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Excited Cooper pairs formed in a many-fermion system are those with nonzero total center-of-mass momentum (CMM). They are normally
neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM npairs.
However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between
fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM npairs
relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any
specific CMM less than the maximum (depairing or breakup) momentum turns out to be typically larger than about 95% of those with zero-
CMM at zero temperature T'. Even at T' ~ 100 K this fraction in 2D is still as large as about 70% for typical quasi-2D cuprate superconductor
parameters.
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Los pares de Cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM)
diferente de cero. Normalmente éstos no son tomados en cuenta en la teorfa estandar de la superconductividad de Bardeen-Cooper-Schrieffer
(BCS) al suponer que su nimero es muy pequefio comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de
condensacién Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccién modelo BCS entre
los fermiones, determinamos la poblacién de pares Cooper con cada uno de todos los posibles valores del CMM calculando el nimero de
pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razén decrece
répidamente con el CMM, el niimero de pares de Cooper para cualquier CMM especifico menor que el momento méximo (o rompimiento
del par) es tipicamente més grande que el 95% de aquellos con CMM cero. Atin a T ~ 100 K esta fraccién en 2D es alrededor del 70% para
pardmetros tfpicos de cupratos superconductores cuasi-bidimensionales.

Descripiores: Pares de Cooper excitados; teorfa BCS; condensacién Bose-Einstein

PACS: 74.20.-z; 05.30.Fk; 74.90.4+n

1. Introduction which an appreciable fraction of them occupies the lowest
energy level of the system when it is cooled below a cer-
tain critical temperature. This idea is not new since Blatt,
Schrafroth and others [4] used it even before the BCS theory
appeared. Cooper pairs can at worst be considered “quasi-
bosons” even though their creation/annihilation operators do
not exactly satisfy the well-known Bose commutation rela-
tions since for definite CMM (but not definite relative mo-
mentum) they obey [3] Bose-Einstein statistics. Specifically,
an indefinite number of pairs with fixed (k,, k,) can vecto-

Pairing of fermions in superconductivity theories is com-
monly considered to be only among partners of equal and
opposite linear momenta, thus forming pairs with zero net
center-of-mass momentum (CMM). Although it is recog-
nized [1] that pairs with total momentum different from zero
are present in a superconductor, these are generally neglected
by arguing that they are much less numerous than pairs with
zero total momentum. To our knowledge, this has never be-

fore been explicitly calculated.

Since it was generally accepted that BCS theory is at
best hard-pressed to explain the new high-critical-tempera-
ture superconductors, many new and original microscopic
paradigms have been proposed [2]. However, there still lacks
both a dynamical mechanism as well as a many-body the-
ory able to account for such high transition-temperatures and,
better still, capable of predicting the existence of new materi-
als with even higher (hopefully room) critical temperatures.

Into this host of new theories of superconductivity has
been reintroduced [3] the Bose-Einstein condensation of
fermion (electron or hole) pairs considered as bosons, in

rially add up to the same CMM AK, zero or not—the Pauli
principle for each pair of fermions being strictly obeyed.

On the other hand, collective modes (or phonon-like ex-

‘citations) in a superconductor have indeed been recognized

since the late 1950’s by Bogoliubov, Tolmachev, Shirkov,
Nambu, Anderson, Rickayzen, and Bardasis and Schrieffer.
A review of the early work by Martin is available [5], as
is a more recent note by Belkhir and Randeria [6]. How-
ever, we do not deal here with “collective-mode phonons”
but rather with (nonzero CMM) “Cooper pairs” which can
Bose-Einstein-condense while phonons cannot. Cooper pairs
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e entities distinct from collective modes such as zero-sound
thonons or plasmons since they: a) are bounded in number
before the thermodynamic limit is taken), and b) are fixed
n number as they carry a fixed constituent-fermion-number
namely two)—while phonons or plasmons, say, do not share
ither property.

Although extensive studles in the BCS-Bose “crossover”
roblem have been reported [7] for over thirty years, we note
1at BEC within the standard (i.e., K = 0 Cooper-pair) BCS
icture is strictly impossible as only one boson state is al-
ywed to exist, namely, K = 0. The significantly novel in-
redient in Ref. 3 is to take account of the electron pairs with
linear, as opposed to a quadratic, dispersion relation.

If bosons satisfy a quadratic dispersion relation, i.e., their
inetic energies are €, = h%k?/2m, then the critical temper-
ure in d-dimensions [8, 9] valid for any dimension d > 0 is

C=

’ 2/d
2mh? n,’ /
mk, gd/z(l) ’

here m is the boson mass, n, the number density of bosons,

, the Boltzmann constant, and g, /2(1) the Bose function
,(z Yoo jle. Forz =1and o > 1, g,(2) = (o),
e Riemann Zeta function of order o. Thus fo0<d<2
en T, = 0 because the function g,(1) = oo foro < 1.
d=2¢(1) =¢1) =1+%+3+..., the har-
onic series which diverges. If d = 1 we have the series
2 =1+ \}— + \}5 + ..., which plainly diverges faster
an gl(l) In particular, if d = J the critical temperature 1s
e familiar result

2h?n?/3 3.31h% 43
T, = o~ ng' ",
¢ omk[C(3/2))3 T mk,

ace ((3/2) =~ 2.612. Superconductivity for quasi-2D mate-
ils could in principle be explained as a BE condensation of
ch bosons, but not for quasi-1D materials like the organo-
etallic Bechgaard-salt superconductors consisting of paral-
| molecular chains [10].

However, Cooper pairs by definition move not in a vac-
im but rather in a Fermi sea. Thus, they need not possess a
iadratic dispersion relation. The correct [11] dispersion re-
ion for Cooper pairs is linear in the long wavelength limit,
ecifically, for weak coupling

ex = a(d)v,AK when K — 0,

1ere RIS is the CMM of the pair, a(d) a dimensionless co-
icient of order one, d the system dimension, and v, the
rmi velocity of the underlying fermion gas. Cooper pairs
th K > 0 move in every possible direction; they are not to’
confused with those moving with a nonzero drift-velocity
a given direction, and which participate in a supercurrent
K = 0 pairs belonging to the BE condensate. The crit-
| temperature associated with these bosons in the weak-
upling limit is [9]

T = a(d)hw, [ wl@#/2+1/2p ]1/“ .
Tk [T@d/2% 1/2)94(1) '

where I‘(:z: =(x—- 1) is the gamma function. Note that now
T. > Oforall d > 1, i.e., the bosons can BE condense if the
system dimension is greater than one.

It would be more realistic to visualize a model not of a
pure boson gas but a chemical-equilibrium mixture [12] of
unpaired fermions and bosons composed of two fermions
paired by, say, the BCS model interaction [see (2) below].
This model of an ideal boson-fermion mixture at zero abso-
lute temperature is precisely that described {13] by the BCS
theory “condensation energy” in the ground state by assum-
ing only that all pairable fermions are actually paired. As no
interaction between Cooper pairs is included, this assumption
would appear to be tacit in BCS theory.

In this paper we calculate and exhibit in detail the fraction
of fermion pairs with a CMM wavenumber K > 0 relative to
that of pairs with K = 0, in both 3D and in 2D. This fraction
as a function of K and for different materials (or different

- v = ©p /Ty, where O and T are the Debye and Fermi

temperatures of the superconductor, respectively) is found to
be substantial, thus justifying their inclusion in a theory of
superconductivity viewed as a Bose-Einstein condensation.
Section 2 recalls the BCS model interaction between carrier
electrons, along with the general multiple integral required to
determine the number of Cooper pairs of any K; in Sec. 3
those integrations are performed to calculate the ratio of the
number of electron pairs with a given nonzero CMM to those
with K = 0 in 3D, relegating the 2D results to the Appendix;
Section 4 exhibits the number of Cooper pairs in 2D for any
nonzero temperature; Section 5 contains results and discus-
sion; and Sec. 6 conclusions.

)

2. Cooper pairing

Classical superconductivity has been reasonably explained
by the Bardeen, Cooper and Schrieffer (BCS) theory where
the central idea consists in electrons correlating to form
(Cooper) pairs which then move in coherence throughout the
superconductor volume. These Cooper pairs can in principle
possess zero or nonzero CMM, but only the former are re-
tained in standard BCS theory. The number of Cooper pairs,
relative to the total electron number, is determined by the
number of electrons which can pair up to actually bind.

- With the BCS model interaction these lie in a narrow en-
ergy (or momentum) interval about the Fermi surface. The
BCS model interaction between a pair of electrons encom-
passes, however imperfectly, the sum of two crucial dynami-
cal effects: the Coulomb repulsion between electrons and an
electron-phonon attraction that results from the attractive dis-
tortions produced by an electron of the background positive-
ionic lattice. Some attraction, of course, is vital to bind the
Cooper pairs. This particular dynamical mechanism is suffi-
cient to explain the vanishing resistance in a superconductor,

‘where a phonon of maximum energy fiwp, is transferred be-
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tween the partner electrons that form a Cooper pair. The max-
imum energy of a vibrating-ionic-lattice phonon is fwp =
K2k% /2m*, where kp, is some defined wavenumber thusly
associated with the Debye frequency w,, and m* is thé ef-

fective electron mass. If r; and r, are the position vectors °

of two electrons their relative and center-of-mass coordinates
arer ='r; —ry and R = 3(r; + ry), respectively. The
relevant wave vectors are related through ‘

1
K=k +ky, k=35(k —k)
or

K K
with AK the total momentum of the pair, and 7k its rela-
tive momentum, see Fig. 1. The BCS model interaction to be
used here is then represented in momentum space simply by
the double Fourier transform » |

K - {-v9(2\/k,2, TR, -K) if kp <|k£3K]| K& 3K| < VEE T kD,

0 otherwise,

- where V' > 0 measures the intensity of the net attractive po-
tential between the pair whose electrons have energies ¢y,
€y, AN €y, Ep, before and after the interaction, respec-
tively. The positive coupling constant V' represents the net
attractive effect of the electron-phonon attraction which over-
whelms the repulsive Coulomb interaction so as to insure

bound pairs. To interact, two electrons must each be within-

an energy interval hwp, above [14] the Fermi surface of en-
ergy Ep. Since I > 0, the step function 8(z) ensures that
the interaction is nonzero only if 0 < K < 2/k% + k5.
This means that two fermions suffer a constant attraction -V

when the tip of their relative-momentum wavevector k points
: J

! . .
N](O(/dk(]-"rnkl)(l—nkz), T

where n,,_ is the average number of electrons with wavevec-
tor of magnitude k;, ¢ = 1,2, and where the prime means
integration only over the overlapping volume allowed by (2).
As in the original Cooper-pair problem [14] we restrict our-
selves to T' = 0. In this way, the magnitudes of the vectors
k, and k, must be inside the interval [k, kp + fiwp] which
form shells of energy thickness Awp, about the Fermi energy.
Actually bound pairs will be formed only if they suffer the
attractive interaction (2), i.e., we stress again, only if the tip
of their relative momentum k is within the overlap volume
of both shells, the center-to-center distance of these spherical
shells being equal to the magnitude of K. For example, bound
pairs with a total momentum KK = 0 are those formed by all
the electrons that lie in the energy shell of magnitude fiw,
about the Fermi energy. Further, the primed integral sign in

) EF+ hﬁ)o

FIGURE 1. Cross section of the overlap volume of two identical
spherical shells in k-space of energy thickness fiwp, whose cen-
ters are separated by the magnitude of the total (CMM) wavevec-
tor K = ky + kg of the bound pair of fermions with wavevec-
tors k; and ks formed via the BCS model interaction (2). Here
k = 1(k, — k) is the relative wavevector of the pair.

)

anywhere inside the overlap volume in k-space of the two
spherical shells shown in the Fig. 1. For the particular case
illustrated in the figure, this overlap volume is “ring” shaped.

The number Ny of pairs with a given K is proportional
to the probability of finding one electron with wavevector k,
and a second electron with wavevector k, which combine to
give a resultant CMM wavenumber I. At T = 0 this prob-
ability is just the volume Vi in k-space as this consists of a
simple-cubic lattice (of lattice spacing 27/ L with L the size
of the box containing the system) of points each of which
represents an electron state with either spin. Specifically -

Vi = / BBk —kp)0ly —kp), G

l 5
(3) requires the following factors in the integrand

1 if 81.:,‘ <EF+th
and :

0 if Ek‘.>EF+hAUD, (4

for i = 1 and 2, in keeping with the upper limit to k, and .
in the BCS model interaction (2). ;

Strictly speaking, at T = 0.only X = 0 pairs ar
present [3], whereas at T > O there are both zero- anc
nonzero-I{ pairs. At T- > 0 the step_—function-sha_rpI Ferm
surface smooths out into the Fermi-Dirac distribution n;, =
[exp{B[H%k2/2m* — u(T)]} + 1]~ where the chemical po
tential p(7T") = Ep.

Rev. Mex. Fis. 47 (1) (2001) 54-61



EXCITED COOPER PAIRS 57

1) Nonspherical

il) Ring
shell

iv) Dimpled Double

v} Double-convex
-convex lens lens '

FIGURE 2. Distinct topologies associated with the overlapping vol-
ume of two spherical shells in k-space as the magnitude of K, their
center-to-center distance, is increased.

3. Nonzero vs. zero CMM pairs .

To calculate the number of pairs with K > 0 relative to those
with I = 0, we combine conditions (4) into the primed in-
tegral (3) which, recalling (1), then becomes the overlap vol-

ume in k-space '
o) ([5 1)

Vi = / dk 6 (
K
X 0 (Mk%&k%— ‘5+k‘)
) . (5
Though tedious, this is a straightforward multiple integration,

K
xe(,/kg,wg— ‘-2--1(
and yields the overlapping volume of the two shells of thick-

ness fiwy, = h?k%/2m*. Note that the overlap volume of
two spheres is well-known [16] and corresponds to the par-
ticular case k%,/k% — oo above. As the number of pairs for
any I{" > 0 is proportional to the overlap volume of the cor-
responding shells, the ratio required is just Vi /Vp. There are
five distinct topologies associated with the overlap volumes
generated by separating the two perfectly coincident shells,
depending on the magnitude /& of vector K which is center-
to-center separation of the shell centers, Fig. 1. These topolo-
gies are shown in Fig. 2, with shaded (overlap) areas desig-
nated as follows: i) Spherical shell; ii) Non-spherical shell;
iii) Ring; iv) Dimpled double-convex lens; and v) Double-
convex lens. Although only cases i) and ii) will be physically
relevant here, the rest are reported for completeness. Next
we calculate the fraction of the bound pairs of electrons with
K > 0to those with K = 0, as a ratio of overlapping vol-
umes, and as a function of K for 3D. The analogous results
for 2D are summarized in the Appendix. R
‘Consider’ a'pair of spherical shells in k-space of identi-
cal widths \/k% + k7, — kg, Whose centers are separated by
a distance K = |k; + k,|. Due to axial symmetry of the
resulting overlap volumes, it is convenient to use cylindrical

TABLE 1. Values of different-topology boundary points &1, 2 and
k3, for several values of v = fiwp /Ep. Typically, v ~ 10~2 for
conventional, and =~ 0.05, for cuprate superconductors.

[ 2 Ky Ko - Kg

1 0.1464 0.7071 0.8535 -
10-1 0.0233 09535 09767
1072 0.0025 - 0.9950 0.9975
1073 0.0002 0.9995 0.9997

coordinates (p, ¢, z) with the z axis along the vector K. In
these coordinates the volume element dk = pdpdpdz is
substituted into (5). We further introduce the dimensionless
variables

K

2/k% + k%

K

and
_

_kp _ hwp
=2

- EF ) (6)
where & is the CMM wavenumber in terms of the maximum
value it can acquire with nonzero interaction according to (2),
and v is clearly the ratio of the Debye-to-Fermi energies. The
values K, Ky and k3 mark the boundaries within the interval
0 < & < 1 between different topologies; this can be deduced
through simple geometry to be

m-‘-l—(l 1 ) Ko = !
179 VIitv/’ SN ey

and

1 1 P

Ky =—=[(1+ ————) ' (7

=51+ = )

Explicitly, topology (i) above corresponds to x = 0; (if) to

0 <k <k (Ei)IOK <K< Ky (VO Ky < K < K3}

and (v) to x = 1. Table I lists actual values of these bound-

aries for several values of v, including the typical v values

of conventional (v ~ 10~3) and cuprate (0.03 < v < 0.07)
superconductors.

Consider now the ratio Vi /V, defined before, corre-
sponding to the five distinct overlap topologies mentioned.

3.1. Spherivcal-shell-shaped overlap,xk =0

When the CMM wavenumber K of pair is zero, or & = 0,
the wavevectors of the individual electrons satisfy k; = —k,
so that the electrons of the pair lie in an spherical shell of in-
ternal radius kp and external radius \/k% + k3, at the same
distance from the center and diametrically opposite the each
other. The centers of the two spherical shells of width Aw,
are fixed at the origin, and the overlap volume defined by in-
tegral (5) is just

V=V, = (%”)k; [(1 +v)3/2 — 1] . 8)
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On the other hand, when K > 0 the tip of wavevector k,
must lie, say, in the shell centered at the left while the tail
of wavevector k, must lie in the shell centered at the right,
both shell centers being separated by a distance K. As K
is increased from zero the overlap volume of the two shells
then acquires the four shapes mentioned above. These four
distinct cases are labeled (ii) through (v).

3.2. Non-spherical-shell-shaped overlap, 0 < & < &,

The overlap volume is

kp+I/2 V(L +E2)—(2+K/2)? 2n
V,-,-(K)=2/ dz/ pdp | dy
k2 —(z—K/2)? 0

o
VREFEL)~K /2 V{(kE+ER)~(z+K/2)2 27
+2/ dz/ pdp dy,
k 0 0

F+I(/2

or

Vii(k) = (%)k%(l +v)3/? [1 — (L +v)~%2

3\ (2+v) 3
a <§)K(1+V) + ]’
so that dividing by (8) leaves
Vi®) _ [(§) V1+v(2+v)
A 2 (1+1/)3/2——1‘
(14 v)3/2
[———(1+I/)3/2—1K’ (9)

which goes smoothly to 1 when k — 0, as expected.

3.3. Ring shaped overlap, k; < Kk < K,
The overlap volumes is now
vkrp [46/1+v

Viii (I() = 2/ dz
0

V(RE+EL) —(2+K/2)? 2
X / pdp [ dp,
VL (2= K/[2)? 0
or

3?2 :'

Viii (k) = 2 ki (1+v) [m

so that dividing by (8) leaves

G-

3 (1+v) [ 32
Vo 2

A+ —1l16e(1 ¥ u)s/z]' (10)

3.4. “Dimpled-double-convex-lens”-shaped overlap,
kg < K< Kg

The overlap volume is

K/2—kp /\/( k3 +k% )—(z+K/2)2 2r
0

m(1<>=2/ d pdp [ do
0 O

vkr /AnTTD  p\/(FotRE )= (1 KJ2)2 27
+2 o dz/ pdp [ dp,
K/2—kp VFE=(e-KJ2)? 0
or ' '
v A 3 v?
Vel = (3)6 [ -1+ (55) s

G- (Yol

*so that dividing by (8) gives

Viv("’) - 1 2

- werl (@

Q- Gl an

3.5. “Double-convex-lens”-shaped overlap, k; < 5 < 1

Finally, we have

VEEHEE—K/2
Vo(K) =2 / T dz

0

V (k2 +kE)~(2+K/2)2 21
X /0 pdp A dp,

or
_ (47,3 3/2 3 1y 5
Vo) = () R+ 02 (1= (5)n+ (5)%°]
so that dividing by (8) leaves

il Qe ()] o

Note that V,,(x)/Vy vanishes for x = 1~ as it should, and
must be implicitly made to vanish for all k > 1, in accor-
dance with (2).

4. Finite temperature

The above zero-temperature results are qualitatively un-
changed at higher temperatures 7', up to values of T of
physical interest, and to illustrate this we focus on 2D only.
The number of up-spin electrons that pair up under the BCS
model interaction in 2D at T' = 0 into a CMM KK Cooper
pair is by inspection
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s = 20 1) (o] -10)o (Vo - [S s (V- [£ ).

where © ) = h%k3 /2mkg i is the Debye, and Ty, = E/kp = h*k% /2mky the Fermi, temperatures. Defining v = @ /Th,
and since kp = \/_ kg k = 1(k; ~k,) and K = k, +k,, for T' > 0 this above number is more generally

A(K,T) = ; (1= mpugaq) (1= mpoig) 6 (‘-12‘3 +kl

w)o (|5 -4-»)

x0(,/kf,+k§3—|%+k')0<,/k2+k2 l——kl), (14)

where
k, = v2mu(T)/R2,
=p"! BEp _ i
,u(T)—- In(e’*F 1)H)’EF in 2D,

ey, = B2k /2m
and’
1—-n, = (e—[ek,. ~w(D/ksT . 1)

“,1',:6’0(51;.- —kp) (i=1,2).

-1

Defining k = K/2kpv/1+v and i = p/Ep, Fig. 3 dis-
plays (14) relative to A(0,0) vs. T and k. However,  varies
from O to only x¢ =~ 0.0007, which is the value of « be-
yond which Cooper pairs (with A = 1/2 and v = 0.05, as
in this example) break up. Note that even for temperatures T'
as high as ~ 100 K and T ~ 10* K as is typical of quasi-
2D cuprates, there is a reduction of only about 25% with re-
spect to the zero-temperature result in the relative numbers of
nonzero CMM Cooper pairs in each state K all the way up to
breakup.

5. Results and discussion

The number of Cooper pairs with a specific K > 0 rela-
tive to those with K = 0, namely the ratio of k-space vol-
umes V. /V,, as a function of k = K/(2v/k%& + k%) for
the four distinct cases in Secs. 3.2-3.5 just mentioned, are
graphed in Fig. 4 for different v values. Fortuitously, and
as expected, the resulting curves are smoothly continuous,
even though they arise from the analytically distinct expres-
sions (9), (10), (11) and (12) in the variable k. The limit
v = oo of (12), though physically irrelevant here, correctly
reduces to the well-known analytic expression for the over-
lap volume of two solid spheres [16] of radii k5 and sep-
arated by a center-to-center distance K. Indeed, as stressed
in Ref. 1, the fraction V}, /V; decreases rapidly from unity to
zero as K increases from K = 0 (to its maximum possible

0.0 0.2 0.4 0.6 0.8 1.0

KuKi2(k2 + k3"

FIGURE 3. Fraction of bound pairs with nonzero CMM, AK > 0,
to that of bound pairs with zero CMM, in 3D, for several values
of v = k}/k%. Typically, v = 10~2 for conventional, while
0.03 < v < 0.07 for cuprate, superconductors. The limit v = oo
refers to the well-known [16] overlap volume in k-space of two
solid spheres of radii kr and center-to-center distance equal to K
and follows correctly from (12).

value K = 2/k% + k% = 2kp+/1+v, or K =1). This
decrease is more pronounced for smaller v. For cuprates [17]
0.03 £ v < 0.07 while for conventional superconductors
v ~ 0.001.

From Ref. 11 Cooper-pair binding energies satisfy an al-
most linear dispersion relation in K, and break up (in the
linear approximation) for & > 1.4 x 10™* in 2D and for
Kk > 1.8 x 107* in 3D, for v = 0.01 and for a coupling
of A = 1/2.1In Fig. 5 we plot Vi /V; as a function of &, in
the interval 107 < k = K/(21/k% + k3) < 1073 for 3D
(full curves) and for 2D (dashed curves). The small “flags”
mark the Cooper-pair breakup points, according to Ref. 11.
Clearly, the number of pairs with ' > 0 in the interval
0 < &k = K/(2\/k% + k%) < 10~* before Cooper-pair
breakup roughly occurs is larger than about 95% of .those
with K = 0.
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1.0
Vil V, |

008 ITTIIIII‘
107 108 105 10% 10

K = KI2(K2 + K3) "2

LR AL LERRRRLIL| T Ty

FIGURE 4. Enlargement of Fig. 3 over the interval 1077 <
K/(24/k% + k%) < 1073, except that dashed curves refer here to
2D results. Tiny “flags” mark Cooper-pair breakup total momenta
values in the linear approximation of Ref, 11.

6. Conclusions

In conclusion, for a many-fermion system at T = 0 inter-
acting via the familiar BCS model interaction we have cal-
culated and graphed the fraction of Cooper pairs of electrons
with a given nonzero total momentum, with respect to pairs
with zero total momentum. It was found that the number of
pairs with a nonzero total momentum smaller than the max-
imum (breakup) momentum is larger than about 95% of the
number of pairs with total momentum K = 0, for 2D and 3D,
v = 0Op/Tr > 0.01 and A = 1/2, where v is the Debye-to-
Fermi-temperature ratio and A the usual dimensionless cou-
pling constant of the BCS model interaction.

Finally, the effect of temperature on the number of
nonzero K pairs (relative to that with K = 0) does not
change in order of magnitude. For example, in 2D this frac-
tion at the highest possible (breakup) value of K is reduced
from about 0.95 at zero temperature to about 0.70 for T, and
T values typical of quasi-2D cuprate superconductors.
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Appendix

Nonzero CMM Cooper-pair fraction in 2D

Here we report results in 2D for the fraction Ay /Aq of bound
pairs with a given total momentum AK different from zero

1

A(x, T/7) 0.8\
A (0, 0)
‘ 0.0006

FIGURE 5. Number of Cooper pairs in 2D with nonzero CMM K,
relative to that with zero CMM, as function both of reduced temper-
ature T'/Tr and Cooper-pair reduced CMM k = K/2kr/T+ v
(up to the breakup value Ko as discussed in text).

relative to that of pairs with zero total momentum, in terms
of the overlapping area of two identical circular tapes of in-
ner radius kr and width \/k% + k% — kp, whose cen-
ters are separated by a distance K. Asin 3D let & =
K/(2\/k% +%k%) and v = k}/k%. In terms of these
dimensionless variables the boundaries separating topologi-
cally different overlapping areas as the magnitude of K is
increased from zero, are given by (7). Five distinct shapes
(topologies) of overlapping areas can be identified:

i) Single-circular-tape-shape, k == 0

Both circular tapes merge into a single one of area

Ao = Ai = Wk?;wl/.

For K > 0 one distinguishes four cases:

a) Non-circular-tape-shaped, 0 < k < k,

The resu]t is. ’ )
AZ(:) = (1 -iV- v) [1 _ (_72;) sin! () — (%)m /1— k2

=1+ 1/)"1 - (%)n(l +v)7H2 /1 = (kV1 + v
_ (%) (1+v)™? sin_l(f:\/l_-*'?)]
o1 [4(1+u)+27r\/1—+_v

Y%

]K, for k<1, (15

which, as expected, goes smoothly to 1 as k — 0.
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b) Two-identical- “areas”-shaped, K1 < Kk < Kg |

Ajii(K) -

(1+v)

(o g+ =+

Aq v

1-#+bﬂ%7f4¢“ﬂmﬁfz

61

+ K,]z —sin~} (k)

~lzas -

= k(1 +0)"2 /1 = (k/TF V)2 =

¢) “Double-dagger”-shaped, Ky < Kk < Kg

Aaf0) B0 () o T im0+ [ty
+sin~! [ch(—&‘u_) + n] ~ (g) (1+v)t = [%( -
— (1 +v) sin? [Z;TV_— - I+ }.

d) Two-convex-curves-shaped, K3 < kK < 1

__(1+1/)'

A,(x)
A0 T v

(1+ ) sin Y w1+ v) —

- @i - (o]

n]‘(l + V)“l/z\/l - [W——'I—T—; m/l_JF?]2

(1+v)"tsi

in~ (EV— e m—:;)}.

) +n]\/1'—— [Zm—(ly_’_—y)-i-n]z

PR K,](l + u)_l/z\/l - [# —- m/H_u]2

(16)

As expected this gives A(x)/Ao — 0 as k — 17, and must be made to vanish for all k > 1, as in the 3D case (12).
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