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Viscous dissipation of a power law fluid in an oscillatory pipe flow
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The flow field in an oscillatory pipe is studied theoretically for a generalized newtonian fluid model. The velocity and temperature fields
are obtained for the case in which the mean velocity caused by the pressure gradient is of the same order as the oscillation velocity. The
momentum and the cnergy conservation equations are solved and analytic expressions for the velocity and temperature fields are found. The
nature of the velocity and temperature profiles is explored for a range of parameters. In general, it can be concluded that the temperature rise
within the fluid increases with the speed of oscillation as the value of the power parameter increases. An effective heat transfer coefficient is
calculated and plotted as a function of the normalized oscillation specd. The cases of a newtonian, shear-thinning and shear-thickening fluid
are analyzed.
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Se presenta un estudio teérico de un flujo oscilatorio en una tuberfa para un fluido tipo ley de potencia. Las ecuaciones de momentum y
energia se resuelven y se encuentran soluciones analiticas para los campos de velocidad y tempceratura. Se obtienen resultados para el caso en
que la velocidad media debido al gradiente de presi6n es de la misma magnitud que la velocidad de oscilacién. Se exploran la naturaleza de los
campos de velocidad y temperatura como funcién de los pardmetros dominantes. En general, concluimos que el incremento de temperatura
en el fluido aumenta como funcién de la rapidez de oscilacién y del pardmetro de potencia. Se calcula un coeficiente de transferencia efectivo
y se grafica como funci6n de la rapidez de oscilacién adimensional. Los liquidos newtoniano, pseudo pléstico y dilatante son analizados.

Descriptores: Disipaci6n viscosa; ley de potencia; flujo oscilatorio

PACS: 47.50.+d; 47.60.+i
1. Introduction

The majority of studies that involve the flow of a viscous fluid
assume an isothermal state; however, in practice, many flows
are far from this situation. The combination of high viscosi-
ties and large velocity gradients may result in a significant
increase of the fluid temperature resulting from viscous dis-
sipation. This effect is used, for example, in extrusion pro-
cesses where the temperature increase is used to accelerate
the melting of the material.

The heat transfer in ducts has been extensively studied
for the case of newtonian fluids. Greatz [?] solved the clas-
sic problem of forced heat convection in a pipe subjected to
different boundary conditions, neglecting axial conduction.
More recently, Yin [?] solved Greatz problem analytically tak-
ing into account the axial conduction in the fluid as well as in
the pipe, concluding that the axial conduction indeed plays
an important role in the entrance region. Much less work
has been devoted to study heat transfer problems involving
non-newtonian viscous fluids. It is known, however, that the
non-newtonian properties of a fluid can significantly change
the heat transfer characteristics [?]. The coupling between the
equations of motion and the energy equation can be achieved
through the material properties of the fluid assumed, as a first
approximation, as temperature-independent constitutive rela-
tions.

The flow of polymer solutions and melts in oscillat-
ing pipes has been studied extensively by Mena and co-
workers [?,7,7,7]. Imposing longitudinal oscillations on a .
viscoelastic fluid, the velocity fields and the pressure drop
change were studied, but only considering the isothermal
case. Among many other conclusions, these authors state that
the oscillation of an exit die of an extrusion process alters -
the mechanical properties of the extruded product and causes
an important decrease of the pressure drop across the die.
More recently, Herrera-Velarde [?] studied theoretically the
heat dissipation on oscillatory flows considering a viscoelas-
tic model.

In order to understand the effect of oscillations in a poly-
mer extrusion process, the non iso-thermal case must be stu-
died. This paper presents the study of the pipe flow in which
the pipe oscillates in the main direction of the flow. Results
are obtained for an inelastic power law fluid. The temperature
profiles are obtained using the velocity profiles and by as-
suming temperature independent properties. The coefficient
of heat transfer is obtained and presented for a range of flow
conditions and fluid properties.

2. Problem definition

Consider a fluid that flows in a duct with circular cross-sec-
tion of radius r resulting from uniform pressure gradient VP
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FIGURE 1. Schematic of the flow entering the oscillating die with
a developed velocity profile, a mean temperature Ty and subjected
to an oscillating wall with constant temperature Tg.

in the axial direction of the pipe, z. Additionally, the duct
oscillates in the direction parallel to the flow imposing an ad-
ditional shear stress to the fluid. A schematic diagram of the
flow is shown in Fig. 1.

Considering the conservation equations for an incom-
pressible and uniform liquid,

=0, (D
i _
p<_t_> — _VP+V-7 (2

pC,(@-VT) +V - (kVT) =7 : V4, 3)

where 7 is the velocity vector, P is the scalar pressure, 7 is
the deviatoric stress tensor, p is the density, Cp is the specific
heat, k is the thermal conductivity and T is the temperature.
For the geometry of the flow showed in Fig. 1, the velo-
city vector reduces to (u,,uy,u,) = (0,0,u,) which satis-
fies the equation of continuity identically [Eq. (1)]. The mo-
mentum equation [Eq. (2)] in the z-direction is reduced to

Ou,
Pt
where G =—0P/0z is the constant pressure gradient and 7.,

is the component of the stress tensor in the axial direction of
the pipe. The boundary conditions for this equation are

19
=G+ ;E‘_(TTTZ)’ @

1) u, = aRe[exp(iwt)] at r = a.
2) Ou,/Or =0 at r =0.

The energy equation {Eq. (3)] for a fully developed tem-
perature field for the same flow, neglecting the axial conduc-
tion, reduces to

aT 19 (0T o, ,
pCpuz (5;) = k;g;(Té;) +Trz< ar > (5)

We consider that the temperature profile of the fluid is con-
stant with T, at the entrance of the oscillating wall. The os-
cillating wall temperature is also held constant at T},. Hence,
the boundary conditions are given by,

3) T=T, at r =aforall z.
4) 9T /0r =0 at r =0 forall z.

The above set of equations can be solved when a model
for the rheological behavior is given. To obtain analytical so-
lutions, a generalized newtonian model is considered.

2.1. Generalized newtonian model

The generalized newtonian model considers a modified vis-
cosity-shear rate relationship to account for the case in which
the viscosity of the fluid depends on the shear rate. A well-
known generalized model is the “power law” model [?], in
which the viscosity of the fluid depends on the magnitude of
the strain rate,

n=meé""!, (6)

where n and m are constants characteristics of a parti-
cular fluid. The magnitude of the strain rate is defined as

&= 1/2; 2 €;€;;/2. Hence, the ij component of the ex-

tra stress tensor is

F = mel}. )

The relevant component of the stress tensor for the prob-
lem of interest is 7,.,, which can be expressed simply by

ou, \"
Trz:m<a,r) . ®)

Note that if n = 1 the newtonian case is recovered where
the value of m corresponds to the shear viscosity 7.

3. Results

For the rheological model discussed above, the velocity and
temperature field are obtained. We consider the case in which
the mean velocity caused by the pressurc gradient is of the
same order as the oscillating velocity. For simplicity, the ma-
terial parameters (m, p, k, Cp) are all considered to be of or-
der 1.

To solve the momentum conservation [Eq. (4)] we as-
sume that the axial velocity component «, can be decom-
posed in uy = ug(t), the motion due to the periodic oscilla-
tion of the walls, and u,, resulting from the pressure gradient,

u, = ug + Uy, ‘ 9)
where w and A are the frequency and amplitude of the os-
cillation. If we take u, = R{wAexp(iwt)}, Eq. (4) can be
expressed as

iw?pAexp(ivt) = G + %-‘—9— (rtps)- (10)

or

If the pressure gradient G is constant, the expression

above can be integrated with respect to r to obtain the general

solution for the component 7., of the stress tensor. With the
condition that the stress must be finite at » = 0, we obtain

T, = g[ - G + piw? Aexp(iwt)]. (1D
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Using this expression in Eq. 8, we obtain

() = (£) (-0 swmmomialt, a2

which can be integrated with respect to r to obtain the ve-
locity profile using the wall velocity as a boundary condition,
u,(r = a) = aexp(iwt).

We must note that the parameter G is indeed a negative
number (—9P/8z) that determines the mean direction of the
flow (form left to right in this case). We can simplify the
mathematical analysis if we consider that

~G + w’aexp(iwt) = ~ |G| + iwlaexp(iwt)],

to avoid the case in which a negative number is raised to a
fractional power. Adopting this sign convention does not af-
fect the nature of the solution and simplifies the analysis sig-
nificantly. Hence,

. = n |G| + iwap exp(iwt) g
2T \14+n 2m

x (a%“ - r%“) + aexp(iwt). (13)
1 1
u, _ [|G] +iwaexp(iwt)= \" 1— <C
i |G| ¢

-,‘;+1}
a exp(iwt)

+ I
n El. "k
1+n/\2m

where u,, is the maximum velocity for the non-oscillating
Poiseuille pipe flow given by

L G * 1y
”m"(1+n)(2m> an

To make the magnitude of the oscillation velocity be of
the same order as that of the Poiseuille flow, the pressure gra-

|

A non-dimensional velocity is defined as

(14)

T=T, +cl{ /%—(/r'uz(r') dr') dr - U%(/r'u,(r') dr'> dr} }
([ ) [2J2" )o]_) o

_@{/;

where
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FIGURE 2. Dimensionless velocity as a function of dimension-

less position or power law fluids with: a) ( ) shear thin-
ning liquid, n = 1/2, b) ( = — —— ) shear thickening liquid,
n=2wadc¢c)(—-—"+— ) newtonian liquid, n = 1. For

wp/me =1, afu, =1 andm = 1.

dient G is calculated in terms of the oscillation speed

a Uy,
hence

_ a(l+n)\"
o1=2m () -

Figure 2 shows the non-dimensional velocity profiles for
three cases of fluids: a shear thinning fluid (n < 1), a shear
thickening fluid (n > 1) and a newtonian fluid (n = 1).

The energy equation [Eq. (5)] can be written for a power

law fluid leading to
dT du, \"*
— = (15
(%) (&) . o

where AT/ Az is considered to be a constant parameter. The
above equation can be integrated for the given set of boun-
dary conditions since the velocity profile [Eq. (1 3)} is known,

AT
YAz

k4

PGy rdr

and

An analytic solution can be found for the above expression resulting in

2
C3n

Caant+Cy ,
(r*—a%) = T3y

T"‘Tozol\: 4 2)“

143 _ 243 Con® (ContD\"™ (145 i
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where

Cg:(lzn)(WL+w;:mmw”>%

C, = aexp(iwt).

and

Figure 3 shows the temperature profiles for three different
times within the oscillation cycle. Clearly, the temperature
profile changes within the oscillation cycle resulting from the
changes in the velocity profiles. The temperature fields reach
a maximum when ¢t = 7, (half'a cycle). The shear thinning
fluid shows a smaller temperature increase than that observed
in the newtonian case. On the other hand, the temperature of
the shear thickening fluid is higher that that calculated for the
newtonian liquid. Since heating of the fluid results directly
from viscous dissipation, it is to be expected that as the shear
increases, liquid with constant or increasing viscosity with
shear will attain higher temperatures. Figure 4 shows the ef-
fect of varying the power parameter n on the temperature pro-
file for various cases of shear thinning and shear thickening
fluids.

Now, to analyze the effect of the oscillation in the tem-
perature increase of the fluid using the power-law model, the
condition that u,, &~ a is relaxed. The temperature profile is
then calculated for different values of o keeping the value of
U, constant. The effective temperature increase is quantified
using the mean temperature T, defined as

Jy T(r,t) dr
Ta

Hence, from Eq. (17), the mean temperature results in

— Cyaxt34Ca2  Cun? [ ai+3
T_T —‘:C _ >3 4 3
0 1[ 6 e r 1+4n

4 Com? [Q;(nﬂ)}"“(“*“ ) (18)

T=

14 3n n 1-+4n

Figure 5 shows the temperature increase as a function of
the ration ov/u,, for the three fluid cases. The temperature
increases with the oscillation velocity. However, for high os-
cillation speeds a change of trend is observed. Trends similar
to those observed here have also been reported by [7] for the
case of non-oscilatory pipe flows.

4. Heat transfer coefficient

The dimensionless heat transfer coefficient is defined as

( BT) -
a —
Nu="o_ N0,y

\ , 19
? T (19)

where /1 is the convective heat transfer coefficient and k is the
thermal conductivity.

The mean temperature results has already been calculated
and thetemperature gradient at the wall can be obtained by
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FIGURE 3. Temperature increase as a function of dimensionless

radial position for power law fluids with: a) ( ) shear
thinning liquid, n = 1/2, b) ( — — —— ) shear thickening li-
quid, n = 2, andc) (— - — . —. ) newtonian liquid, n = 1. For

wp/ne =1, afu, = LAT/Az=1,andm = 1,
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FIGURE 4. Temperature increase as a function of dimensionless ra-
dial position for shear thinning liquid and thickening liquids, for
various values of the power parameter for t = w and AT/Az = 1,
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FIGURE 6. Heal transfer coefficient as a function of the oscillation
velocity for laws liquid.

direct differentiation of the temperature profile [Eq. (17)] re-
sulting in

(8T) - Cl <C3G,%+2 + C4a C3TL2 al2+;l‘_>

or 2 T 1+3n

n41
R

Figure 6 shows the heat transfer coefficient as a func-
tion of the oscillating velocity for three cases studied. For
the range showed, an increase of the heat transfer coefficient
can be observed.

Aditionally, two limiting cases can be analyzed. For the
case where the axial temperature gradient is zero (C; = 0),
the Nusselt number, that corresponds to the case of pure vis-
cous dissipation, reduces to

1+4n
—

Nu =

visc

Hence, it can be inferred that the heat transfer is only a func-
tion of the properties of the fluid and not of the oscillating
characteristics of the flow. However, on the other hand, when
only the convective contribution (C;, = 0) is considered the
heat transfer coefficient reduces to

1
Csant3+C a?

Nugg,, =3+

1 C, ’
1- (1+3n)(1+4n) (6—n§+ W)
which does not depend directly on the value of the axial tem-
perature gradient AT/ Az but now depends on the oscillating
characteristics of the flow (C5 and C,). Hence, to obtain an
increase of the fluid temperature with increasing oscillation

speed, the effect of the axial temperature gradient must be
included.
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5. Summary and conclusions

We have studied the temperature increase resulting from vis-
cous dissipation in an oscillatory pipe flow. A variable vis-
cosity inelastic “power law” model was used to characterize
the rheology of the fluid. Both velocity and temperature fields
were obtained for three fluid cases: newtonian, shear thinning

=and shear thickening fluids. Properties of unitary value were
considered to obtain numerical results,

In general, it was found that the temperature increases
with the power parameter and with the speed of oscilla-
tion. An effective heat transfer coefficient was also calculated
which was observed to increase with the oscillation speed. To
our knowledge, experimental measurements of the heat trans-

fer in this flow configuration do not exist. We have recognized

that there is a very small number of experimental studies

that investigate the heat transfer processes in non-newtonian
fluids.
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