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Abstract

Cooper pair (CP) binding with both zero and nonzero center-of-mass momenta (CMM) is studied with a set of
renormalized equations assuming a short-ranged (attractive) pairwise interfermion interaction. Expanding the associa-
ted dispersion relation in 2D in powers of the CMM, in weak-to-moderate coupling a term linear in the CMM
dominates the pair excitation energy, while the quadratic behavior usually assumed in Bose—Einstein (BE) condensation
studies prevails for any coupling on/y in the limit of zero Fermi velocity when the Fermi sea disappears, i.e., in vacuum.
In 3D this same behavior is observed numerically. The linear term, moreover, exhibits CP breakup beyond a threshold
CMM value which vanishes with coupling. This makes all the excited (nonzero-CMM) BE levels with preformed CPs
collapse into a single ground level so that a BCS condensate (where only zero CMM CPs are usually allowed) appears in
zero coupling to be a special case in either 2D or 3D of the BE condensate of linear-dispersion-relation CPs. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

We consider an s-wave short-range, attractive
(rank one) separable interfermionic potential [1] in
d-dimensional momentum space V,, = —(vy/L?) x
g,84> Where vy = 0 is the interaction strength, L the
size of the system, and the g,’s are dimensionless
form factors of the type g, = (1+p*/p2)""/* in
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which p, is the inverse range of the potential. Thus,
e.g., po — oo implies g, = 1 which corresponds to
a contact or delta potential —vyd(r) in configura-
tion space. In either 2D or 3D such a potential well
has an infinite number of bound states. As a result
a many-fermion system with this interfermion in-
teraction will collapse in the thermodynamic limit
to infinite binding per particle and infinite density.
However, the potential can be “regularized”, i.e.,
constructed [2] with v, infinitesimally small so that
it supports a single bound state.

The Cooper pair (CP) equation [3] for two in-
teracting electrons of mass m above the Fermi
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surface, with momenta wave vectors k; and k, and
finite, nonzero-center-of-mass-momenta (CMM)
wave vector K = k; + k,, and relative momentum
wave vector k = (1/2)(k; — k), gives the total
pair energy Ex = 2Er — Ag in terms of vy, with
Ep = I’k}2/2m the Fermi energy. Here Agx >0 is
the CP binding energy; it should not be confused
with the BCS energy gap 4. One can eliminate the
variable v, in favor, in 2D, of the vacuum bound-
state energy B; = 0 of the potential by combining
[4] the CP equation with the respective Lippmann—
Schwinger one for the same interfermion interac-
tion acting not in the Fermi sea but in vacuum.
Then Ay can be extracted as a function of B, from
the resulting renormalized CP equation

3 A
2
— By + 1k /m k(K /2| > kp)

2
X 2 gk 2 :O' (1)
h kz/m+A]( *2Ep+h K2/4m

2. Cooper pair dispersion relation

After some algebra one finds the remarkable
identity, but only in 2D, that 4y = B, i.c., for an
attractive delta interaction (regularized or not) the
vacuum and zero-CMM CP binding energies co-
incide for all coupling. Using Er/kr = five/2 one
can expand Ag in powers of K for any coupling

B, and get
Ex = (AO — AK)
2
2kt 1{2(ﬂ) }_
T T B,
K> ;
X 202m) +0O(K”) (2D) (2)

where a nonnegative CP excitation energy e has
been defined. It is this excitation energy that enters
in the BE distribution function in determining the
critical temperature in a picture of superconduc-
tivity as a BE condensation (BEC) of CPs. The
leading term in Eq. (2) is linear in CMM, followed
by a quadratic term. The latter is precisely the
kinetic energy of what was originally the ordinary

CP (and now is what is sometimes called a “local
pair”’) — namely the familiar nonrelativistic energy
of the composite pair of mass 2m in vacuum. This
dispersion relation has been the starting point for
virtually all BEC studies of superconductivity (see,
e.g., Refs. [1,5-13], among others). However, it is
clear from Eq. (2) that the quadratic term 7#°K? /
2(2m) will prevail for any nonzero coupling only
when Eg/kg = hivg /2 — 0, i.e., in the vacuum limit
when there is no Fermi sea.

Fig. 1 shows exact numerical results (full curves)
of Eq. (1) in 2D for different B,/Er of the CP ex-
citation energy ¢ex /4, as function of CMM K /.
Note that the CPs break up at ex/Ay =1 where
Ax =0, this being marked by large dots in the
figure. In addition to the exact results we also
exhibit the linear approximation 2fiveK/n (dot-
dashed lines) for small B,/Er, as well as the
quadratic approximation 7*K2/2(2m) (dashed pa-
rabolas) for large B,/EF.

In 3D one obtains [14] similar results except
that the dimensionless s-wave scattering length kra
in vacuum plays the role of a coupling parameter
instead of the dimensionless binding energy B,/Er
in the 2D case. Here, the limit 4, — 0 implies
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Fig. 1. Exact numerical results (full curves) for CP dispersion
relation e = Ay — Ak (in units of K = 0 CP binding energy 4,)
obtained from Ref. [1] when g; = 1 for different coupling values
B, /Er. CPs break up when Ax turns negative, as indicated by
large dots. The dot-dashed line is the linear approximation
(virtually coincident with the exact curve for all B, <0.1Eg)
while the quadratic approximation is shown dashed (see text for
details).
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a— 0" or 1/kra — —oo and corresponds to weak
coupling, while the limit 49 — oo implies @ — 0
or 1/krpa — +o0o and is strong coupling. In fact,
for a = —|a|— 0~ one finds 4o — (8E¢/e*) exp(—n/
krlal), a result first obtained by Van Hove [15]. On
the other hand, a — 0 yields 4y — 7#*/ma’. Re-
peating the expansion carried out in 2D but
without explicitly determining the coefficient of the
quadratic term gives

ex = (4o — Ax) — thvpK + O(K?)  (3D) (3)

i.e., the same result cited in 1964 in Ref. [16] for
the BCS model interaction. The linear terms in
both Egs. (2) and (3) are identical [17] for the
BCS model interaction in weak coupling. In this
case g = 0(h*k*/2m — max|0, (Ex — fiop)])0(Ex +
hop — Bk*/2m), where 0(x) is the Heaviside step
function and wp the Debye frequency. It becomes
gr =1 as hop — .

3. Boson number

Using a statistical model [18] guaranteeing both
thermal and chemical equilibrium in an ideal
boson—fermion mixture, the number of bosons
Np(T) formed within the N-fermion system, valid
at and below the BEC transition temperature T¢, is

No(T) = 3N ~ No(T)
= % [1 —(T/T¢) In (1 + e—ﬁ{Au(T)/Z—u(T)})]’

4)

where Ny(T) is the number of unpaired fermions,
Ao(T) the appropriate finite-7' generalization [18]
of the CP K = 0 binding energy, = 1/kgT, and
the ideal Fermi gas chemical potential u(7) in 2D
is given exactly by

_ p-l BER __
u(T)=p"In(e l)TjOEF. (5)
Fig. 2 illustrates the zero CMM CP binding

energy Ao(T) for three values of B,/u(T).
At T =0 Eq. (4) becomes

Na(0) = NAo(0)/4Ex = NB»J4Ex (B> < 2Ey)
=N/2 (B, >2EF). (6)
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Fig. 2. Temperature dependence of 2D zero-CMM CP binding
energy Ao(T) vs. T/T, for several couplings B,/u(T), where
kB T;i = U.

This should be compared with the BCS theory
estimate (Ref. [5], p. 128)

N
No(0) ~ (4/Er)’ 5 = N(Bs/Ex), (7
where here 4 is the BCS T' = 0 energy gap, and the
exact 2D result [19] 4 = v/2ErB, was used in the
last step. Since Ny <N /2, the estimate implies a
breakdown for B, > Er/2 in the BCS case.

4. Critical temperature

Neglecting the background unpaired fermions
and modeling the entire system as a pure boson gas
of unbreakable CPs but with temperature-depen-
dent boson number density ng(7T) = Np(T)/L?, the
explicit BEC T.-formula for linear dispersion bo-
sons in 2D [20] becomes an implicit one by al-
lowing np to be T-dependent, namely

T _4\/§ hUF
ST B2

nB(Tc)' (8)

This differs from the familiar BEC 3D formula
T, ~ 3.31h2n23/ 3 /mgky for quadratic-dispersion bo-
sons. Both equations are special cases of the more
general expression [20] of the form 7 o n'];/d for
any space dimensionality d > 0 and any boson
dispersion relation & oc K* with s> 0. Solving
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Fig. 3. Critical BEC temperatures (full curves), for the pure
unbreakable-boson gas, in units either of 7y or 7, = u(T)/ks,
compared with the BCS result (slanted dashed curve), vs. di-
mensionless coupling B,/u(T). Empirical cuprate data are
taken from Ref. [21].

Eq. (8) with Egs. (4) and (1) for K =0 self-
consistently gives T./T¢ vs. B,/Er as displayed in
Fig. 3 and compared with empirical values for
cuprates that range [21] from 0.01-0.1.

Also shown in the figure are the BCS theory T.’s
(see also Ref. [22]) obtained by solving the single
implicit equation

1
/ dx tanh s x=1In nTC , 9)
0 X 2T, e'B;

where y is the Euler constant. Note that kg7, —
(e"/m)\/2B,Er as coupling goes to zero, and also
that 24/kg T, — 2m/e’ ~ 3.53.

5. BCS and Bose-Einstein condensates

Finally, Fig. 4 depicts in either 2D or 3D both
condensates, the BCS one with its single K =0
pair-correlation state and the BE condensate [20]
with both (ground) K =0 and several (excited)
K > 0 CP states that form a “band” (shown in the
figure as a discrete spectrum for clarity) extending
up to the breakup state K, defined by 4x, = 0. For
perfectly linear dispersion CPs, i.e., in 2D g =
Ay — Ax = 2hvgK /m, the breakup CMM wave
number is then just Ky = ndy/2hvg. As this van-
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Fig. 4. BCS pair condensate of Cooper correlations (CCs) and
BE condensate of CPs, both below T, compared as explained in
text, along with their respective normal states at T > 7. Hori-
zontal ellipsis indicate a fractional particle occupation which is
macroscopic, or significant compared with unity.

ishes with coupling all the excited boson levels
collapse downwards and merge with the ground
K =0 level, ie., the bandshrinks to the single
ground level. Thus, for zero coupling the BCS
condensate appears to be a special case of the BE
condensate provided that the BCS CCs are essen-
tially CPs, as is widely believed.
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6. Discussion

Besides including the background unpaired
fermions in the real mixture problem with our
simple initial s-wave interfermion interaction, fur-
ther refinements pending are: (i) realistic Fermi
surfaces; (i1) Van Hove singularities or other means
of accounting for periodic-crystalline effects; as
well as the following interactions; (iii) the all-
important d-wave; (iv) residual interbosonic ones;
and (v) the crucial CP-fermion interaction vertex. It
is precisely the latter ingredient that enabled Lee
and coworkers [12], and Tolmachev [13] more
generally, to link BCS and BEC through a relation
whereby the BE condensate fraction is proportional
to the (BCS-like) fermionic gap 4(T) squared.
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