family of ergodic measures the most natural to test
are the so-called Gibbs measutese Appendix B%9.

A Gibbs measure is characterized by a potentialhe

Vexd Bl VexdN), and 7¢,fA)), we remark that these depend first property that we have to fix is the rank of the potential.

only on the measurg over B and the functiorF. Consider

first nex(4;). It is defined as the Birkhoff sum of the experi-

mental sequence of time intervals between bubhids
={At;}} , of the observable((AJ-),5 which is in correspon-
dence with the measuye over B of the model. We make the

hypothesis that the experimental result is generic for the

measureu, so

Texd A~ (i 5(X) € Aj) = j du(x). (19

x:F(x)eAj

For ved B] and ve,(n), following the coding of the dynam-
ics onB modulo the partitioriP, the relation with the mea-
surew is

Vo)~ (m \[Ba-aB]) = v([ B aB]) (16)
Verd B1~ 81, 17

wherev is the induced measure hyon Q.° So, one can see
that ve,, depends only on the transformatidrand the mea-

sureu over the base. Herg,, depends also on the function
F. To be more precise, remark that, depends indirectly on

F through the partitiod«,B} of the baseB and then on the

form of F.

The next result restricts the set of accessible potentials.
Let ¢ € @, be an Holder potential of rank r, defined over

n
2. . The measure of the cylinder family [ Ba...a@B], v4(n)
is a strictly decreasing function of » for n=r— 1. Moreover,
we have

vy(r+k—1)=e*,(r—1), k=01,.., (19
with
a=d¢(a...a) (20
and
L rs2
vy(r—1)=e?Ba-ada-aB)y (57 q). (21)

This result implies that the rank of potential of the model
is greater than or equal to the greater valuendbér which
vexdN) rises a maximum. For example, after Fig. 2, and con-
sidering only the main maximurmE& 6), we have to choose
the potential rank at least equal to 7.

Up to here, we can see the difficulties of the model. The
main difficulty that the Gibbsian model presents is that ex-
perimentally one observes the valuesndor which ve,{n)
has a maximum which is a function of the physical param-
eters ). This implies that either we choose the potential
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rank to be the maximum value of such thatvgxp(n) gives ! ' ' ' T T T T '
rise to a maxima or the rank of the potential depend&/on sl ]

In the first case the potential rank must be at leasee
Fig. 3 and, even if one can find the parameters of the models **f 1
to fit the experimental results, the model becomes heavy ant ;L
hard to handle. The second option is even worse, because tr
dependence of the potential rank of the physical parameter.
is not very natural from a physical point of view.

We are going to define a second model in Sec. V C that
takes into account the secondary maxima.

Remark 1:In this case the absolutely continuous mea- os}

sure with respect to the Lebesgue meagoraximal entropy ]
measurggives the following result: 2 -

0.6

0.5

nu(n)

0.4

otk I

vy(m=(3)", 2 ] e

0 I SN
It is obvious that it does not reproduce the experimental data ' ' '8 L 3

FIG. 5. —v(n;—1)——w»(n,—1) and ..»(n;+n,—1).
C. Rotational model

Consider an irrational rotation of angteas an automor-  These values impose a constraint on the rotational angle:

phism overB: .
0=3+6 (25
Ryx={x+ 6}, (23 .
with
where{z} means the fractional part af 1
Consider the coding defined by the partitio® S5< SeR\O 26
={[0,),[c,1)}={B,a} with c< 0. 13.7-8 6-7-8 ¢ (26)

This coding is compatible with the topological constraint-l-he three curves in Fig. 5 show the dependence(of
that forbids the sequencgB. However, it presents other ~1), »(n,—1), and »(n;+n,—1) on & for 5:1.%

topologicgl constraints. In particular, the comple%?tys X 1073, they do agree with the weight of the three experi-
asymptotically equal t(p)(n)=12n for ¢, and 6 rgnonally N~ mental picks(see Fig. 2
dependent and great enough! Remark that this behavior is
related to the topological rigidity present in the irrational
rotations. Another result that is very useful for us is the
three-gaps theorefh(see Appendix A The experimental values of the statistical indicator
The rotations also present metric rigidity; the Lebesguene,(4;) implies that the- function takes its values mostly in
measure is the only invariant measure on the b@siBhus,  two intervalsl, andl z:
the parameters of the models are the angle of rotadiand _ .
the valuec that defines the partition. FOOela=[RapBap,d Wt Aa = Aim,
The value ofc is fixed by the experimental v_alue of F)elg=[45 Ag ] with Ay <Ay (27
vexd B]. Indeed, because the Lebesgue measure is the only mn ma mex
invariant one, the measure of the cylindgs] is »[ 3] For theV=2.41V experience we choosgg;,,=0.12s.
=| (7 Y B])=c after the coding defined byp. The exact form ofF that fits the results depends on the
By the three-gap theorem, the measure of the family of measure. Let us consider the two models.

D. Constraints imposed by  7¢,,(A))

%min

1d
cylinders [ Ba...aB], is different from zero for only three 1. Subshift of finite type
values of n (n;—1, n,—1, and n,+n,—1), the three pos-

sible return times to [0,¢). For the subshift of finite typeY s ,o) with a Gibbs mea-

. , surev, the relationship between(A;) andF is after(15):
Thus we can reproduce the experimental maxima of

veyd N, but they are delta peaks, which is in contradiction _ -1 _
WitrF1{ the experiment. (A1) = pg(F(A))= X;F(X)EAjd’U“¢' (28)
Besides, the rotational model presents the advantage thﬁn lculate this int | . dditional i
we can adjust the values nf andn,, and, as a consequence 0 calculate this integral we can impose an additional con
v(n), changing the rotational angle. That is to say, we hav
alwaysn,=inf{m:{mé}<c} and n,=inf{m:{mé}>1-c}.
So, we can calculate the dependenc®/inf # andc.
For example, for the casé=2.41V, the experimental
value of VE.XFLB]N% imposes the parameter valeeto be ¢ 7(Aj))=vy([aoar - an_1]). (29
=$. Besides, the experimental valuesmfandn, are

dition onF such that the intervalfx:F(x) € A;} take a cy-
(?indric form after the codingr:B— (). Then, 7(A;) can be
expressed as a function of the cylinders measure. Take
F(x)eAj:xenm Y[agay - an_1]). Then

In the particular case of maximal entropy measure intro-
n;=7, n,=13. (24 duced in(1) we have
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Fx) At present, none of the models describes completely the
experimental data. However, the fact that the experimental
results show some properties of each one of them means that
the physical phenomenon is in some sense the superposition
of two different phenomenon. Remark that the subshift
model implies that the production of slow and fast bubbles is
decorrelated. On the other hand, a model based on the rota-
tions implies an important correlation between both phenom-
enon. Indeed, from the experimental observatisee Ref.
1) it is known that the slow bubbles appear by the accumu-
lation of air at the bottom of the capillary tube, which leaves
it after attending a critical size. To observe fast bubbles, it is
necessary that a thin layer of water divides the forming
bubbles into two small ones, which will leave the capillary
tube within a very small interval between them. If this pro-
cess appears as a consequence of the regularity of some
FIG. 6. F(x). physical magnitudes, say temperature, pressure, etc., around
the capillary tube, then the rotational model may be the most
natural one. On the other hand, a Gibbs model implies that
(A =vy[a@oa; an_1)=)" Py Lan 4], this process is generated mostly random as a consequence of
(300  turbulence, instabilities or fluctuations of pressure, tempera-
ture, etc., around the capillary and therefore would be a natu-
ral candidate for a randomlike origin of the phenoméina
regularities or noise, for instanceThus, understanding
, which of the models is more likely to fit the statistical prop-
2. Rotations erties of the phenomenon would offer us nontrivial physical
This case is simpler than the subshift model because thiaformation about the phenomenon. In other words, we
only invariant measure on the basis is the Lebesgue measurgould want to know where a mixing or a zero entropy dy-

O frommmemeeee_ T

where #8 is the cardinality ofg in [«apay - ay—1], v,[a]
=% andv,[B]=5.

Take the partitiorD={AA,,...} over the values of(x), namical system is the more appropriate choice regarding the
with experimental properties of the physical situation under con-
A=y m) (31) sideration. Unfortunately, for the mom_ent, our da_ta is not
! Jmin” I max * enough to exclude one of the two previous scenarios.
Recall thatF is an increasing function: The main issue in deciding which of the two models, or
1 some interpolation, is the more convenient to describe the
7(A)=I(F*(4)) experimental situation is the analysis of the correlation times
of slow and fast bubbles. In order to have a definitive answer
= f x:F(x)eAJdlx to this alternative, longer runs in the experiment are clearly

needed. This constitutes work in progress.
=inf{x:F(x)=yjmin}—inf{x:F(x)=yjmaX}. (32

Eor all the values.ovn?xp(A.j) can be reproduced by a func- ACKNOWLEDGMENTS
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return time statistics t8 can be described by the edge func-

tion F. Besides modeling the dynamics B we have found

that a Gipbsian model has practi¢edo high potential rank APPENDIX A: THREE-GAP THEOREM

and physical problem&ependence of the rank of the poten-

tial with V). The problem of studying infinite rank potentials A well-known result in the theory of dynamical systems
or non-Gibbsian measures remains open. is the three-gap theorem:

For the rotational model its success depends on the ex- Theorem 1 (Three gap theorem:!? Let 6 be an irra-
istence of the secondary maxima of,(n) that would ap- tional number in|0,1 and letBe]0,y. The gaps between the
pear in longer observations. Additionally, the problem ofsuccessive integers j such thgd;} < take at most three
finding a perturbation to the rotation in such a way that thevalues, one being the sum of the other two. The three values
delta peaks become wide remains open. (n4, Ny, and n,+n,) and their asymptotic frequency are
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A Gibbs measure can be characterized as an equilibrium
state of the potentialp as follows. There is a unique
o-invariant measure for which the supremum bf7%)
+IEG¢ d» over all o-invariant measureg (defined oz )
an+n2:{n10}+ 1—{n,6}— 8. is attgined and e_qual ﬂBgG(g{),a'), namely the measure,, .

h(#) is the metric entropy of,.

Because of the uniqueness of the invariant measure this re- The Gibbs inequality previously stated gives a character-
sult is still true in terms of return times to all set of the type ization of Gibbs measures with cylinders. The transfer opera-
[a,b), and for all initial condition. tor (sometimes called the Ruelle—Perron—Frobenius opera-
tor) characterizes them as the solution of an eigenvalue
problem. Definel, acting on any continuous functidnas

ny=min{n:{n6} <[0)}, v, =B~ {nud},

ny=min{n:{nd} e[1-B,1)}, vy, =B—1+{ny6},
(A1)

n{+n,,

APPENDIX B: GIBBS MEASURES

In this appendix, we deal with the construction of a class©llOWs:
of g-invariant ergodic measures that impose the frequencies def

of the admissible cylinders, namely Gibbs measures. In par- (Lgf)(w)= 2 exp(p(w ) f(w'). (B3)

ticular, this class contains Bernoulli and Markov measures. o'ice =

We will state the basic definitions and results of thermody- o'es

namic formalism. This operator is linear, positive, and bounded in the
A potential ¢ is a continuous function frot to R. In  |.|[.-norm.

the case wher® ¢ is a subshift, we still denote by its The so-called “Ruelle—Perron—Frobenius” theorem as-

restriction toXg. ¢ is said to be Huler continuous if serts the following:L, has a unique positive eigenfunction

van¢<C,d(w,0")"=C,0"(C,>0), where  varé  r, associated with the eigenvalue=exp(Ps (¢)), which

def , ) ) 13 is simple and maximal. The dual operarzﬁj, has the prob-

=suf|p(w) — ¢(0)]:0;=w],0<j<n}. ability measurev as unique eigenvector, with the same ei-
The topological pressure of on % is denoted by genvaluer. The Gibbs measurg,, is equal tor ,v.

Pgo(qﬁ,a) and defined as follows:

def

1
PEG(¢=0') = ||monH log 1E. Ramos, P. Parmanada, G. Herdez-Cruz, and M. Sen, “Dynamics of
boiling from a short capillary tube,” Exp. Heat Transféf, 273—290
(1999.
2E. Ugalde and R. Lima, “On a discrete dynamical model for local turbu-
lence,” Physica D95, 144—157(1996.
3E. Ugalde, “Self-similarity and finite-time intermittent effects in turbulent
sequences,” J. Phys. R9, 4425-44431996.
def 41. P. Cornfeld, S. V. Fomin, and Y. G. Sindgrgodic Theory(Springer-
where  S,é[ag.n-1]=SUA S ¢(w):wo.n-1=a0:n-1} and Verlag, New York, 1982
[@g.n_1] is the shorthand notation f¢ag,a,,...,a,_1]. °x(4))=1if Aty A, 0 otherwise.
6A. Katok and B. Hasselblatintroduction to Modern Theory of Dynamical

x X

ap:n-1
[ao:n,l]OEG;b(D

exlisnd’[ao:nfl])- (Bl)

The “Gibbs inequality” characterizes Gibbs measures

by giving the approximate measure afly admissibleylin-

SystemsEncyclopedia of Math. and its Applications, VVol. 88ambridge
University Press, Cambridge, 1995

der. This is stated in the next Theorem. We will use the’Ss={0=(wq,01,...):G, . =1Vil}.

shorthand notatioa~c*b to meanc™ *b<a<ch.
Theorem 2 Let ¢ be a Hdder continuous potential and

2 a subshift of finite type. Then there exists a unique,

g-invariant probability measurg:, such that there exists a
constant G,, such that for anyw e %5 and any r=1, we
have

ol @on-11~Cy exp(—nPy (¢,0) + Sy(w)). (B2)

If [agn-1] is not 3g-admissible, then we set
#glao.n—1]1=0. We should write)uiG instead ofu,, if there

i¥i+1

8R. Bowen, “Equilibrium states and the ergodic theory of Anosov diffeo-

morphisms,” Lecture Notes in Mathematie§70 (Springer-Verlag, New
York, 1975.

J. R. Chazottes, E. Floriani, and R. Lima, “Relative entropy and identifi-
cation of Gibbs measures in dynamical systems,” J. Stat. P3(8/4),
697-725(1998.

10The complexityp(n) of a symbolic space is the cadinality of different

sequences of lengtithat can be observed in any sequenceorrespond-
ing to an experimental series.

113, Berstel, “Recent results in Sturmian words,” revelopments in Lan-

guage Theory |l Magdeburg 1995World Scientific, Singapore, 1996
pp. 13-24.

12N. Slater, “Gaps and steps problems for the sequerttenod 1,” Proc.

is an ambiguity on the space where the measure is defined. campridge Philos. So63, 115-137(1967.

Gibbs measures are ergodin fact, they have strongly
mixing properties

Notice that all results concerning a lder continuous potentiap remain

valid in the weaker situation wheg,var, ¢<<oo.
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