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Abstract

Using the Bethe-Salpeter (BS) equation, Cooper pairing can be generalized to include contributions from holes as
well as particles from the ground state of either an ideal Fermi gas (IFG) or of a BCS many-fermion state. The BCS
model interfermion interaction is employed throughout. In contrast to the better-known original Cooper pair (CP)
problem for either two particles or two holes, the generalized Cooper equation in the IFG case has no real-energy
solutions. Rather, it possesses two complex-conjugate solutions with purely imaginary energies. This implies that the
IFG ground state is unstable when an attractive interaction is switched on. However, solving the BS equation for the
BCS ground state reveals two types of real solutions: one describing moving (i.e., having nonzero total, or center-
of-mass, momenta) CPs as resonances (or bound composite particles with a finite lifetime), and another exhibiting
superconducting collective excitations analogous to Anderson—Bogoliubov-Higgs RPA modes. A Bose—Einstein-con-

densation-based picture of superconductivity is addressed. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The original Cooper pair (CP) equation [1] is a
two-electron Schrodinger equation in momentum
representation with a given two-body interaction
(having some attraction) but includes ad hoc re-
strictions on the magnitudes of both electron wave
vectors k;, ko, namely k; > kg, ky > kg, where kg
is the electron Fermi wave number for an ideal
nonrelativistic many-electron system. One then
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seeks the energy eigenvalues of a CP bound state
and its corresponding wave function.

Since there is no rigorous derivation of the
original CP equation, several authors [2-5] refor-
mulated the complete CP problem without ne-
glecting holes, using the mathematically exact
Bethe—Salpeter (BS) equation approach [6] applied
to the system, in search of two-particle bound
states in the presence of other system electrons.
Such a treatment allows generalizing [7] several
approaches in superconductivity theory, including
the BCS, the BCS-Bose crossover, and the Bose—
Einstein condensation pictures. But if the BS
equation is based merely on the ideal Fermi gas
(IFG) ground state one obtains purely imagi-
nary solutions, suggesting that the ground state is
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unstable in the presence of attractive interactions
of some kind. This is an instability of the IFG
ground state with respect to the creation of two-
particle (2p-) or two-hole (2h-) resonant states, a
situation analogous to the classical problem of
hydrodynamic instability [8].

2. BS equation based on BCS ground state

Consider, however, the generalized two-com-
ponent, two-electron BS equation based not on the
IFG ground state [2-5] but rather on the BCS
ground state. We introduce the Bogoliubov—Val-
atin u, v transformation of electron Fermi opera-
tors ax, to new Fermi operators o ,, namely

_ +
Ay o = Wl + 200500, _, (1)

where o0 = +1/2 is the spin projection for an
electron state. The coefficients u;, v, are real and
depend on k. The many-electron system hamilto-
nian is H = Hy + H;,; where
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where ¢, = i’k*/2m is the kinetic energy of an
electron of mass m; Er = h2k§/2m is the Fermi
energy; L is the system size; v(gq) the Fourier
transform of the two-electron interaction poten-
tial; and the last sum is restricted by momentum
conservation k| + k, = k; + k,. This leads to the
well-known BCS hamiltonian [4,5,9]

Hges = Uy + ZE(k)OCIJOCk,m (3)
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with U, a generalized BCS ground-state energy
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Here B(k) plays the role of the original BCS energy
gap 4(k), and
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For the new interaction hamiltonian we obtain

H;\ = H — Hpcs
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where L(k, k') = wyupy — vpopy and M (k, k') = wop +
U Uy

To obtain the BS equation based on the BCS
ground state consider the Feynman diagrams of
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perturbation theory based on this ground state,
where Eq. (3) is the new unperturbed hamiltonian
H,. We now have the usual arrowed electron lines
labeled by k, E, o to which we associate the BCS
unperturbed Green’s function

h 1

kKE,o)=7——F7F+——
ok, E,0) i —E+E(k) —ig’

(6)
where E(k) is given by Eq. (4). There exist four-
line-end double vertices of six different kinds (see
Fig. 1) where the interfermion interaction is de-
noted by dashed lines. To a double vertex type (a)
of Fig. 1, with two outgoing line ends with indices
(K}, E},01) and (K, E5, 0,) along with two incom-
ing line ends with indices (ki, E},0,) and (ky, Es,
a,), we attach the factor

—L3v(|k; — K |)L(ky, K} )L(ky, KS).

To a double vertex of type (b), with two outgoing
line ends (K}, £}, 61) and (K5, £}, 65) along with two
outgoing line ends (—k;,—Ej,—o;) and (—k,,
—FE,, —03), as well as to a double vertex of type (c)
with two incoming line ends with indices (—K|,
—E|,—0y) and (—k5,—E5, —0,) along with two
incoming line ends with indices (k;, E1, o) and (ka,
E>,0,), we attach the factor
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Fig. 1. Six different types of vertices with corresponding
topological automorphism factors g.

3. Coupled BS equations

Because of different kinds of vertices in Fig. 1
we now have a system of two coupled BS equa-
tions. Fig. 2 shows their diagrammatic repre-
sentation in the ladder approximation of the
two-electron BS equation for the BCS ground
state. Depicted are both the two-electron
V. (kE;K&x) and two-hole y_(kE;Ké&k) bound-
state functions. Here K = k; + k, is the total (or
center-of-mass) wave vector and &k is the total
energy of the two electrons referred to 2Ef.

Using the diagramatic rules just described, the
two-component BS equations for the bound state
is
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Fig. 2. Diagrammatic representation of the two-component
coupled BS equations.
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It can be shown that these equations coincide
exactly with those used in the description of col-
lective excitations in the BCS-Bogoliubov [10] mi-
croscopic theory of superconductivity.

4. CP solutions of BS equations

We now employ the BCS model interaction
v([k = K1) = — (/K" Vn(k)n(k), )

where ¥V >0, and n(k) =1 when kg —kp < k <
kg + kp and = 0 otherwise. Here kp = mwp /hiks
with wp the Debye frequency, if Zwp < EE.

The detailed solution for the system of the two-
component coupled BS equations of Fig. 2 is too
cumbersome to present here, but it can be shown
that they yield two types of independent solutions.
The first solution of Egs. (7) and (8) with Eq. (9) is
just

2% kk:k dk/ll dru(|K/2 +K|)o([K/2 — K|)
x [u(|K/2 = k[)v(|K/2 + k|) — u(|K/2 +k])
x v(|K/2 — k)]

E(K/2 + k) + E(K/2 — K|)
—6% +[E(K/2+k|) + E(|K/2 — k|)

= 1. (10)

Here ¢t = cos 6, 6 being the angle between k and K
while |K/2 + k| = (k2 + Kkt + K*/4)"* and |K/2 —
k| = (K — Kkt + K2 /4)"/>.

As we see the numerator in Eq. (10) vanishes for
K = 0, so the denominator must vanish as K — 0
as well. This gives &x = +£24 + O(K). To find the
asymptotic solution for both small coupling and K
we may neglect terms with 4 in u,v in the in-
tegrand. Thus we put u(k) ~ 0(kg — k) = 0 (k),
v(k) ~ 0(k — kg) = 0g(k), where 0(k) is the usual
Heaviside step function. Therefore,

u([K/2 + K|)o(|K/2 — k|) [u(|K/2 - k|)o(|K/2 + k)
— u([K/2 + k|)o([K/2 - K|)]
~ —0r(|K/2 + Kk[)06(]K/2 — k|).

Thus we can rewrite Eq. (10) as

sz kp-+kp 1
— dk/ dr0x(|K/2 + Kk|)06(K/2 — Kk|)
4n kr—kp 0

x{ !

—6x + E(K/2+Kk|) + E(K/2 —k|)
1
e FE(K/2 1K) + E(K/2 — k)
—1. (11)

In Fig. 3 we show as shaded the region of inte-
gration over k and ¢ = cos . The integral over the
polar angle 0 is restricted to from 0 to 7/2 since the
integrand in (10) vanishes for ¢ < 0. We first inte-
grate over k from kp, to knax Which are solutions
of [K/2 4+ K| = k¢, and |[K/2 — k| = kg, or

kmax

kmin

Fig. 3. Integration region in Eq. (11).
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hin = — Kt/2 4+ /K32 /4 — K2 /44 R,

kmax :Kt/2+ \/K2Z2/4*K2/4+k12:

The restrictions kg — kp <k <kgr + kp are not il-
lustrated in Fig. 3 as they are unimportant for us.
As K — 0 we then have

kmin ~ _[(t/2 + O(K2)7
kmax == Kt/2 + O(K?),
E(K/2 +k|) + E(K/2 — k|) = 24 + O(K?)

where we redefined the integration variable k = kg
+xK, with x the new variable. Consequently in
seeking a solution of Eq. (11), for example of the
form

Ex =24+ chK + O(K?),

where c is a constant, we obtain for small 4 and K
kp+Kt/2 dk

4n2h / /k ki) cK

Thus ¢ = Vkz/8n’h. Finally one gets

Ex =24+ LwphK + O(K?), (12)

together with its symmetric solution
Ex = =24 — LwphK + O(K?). (13)
where 4 = N(0)V and N(0) = mkg/2r%H’.

These two solutions describe moving 2p-CPs and
2h-CPs, respectively. A linear-in-K behavior of the
moving pair binding energy was obtained for the
original CP problem [11] but it was independent of
the interaction coupling strength as it excluded 24-
CP contributions. More significantly, the binding
energy there was negative as it refers to an infinite-
lifetime composite particle, while in (12) it is posi-
tive as it describes a resonance in the continuum
with a finite lifetime as evidenced by an imaginary
contribution [12] appearing in higher order terms
in K.

5. ABH-like mode solution of BS equations

The second solution of the coupled BS equation
(7) and (8) follows from

Vk2 kp+kp 1
2—75// dk/ldtv(|K/2+k\)u(\K/2—k|)

F—kp

(K /2 + K[)u((K /2 — K[) + v([K/2 + K])

< o([K/2 — KJ) {

1
6k +E(K/2 +k|)]

VkZ kp+kp
: 2/ dk/ dru(|K/2 +K|)

u([K/2 = K|)[u(/K/2 +kl) (IK/2 — k)
+o([K/2 + k[)v(|K/2 — k[)]

E(K/2 - K|) +

1
X {—gk TE(K/2 1K) 1 E(K/2 - k|)}
=1. (14)

Proceeding as before, in the limK — 0 one now
finds

hop e 24

&x = (vphK /V/3) [1 i

} + O(K?),
(15)

which is similar to the Anderson-Bogoliubov—
Higgs (ABH) RPA excitation mode in the BCS
theory of superconductivity [10,13-15].

6. Conclusions

We have presented a new many-fermion for-
malism based on a BS equation applied to the full
BCS ground state which does not neglect the
presence of holes. This leads in the ladder ap-
proximation to two types of solutions: the first
referring to simple moving CPs consisting of two-
electron (12) or two-hole (13) resonances. In ad-
dition, this formalism naturally provides a second
solution (15) of an entirely different physical na-
ture which is analogous to the ABH excitation
mode. Bose—Einstein condensation can occur with
the first type of objects but not with the second.
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