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Abstract

The binding problem is studied within the generalized Hubbard Hamiltonian by using a real-space method. This
method is an extension of the previously proposed mapping method for the simple Hubbard model in order to include
the bond-charge interaction term. The generalization of the method is based on mapping the correlated many-body
problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem
can be solved exactly. The three particles correlation in a linear chain has been analyzed by calculating the binding
energy using different values of the bond-charge, the on-site (U) and the nearest-neighbor (¥) interactions. A bound
state asymmetry between electrons and holes was found for bond-charge interactions. Also, an analytical solution is
obtained for some special values of the hopping parameters and for all kind of interactions in the Hubbard Hamil-
tonian. © 2001 Elsevier Science B.V. All rights reserved.
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The simple Hubbard model [1], is the crudest teractions is often called the generalized Hubbard
approximation to include electronic interaction Hamiltonian (GHH) and is written as:
between band-electrons, by retaining only the on-
site interac.tion U. This model 2}150 assigns Fhe H— Z £t e+ UZ”:‘J”M +K Z"inj,
same hopping rate, ¢, to three different hopping P / - 2 T
processes regardless of the occupation of the two
sites involved. Besides the on-site interaction,
other contributions of the electron—electron inter-
action are required [2], such as the nearest-neigh-
bor interactions and the bond-charge interaction
term. The Hamiltonian which includes these in-

(1)

where (i, j) denotes nearest-neighbor sites, c;f, (¢;,)
is the creation (annihilation) operator with spin
o =| or | at site i, and n; = n;; + n;| where n;, =
¢ ¢i,. The parameters U and V are the Coulomb
integrals. In Eq. (1), the generalized hopping am-
plitude, #°,, is given by
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to emphasize the contribution from two- and four-
fermion operators. These new interactions may
give arise to new dynamical effects, absent in the
simple Hubbard model.

The three parameters z,, f3, and t,3 are the
hopping amplitudes from a singly occupied to an
empty site, from a doubly occupied to a singly site
and from a doubly occupied to an empty site re-
spectively. The essential difference between elec-
trons and holes within the GHH, besides a minus
sign in the generalized hopping term, is that the
hopping amplitude ¢, for electrons should be
changed by ¢ for the case of holes in Eq. (2) [3].

The special case t, =ty = typ =t corresponds
to the +~U-V extended Hubbard model. For ¢, +
tg — 2t43 = 0, the generalized hopping amplitude is
reduced to the Hirsch and Marsiglio model [4],
proposed as a possible mechanism for supercon-
ductivity. An occupation dependent hopping term
of the form (2) arise quite naturally as the result
of a trace over additional electronic degrees of
freedom when mapping a multi-band Hubbard
Hamiltonian onto a single-band one [5]. There is,
however, no consensus on the hopping amplitude
in real systems [6]. So, in order to keep the model
as general as possible, we will not put constraints
in the values of the hopping term.

The electronic correlation for the low density
limit, mainly the two particles case, has been
intensively studied by analytical and numerical
methods using the Hubbard model [1,7,8]. The
next question which arises is how the behavior of
the physical properties (e.g., the binding energy), is
modified by the presence of a third electron. This
kind of questions are presumed helpful in the ul-
timate understanding of the N-body problem. The
case of three correlated particles is not as widely
studied as the two particles case. It was considered
earlier by Mattis [9] in his study of the bound state
stability for the attractive-U Hubbard model and
by Fabrizio et al. [10] for the repulsive-U case, who
discussed an asymptotic behavior of the ground
state.

For the two-particles case the term (¢4 +
tg — 2t4p)n; _on; _, is ineffective. In this case, as-
suming that ¢, > t4z > 3, the hopping reduces to

1=t — (t4 = tap) (Mg +1j ) (3)

and

(5 = 15+ (s — 16) (], +11) ) (4)
implying that the hopping of a hole increase in the
presence of another hole and can lead to pairing
of holes but not of electrons. The term (z,+
tg — 2tup)n; _on;_, now becomes effective for the
three-particles problem and may modify the above
statement as we show in the paper.

In this paper, we analyzed the bound state of
three non-parallel (T]7) holes and also the case of
three non-parallel (T|7) electrons in a one-dimen-
sional lattice using the GHH. The analysis has
been done by extending the mapping method
previously reported [7], in order to include the
generalized hopping. The discussion is done fol-
lowing the paper by Espinosa et al. [3]. Let us see
how this modification take place in our problem of
three electrons. In this case, the network of the
three-clectron states belongs to a three-dimen-
sional lattice with site- and bond-impurities, where
taking advantage of the translational symmetry
of this network of states, it can be projected onto
a two-dimensional triangular lattice of effective
states and effective hopping (8, f; and ;) [3].

For the ground state we have that: f} = 8, =
ty, By =Py =tg and B, = B,z = tap. With these
new values, analytical solutions can be obtained
for some particular cases; for example, when the
hopping amplitude from a doubly occupied to an
empty site is forbidden (¢43 = 0), the solution is:

1

Eimp = pr gyt~

21+ DBV -DY},  (5)

where D = |zt4|. The binding energy (gap) is given
by 4 = max(|Eimp|) — D.

Below, we show numerical solutions for varia-
tions of the hopping parameters and of the inter-
action terms. The numerical diagonalization were
done in a truncated two-dimensional triangular
lattice of 551 effective states. The matrix sizes for
numerical diagonalizations were chosen as the
minimum size so that the physical quantities have
not an important variation with the matrix size.

In Fig. 1, we show the ground-state phase dia-
gram for both electron-singlet and hole-singlet in a
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Fig. 1. Bounding phase diagram for the case of three electrons
or three holes in an infinite linear chain within the extended
Hubbard model (t; = 13 = t4p = 1).

linear chain for the Hubbard model ¢, =tz =
typ = t. In this figure, we can notice the electron—
hole symmetry and the absence of bound states for
U and V positives which is very well established.

In Fig. 2, we present the numerical calculations
for the phase diagram of the electron binding en-
ergy: dash line gives the results for z; = —1.02,
tg =ty = —1.0; dot line for the case t3 = —6.0,
ty=t4y =—1.0 and solid line for #,; = —2.0,
ty = tg = —1.0. From Fig. 2, it is clear that with a
very small increase of the 7, hopping parameter,
the bound states of electrons are favored although
ty > typ, In contrast with the two-particles case.
This shows the strong effect of the additional term
(t4 — tap)n; _on;_,. The effect of ¢z is much weaker
as compared to #,, since in this case we need larger
values of ¢z hopping parameter. When the hopping
typ from a doubly occupied site to an empty site
(solid line in Fig. 2) has higher probability, this
favors bound states, and the electron—hole sym-
metry is preserved since ¢4 = f3.

As we mentioned above the results for holes are
simply obtained from electrons by interchanging ¢,
and t3. Thus, from Fig. 2 we can observe clearly
the electron- and hole-asymmetry, where bounding
holes is not always easier than bounding electrons.

In conclusion, we did non-perturbative calcu-
lation to study the correlation of three electrons in
an infinite linear chain. This study was done, using
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Fig. 2. Bounding phase diagram for three electrons: dash line
gives the results for z, = —1.02, 3 = t45 = —1.0; dot line for the
case t3 = —6.0, t, = 1,3 = —1.0 and solid line for t,3 = —2.0,
tA = tB = —10

the GHH and extending the real space mapping
method to include the bond-charge interaction
term. We observed clearly an asymmetry between
electron and holes, this asymmetry being due to
the bond—charge interaction.
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