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Abstract

A two-dimensional (2D) assembly of noninteracting, temperature-dependent, composite-boson
Cooper pairs (CPs) in chemical and thermal equilibrium with unpaired fermions is examined
in a binary boson–fermion statistical model as the superconducting singularity temperature is
approached from above. The model is derived from 3rst principles for the BCS model inter-
fermion interaction from three extrema of the system Helmholtz free energy (subject to constant
pairable-fermion number) with respect to: (a) the pairable-fermion distribution function; (b) the
number of excited (bosonic) CPs, i.e., with nonzero total momenta—usually ignored in BCS
theory—and with the appropriate (linear, as opposed to quadratic) dispersion relation that arises
from the Fermi sea; and (c) the number of CPs with zero total momenta. Compared with the
BCS theory condensate, higher singularity temperatures for the Bose–Einstein condensate are
obtained in the binary boson–fermion mixture model which are in rough agreement with empiri-
cal critical temperatures for quasi-2D superconductors. c© 2001 Elsevier Science B.V. All rights
reserved.

PACS: 03.75Fi; 05.30.−d; 05.30.Fk; 05.30.Jp

Keywords: Binary gas; Boson–fermion mixture; Bose–Einstein condensation

∗ Corresponding author. Fax: +252-616-1251.
E-mail address: dellano@servidor.unam.mx (M. de Llano).

0378-4371/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0378 -4371(01)00139 -X



426 M. Casas et al. / Physica A 295 (2001) 425–440

1. Introduction

Recent experiments [1] indicate that composite bosons in ultra-cold clouds of most
alkali atoms do indeed Bose–Einstein (BE) condense. Since Cooper pairs (CPs) of
fermions (electrons or holes) in a many-fermion system form composite bosons in the
sense of coupling to integer angular momentum, it is natural to consider the possible
BE condensation of such pairs. The belief that some such condensate is central to
superconductivity is more than 50 years old [2–7]. High-Tc, as well as some organic,
superconductors [8] are quasi-two-dimensional (2D). Quasi-1D superconductors have
also been found [9]. BE condensation (BEC) is impossible in two or less space dimen-
sions [10] for usual or “ordinary” bosons (i.e., with a quadratic energy-momentum, or
dispersion, relation). It is however still possible to have BEC in all dimensions d¿ 1
for noninteracting bosons if they obey a linear dispersion relation [11]—such as CPs
moving in the Fermi sea. This possibility arises because the Hohenberg theorem [10],
which prohibits BEC in 2D, relies on an f-sum rule based on the quadratic dispersion
relation appropriate to bosons [12] moving in a vacuum. Such a linear dispersion rela-
tion for the CPs in a binary boson–fermion mixture model was recently found [13] to
be consistent, without any adjustable parameters, with the anomalous linear (quadratic)
temperature-dependence above Tc in the resistivity of optimally-doped (overdoped)
cuprates whether hole- or electron-doped. For the observed quadratic T -dependence in
overdoped samples linear-dispersion CP charge carriers are essential.
Although extensive studies in the BCS-Bose “crossover” problem in superconduc-

tivity have spanned [14] a period of over thirty years, we note that BEC is distinct
from the standard (i.e., zero center-of-mass momentum CPs) BCS theory condensation
where only that one bosonic state exists.
In this paper, it is shown that in addition BEC is still possible in 2D even if the

number of composite bosons (pairs of fermions) in a binary boson–fermion mixture
is not Kxed—as chemical=thermal equilibrium renders it coupling- and temperature-
dependent—as long as the total number of fermions is Kxed. This gives rise to an
interesting statistical-mechanics problem irrespective of the particular mechanism for
pair formation, and may have a vital application for superconductivity as well as for
(neutral-atom) superLuidity such as in liquid 3He [15], dilute mixtures of 3He in 4He
[16], or in trapped Fermi gases [17]. The statistical model dealt with here may be seam-
lessly linked to BCS theory, via the fermionic energy gap, when boson=unpaired-fermion
interactions are included as, e.g., in Refs. [18] and [19]. However, in these two papers
the quadratic CP dispersion relation has been assumed. The quadratic form has recently
been shown [20] to apply only in the zero-density or vacuum limit when the Fermi
sea disappears.
In Section 2, we recall a 2D gas of fermions at T=0 interacting via a constant pairing

interaction in an annulus about the Fermi surface—viz., the BCS model interaction.
The binding energy of a single pair near the Fermi surface (CP problem) decreases
practically linearly with the center-of-mass momentum (CMM) of the pair for all values
of the momentum below breakup, the breakup momentum typically being only about
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four orders of magnitude smaller than the Fermi momentum. In Section 3 we discuss
why the interacting many-fermion system can be treated as a set of independent CPs
(i.e., composite bosons with fermion number two) mixed in with pairable fermions
which are not bound into pairs, i.e., unpaired fermions. In Section 4 the more realistic
scenario is considered of the BEC of these pairs, incorporating pair breakup beyond a
certain CMM. Although the number of pairs is not Kxed but rather strongly coupling-
and temperature-dependent, BEC is still possible in 2D. A simple binary boson–fermion
statistical model is introduced by constructing the Helmholtz free energy for an ideal
mixture of pairable but unpaired fermions plus paired fermions (both zero and nonzero
CMM pairs), all in chemical and thermal equilibrium. The latter results through extrema
of the free energy in: (a) the pairable fermion occupation probabilities; (b) the excited
boson numbers (nonzero CMM CPs) and (c) the ground boson number (zero CMM
pairs). In Section 5 the coupling- and temperature-dependence of the boson number
is derived. In Section 6 the critical BEC singularity temperature is obtained Krst by
ignoring the unpaired fermions in a pure boson-gas model and then exactly for the
boson–fermion binary mixture model from a T -dependent dispersion relation derived
and calculated numerically, and results compared with empirical data. Finally, Section 7
gives conclusions.

2. Cooper-pair dispersion relation

Consider a 2D system of N fermions of mass m conKned in a square “pen” of area
L2 and interacting pairwise via the BCS model interaction

Vk;k′ =
{−V if �(T )− ˝!D ¡”k1 (≡ ˝2k21 =2m); ”k2 ¡�(T ) + ˝!D

0 otherwise ;
(1)

where k ≡ 1
2 (k1−k2) is the relative wavevector of the two particles (see Fig. 3 below);

Vk;k′ the 2D double Fourier integral of the underlying nonlocal interaction V (r; r′) in
the relative coordinate r= r1 − r2; �(T ) the ideal Fermi gas chemical potential which
at T = 0 becomes the Fermi energy EF ≡ ˝2k2F=2m with kF the Fermi wavenumber;
2˝!D ≡ ˝2k2D=m the width of the annulus about the Fermi circle in which the pairing
interaction is nonzero, with !D being the Debye frequency. This model interaction
mimics the net eNect of an attractive electron-phonon interaction overwhelming the
repulsive interfermion Coulomb repulsions, whenever V ¿ 0.
If ˝K=˝(k1 +k2) is the CMM of a pair, let EK be its total energy (besides the CP

rest-mass energy). The eigenvalue (CP [21]) equation for a pair of fermions at T = 0
immersed in a background of N − 2 inert, spectator fermions within a (sharp) Fermi
circular perimeter of radius kF is then

1 = V
∑
k

′ �(k1 − kF)�(k2 − kF)
2”k − (EK − ˝2K2=4m)

; (2)
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where again ”k ≡ ˝2k2=2m, �(x) is the Heaviside unit step function, and the prime on
the summation sign denotes the conditions

k1 ≡
∣∣∣∣k + 1

2
K
∣∣∣∣¡ (k2F + k2D)

1=2 and k2 ≡
∣∣∣∣k − 1

2
K
∣∣∣∣¡ (k2F + k2D)

1=2 (3)

ensuring that the pair of fermions above the Fermi “surface” cease interacting beyond
the annulus of energy thickness ˝!D in accordance with (1), thereby restricting the
summation over k for a given Kxed K. Without these restrictions (2) would just be
the SchrPodinger equation in momentum space for the pair. Setting EK ≡ 2EF −�K , the
pair is bound if �K ¿ 0, and (2) becomes an eigenvalue equation for the (positive)
pair binding energy �K . Our �K and �0 should not be confused with the BCS energy
gap �(T ).
Let � ≡ g(EF)V ¿ 0 be a dimensionless coupling constant with g(EF) the electronic

density-of-states (for each spin) at the Fermi surface in the normal (i.e., interactionless)
state, which in 2D is constant

g(”) = L2m=2�˝2 ≡ g : (4)

The Cooper Eq. (2) for the unknown quantity �K is analyzed in Ref. [22]. For zero
CMM, K = 0, it becomes a single elementary integral, with the familiar [21] solution

�0 =
2˝!D

e2=� − 1
(5)

valid for all coupling �. For small K , it is not too diRcult to extract [22] the asymptotic
result

�K →
K→0

�0 − 2
�

[
1 +

�0

2˝!D
(1 +

√
1 + �)

]
˝vFK

+O(K2) →
�→0

�0 − 2
�
˝vFK + O(K2) (6)

where � ≡ �D=TF , and vF is the Fermi velocity deKned through EF ≡ ˝2k2F=2m= 1
2mv

2
F .

For weak coupling, � → 0, this linear dispersion relation gives the 2D analog of the
3D result stated as far back as 1964 in Ref. [23], p. 33 (see also, Ref. [24], p. 336)
but with the 2D coeRcient 2=� of the last expression of (6) replaced by 1

2 .

3. Justi�cation of boson formalism

These CP boson-like structures could be called “quasi-bosons” since their creation
and annihilation operators are known not to obey the usual boson commutation relations
[23], p. 38. However, they do obey the Bose–Einstein distribution since the energy EK

of the CP is given only by the total CMM, K , but is independent of the relative
momentum k. Thus, the possible energy states for the pair are EK as deKned in (2).
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The number of pairs NK that can occupy such a state can take on indeKnite values
since there exist also indeKnitely many relative momenta, namely

NK ≡
∑
k

Nk;K = 0; 1; 2; : : : : (7)

Here, Nk;K=0; 1 is the number of pairs characterized by both k and K, and is the same
number as that characterized by deKnite k1 and k2, namely Nk;K =nk1nk2 =0; 1 where
nki = 0; 1 is the occupation number for a single fermion, these remarks all referring
to singlet pairing. Much of all this has been known [25] at least since 1958, albeit in
somewhat diNerent language.
This view of an actual Cooper pair should not be confused with, say, an Ander-

son [26] phonon-like collective excitation (or modes) with weak-coupling dispersion
relation in 2D [27] given by (1=

√
2)˝vFK in the long-wavelength limit, and which

evolves into the plasmon when Coulomb repulsions between fermions are switched on.
CPs here, like deuterons, carry fermion number two and as such are de3nite in number
(although in the CP case this number is coupling- and temperature-dependent) and can
thus undergo BEC. This is distinct from collective excitations which are indeKnite in
number. Park [28], e.g., distinguishes between “permanent” and “ephemeral” bosons,
the latter sometimes being referred to as “quasiparticles” to distinguish from the former
“particles”.
For NB ordinary bosons of mass mB and energy #K = ˝2K2=2mB in any positive

dimension, d¿ 0, a temperature singularity Tc [29] appears in the number equation
NB=

∑
K [e

(#K−�B)=kBT − 1]−1 at vanishing bosonic chemical potential �B 6 0 when the
number of K = 0 bosons just ceases to be negligible upon cooling. It is given by

Tc =
2�˝2
mBkB

[
nB

gd=2(1)

]2=d
(8)

with nB the boson particle density NB=Ld, and gd=2(z) the usual Bose integrals

g%(z) ≡ 1
&(%)

∫ ∞

0
dx

x%−1

z−1e x − 1
=

∞∑
l=1

zl

l%
→
z→1

((%) ; (9)

where &(%) is the gamma function and ((%) the Riemann zeta function of order %. The
last identiKcation in (9) holds when %¿ 1 for which ((%)¡∞, while the series g%(1)
diverges for % 6 1, thus giving Tc = 0 for d6 2. For d= 3 one has ((3=2) � 2:612
so that (8) becomes the familiar formula Tc � 3:31˝2n2=3B =mBkB of “ordinary” BEC.
On the other hand, for bosons with (positive) excitation energy #K ≡ �0 − �K given
approximately by the linear term in (6) for all K , the singularity that lead to (8) now
yields [30], for weak coupling,

Tc =
a(d)˝vF

kB


 �

d+1
2 nB

&(d+1
2 )gd(1)



1=d

(10)
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where [11] a(d)=1; 2=� and 1=2 for d=1; 2 and 3, respectively. Note that now Tc ¿ 0
for all d¿ 1, which is precisely the dimensionality range of all known superconductors
including the quasi-1D organo-metallic (Bechgaard) salts [9]. This is not inconsistent
with the Hohenberg theorem [10] that there is no broken symmetry, i.e., long-range
order, in a Bose Luid for d= 1 or 2, since this is based on an f-sum rule for bosons
with a quadratic dispersion relation. Indeed, both (8) and (10) are special cases of
the more general expression [31] for any space dimensionality d¿ 0 and any boson
dispersion relation #K = Cs Ks with s ¿ 0 and Cs a constant, given by

Tc =
Cs

kB

[
s&(d=2)(2�)dnB

2�d=2 &(d=s)gd=s(1)

]s=d
: (11)

In what follows the number of bosons will be temperature-dependent and it is in
conserving the fermion number that the singularity arises. As is the case for the pure
boson gas, a linear rather than a quadratic dispersion relation will be needed to obtain
BEC in 2D. This emerges in a statistical model of an ideal binary mixture of bosons
(the CPs) and unpaired (both pairable and unpairable) fermions in chemical equilib-
rium [4], for which thermal pair-breaking into unpaired pairable fermions is explicitly
allowed.

4. First-principles statistical model

Under interaction (1) at any T the total number of fermions in 2D is N =L2k2F=2�=
N1 + N2 and is just the number of noninteracting (i.e., unpairable) fermions N1 plus
the number of pairable ones N2. The unpairable fermions obey the usual Fermi–Dirac
distribution with fermionic chemical potential �. On the other hand, the N2 pairable
fermions are simply those in the interaction shell of energy width ˝!D so that

N2 = 2
∫ �+˝!D

�−˝!D

d”
g(”)

e,(”−�) + 1
= 2g˝!D ; (12)

since the density of electronic states (4) is constant and the remaining integral exact.
At any interfermionic coupling and temperature these fermions form an ideal mixture
of pairable but unpaired fermions plus CPs that are created near the single-fermion
energy �(T ), with binding energy �K (T )¿ 0 and total energy

EK (T ) ≡ 2�(T )− �K (T ) : (13)

This generalizes the T = 0 equation EK ≡ 2EF − �K introduced below (3).
The Helmholtz free energy F = E − TS, where E is the internal energy and S the

entropy, for this binary “ composite boson=pairable-but-unpaired-fermion system ” at
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temperatures T 6 Tc is then [32]

F2 = 2
∫ �+˝!D

�−˝!D

d” g(”){n2(”)”+ kBT [n2(”)ln n2(”) + {1− n2(”)}ln {1− n2(”)}]}

+[2�(T )− �0(T )]NB;0(T ) +
K0∑

K¿0

{[2�(T )− �K (T )]NB; K (T )

+ kBT [NB; K (T )lnNB; K (T )− {1 + NB; K (T )}ln {1 + NB; K (T )}]} : (14)

The integral term is the contribution from the unpaired fermions and runs over all
levels in the energy shell where the BCS model interaction is nonzero, n2(#) being
the average number of unpaired but pairable fermions with energy #; the prefactor two
comes from the spin. The second term gives the free energy of the bosons with CMM
K = 0 since their entropy is negligible in the thermodynamic limit; here NB; 0(T ) is
the number of (bosonic) CPs with zero CMM at temperature T . The summation term
represents the free energy of the bosons with nonzero CMM, while NB; K (T ) is that
with arbitrary nonzero CMM K; and the cutoN K0 is deKned [22] by �K0 ≡ 0. The
free energy F2 is to be minimized subject to the constraint that the total number of
pairable fermions N2 is conserved.

If N20(T ) is the number of pairable but unpaired fermions, the relevant number
equation for the pairable (i.e., active) fermions is then

N2 = N20(T ) + 2[NB;0(T ) + NB;0¡K¡K0 (T )] ≡ N20(T ) + 2NB(T ) ; (15)

where NB; 0¡K¡K0 (T ) denotes the total number of “excited” bosonic pairs (namely with
CMM such that 0¡K ¡K0), i.e., NB; 0¡K¡K0 (T ) ≡ ∑

0¡K¡K0
NB; K (T ). Minimizing

the free energy, subject to the constraint that (15) be a constant, is equivalent to
minimizing the grand potential

.2 = F2 − �2N2 : (16)

(a) Minimizing .2 with respect to the fermion occupation probabilities n2(”) yields
the Fermi–Dirac distribution with fermion chemical potential �2, not �, namely

n2(”) =
1

e,(”−�2) + 1
; , ≡ (kBT )−1 : (17)

Thus, the total number of pairable (but unpaired) fermions then becomes

N20(T ) ≡ 2
∫ �+˝!D

�−˝!D

d” g(”)n2(”) = 2
∫ �+˝!D

�−˝!D

d”
g(”)

e,(”−�2) + 1
; (18)

and should be compared with (12) for N2 which contains only �. Since in 2D g(”) is
a constant (4), (18) becomes the exact expression

N20(T ) =
2g
,
ln
[
1 + e−,(�−�2−˝!D)

1 + e−,(�−�2+˝!D)

]
: (19)
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(b) Minimizing .2 with respect to the excited boson numbers NB;K (T ), K ¿ 0,
yields the Bose–Einstein distribution summed over all 0¡K ¡K0, namely

NB;0¡K¡K0 (T ) ≡
K0∑

K¿0

NB; K (T ) =
K0∑

K¿0

[
e,{EK (T )−2�2} − 1

]−1
: (20)

The factor multiplying , in (20) may be rewritten as #K (T )− �B(T ), where #K (T ) ≡
�0(T ) − �K (T ) ¿ 0 is a (nonnegative) excitation energy as suggested by (6), while
�B(T ) turns out to be

�B(T ) = 2[�2(T )− �(T )] + �0(T ) : (21)

This allows rewriting (20) in the more meaningful boson form

NB; 0¡K¡K0 (T ) =
K0∑

K¿0

[
e,{#K (T )−�B(T )} − 1

]−1
(22)

where �B(T ) is clearly the bosonic chemical potential associated with the entire binary
mixture.
(c) Finally, minimizing .2 with respect to the number of zero CMM (or, “ground

state”) bosons NB;0(T ) gives

2[�2(T )− �(T )] + �0(T ) = 0 (06 T 6 Tc) ; (23)

valid only in the stated temperature range as NB;0(T ) is negligible for all T ¿Tc.
However, in view of (21) this implies that �B(T ) = 0 for all 06 T 6 Tc—which is
precisely the BEC condition for a pure boson gas, even though one now deals with a
binary boson–fermion mixture.

5. Boson number

To determine NB(T ) from (15) we need (19) which with (23) reduces to

N20(T ) =
2g
,
ln
[
1 + e−,{�0(T )=2−˝!D}

1 + e−,{�0(T )=2+˝!D}

]
(06T6 Tc) : (24)

At T=0 two distinct coupling regimes emerge by inspecting (24): (a) for �0=2¡˝!D

or, from (5) for �6 2=ln 2 � 2:89, we have that N20(0) = 2g(�)(˝!D − �0=2); while
(b) for �0=2¿˝!D (or � ¿ 2:89) N20(0) is identically zero. Hence, the number of
bosons NB(0) at T = 0 from (15) is just NB(0) = 1

2 [N2 − N20(0)]. Using (12) for N2

the fractional number of pairable fermions that are actually paired at T = 0, namely
2NB(0)=N2 = 1− N20(0)=N2, becomes simply

2NB(0)=N2 =

{
�0=2˝!D = (e2=� − 1)−1 →

�→0
e−2=� (for �6 2=ln 2 � 2:89) ;

1 (for �¿ 2=ln 2 � 2:89) :

(25)
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Fig. 1. Fractional number of pairable fermions that are actually paired, at three diNerent temperatures, vs.
coupling � for the present Krst-principles model (25) (thick curves) and estimated for BCS theory at T = 0
as explained below (25) (thin curve). The number of pairable fermions with the BCS model interaction used
is just (12); all of them are actually paired at T = 0 in the heuristic BEC model, Ref. [31] Eq. (23).

This fraction is plotted against coupling � in Fig. 1 as 2nB(0)=n2, since nB(T ) ≡
NB(T )=L2 and n2 ≡ N2=L2. Since NB(0) = 1

2g�0 for �6 2:89, only those fermions
in an energy shell of width �0=2 around the Fermi surface actually pair at T = 0,
while for �¿ 2:89 all pairable fermions actually pair up since then NB(0) = g˝!D ≡
1
2N2. This result contrasts sharply with the “heuristic model” [31], Eq. (22), where
2NB(0)=N2 ≡ 1 for all coupling, and is more in line with BCS theory which im-
plies, in any d, a coupling-dependent fraction estimated (Ref. [5, p. 128]; see also
[33]) to be [g(EF)2�=2g(EF)˝!D]2 = (�=˝!D)2 ≡ (sinh 1=�)−2 →

�→0
4e−2=�, where � ≡

˝!D=sinh(1=�) (again, not to be confused with the CP binding energy �0) is the T =0
BCS energy gap for the same BCS model interaction (1) used in this paper; this
is graphed as the thin curve in Fig. 1 and is seen to be much larger than (25) for
Kxed �. The breakdown of BCS theory for BCS model interaction couplings larger
than � � 1:13 is clear both because: (a) the alluded fraction cannot exceed unity and
(b) physically, if the fermionic energy gap �¿ ˝!D no pairable fermions are available
at all. This breakdown is indicated by the dashed curve in Fig. 1. (A strong-coupling
many-body model diNering from that of BCS theory but based on the BCS model
interaction has been solved by Thouless [34]).
Also displayed in Fig. 1 are two Knite-temperature results for 2NB(T )=N2 = 1 −

N20(T )=N2 which are obtainable from (24) for any T provided one knows �0(T ) for
any T ¿ 0. For T ¿ 0, the �(k1 − kF) ≡ �(”k1 −EF) in (2) becomes 1− n(/k1 ), where
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Fig. 2. Temperature dependence of K = 0 CP binding energy �0(T ) obtained numerically from (27) for
� = 1

2 and � = 0:05. Note that when T = ∞ (27) is analytical for �0(∞); the latter then turns out to be
about 10−8, so that the curve saturates from above to this value at T =∞.

n(/k1 ) ≡ (e,/k1 + 1)−1 is the Fermi–Dirac distribution with /k1 ≡ ”k1 − �(T ), with the
ideal fermion gas chemical potential �(T ) in 2D being given exactly by

�(T ) = ,−1 ln(e,EF − 1) →
T→0

EF : (26)

Note that �(T ) decreases monotonically with temperature from its maximum value of
EF but does not turn negative until T = TF=ln 2 � 1:44TF so that the BCS model
interaction (1), which requires �(T ) to be nonnegative, will not break down (i.e.,
become meaningless) over the entire range of temperatures relevant in this paper, see
Fig. 4 below. Similar arguments hold for �(k2−kF). Since k1=k2 implies that /k1 =/k2 ,
(2) then leads to a simple generalization to Knite-temperature of the K=0 CP equation,
namely

1 = �
∫ ˝!D

0
d/(e−,/ + 1)−2[2/+ �0(T )]−1 : (27)

Its numerical solution for �0(T ) is illustrated in Fig. 2 for � ≡ gV = 1
2 and � ≡

˝!D=EF = 0:05. Note that if one assumes a T ∗ such that �0(T ∗) = 0, the result-
ing integral in (27) diverges and the equation can only be satisKed for � = 0; thus,
there is no temperature T ∗ at which “depairing” will occur for any Kxed � and any
nonzero �.
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6. Critical temperature

Neglecting the background unpaired fermions and modeling our system as a pure
boson gas of CPs but with temperature-dependent number density nB(T ), one converts
the explicit Tc-formula (10) into an implicit one by allowing nB to be T -dependent.
For d= 2 (10) becomes, since g2(1) ≡ ((2) = �2=6,

Tc =
4
√
3

�3=2
˝vF
kB

√
nB(Tc) : (28)

This requires nB(T ) ≡ NB(T )=L2 which in turn requires (24), along with �0(T ) as
determined from (27), and is given by the expression 2NB(T )=N2 = 1 − N20(T )=N2.
Solving (28) self-consistently with �= 1

2 gives the remarkably constant value Tc=TF �
0:004 over the entire range of � ≡ ˝!D=EF values 0.03–0.07 typical [35] of cuprate
superconductors. On the other hand, the BCS formula TBCS

c � 1:13�De−1=� with �= 1
2

gives Tc=TF = 0:005; 0:008 and 0.011 for �= 0:03; 0:05 and 0.07, respectively. Clearly,
both sets of predictions are somewhat small compared with empirical cuprate values
of Tc=TF that range [36] from 0.01–0.1.
To obtain the exact critical temperature without neglecting the background un-

paired fermions, one needs the exact CP excitation energy dispersion relation #K (T ) ≡
�0(T )−�K (T ) which is neither exactly linear in K nor independent of T . To determine
�K (T ) we need a working equation that generalizes Ref. [22] for T ¿ 0 via the new
CP eigenvalue equation (27). Because of symmetry, see Fig. 3, one can restrict the
angle � to the interval (0; �=2) where k1 ¿ k2, i.e., to quadrant I. Recalling (13), in

Fig. 3. Cross-section of overlap “volume” in momentum space (darkest shading) where the tip of the
relative wavevector k (for two fermions with wavevectors k1 and k2) must point for the attractive BCS
model interaction (1) between them to be nonzero and form a Cooper pair of CMM magnitude ˝K .
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d-dimensions (2) becomes

1 = V
(

L
2�

)d ∫ ′
dk

[1− n(/k1 )][1− n(/k2 )]
˝2(k2 − k2�)=m+ �K (T ) + ˝2K2=4m

: (29)

Here k� is such that � ≡ ˝2k2�=2m and becomes kF as T → 0, while kD is such that
˝!D ≡ ˝2k2D=2m. The prime on the integral sign now denotes the restrictions

k22 ≡ |k − 1
2K|2 = k2 − kK cos �+ 1

4K
2 ¿k2� ; (30)

k21 ≡ |k + 1
2K|2 = k2 + kK cos �+ 1

4K
2 ¡k2� + k2D : (31)

In Fig. 3 the darkest shading corresponds to these (BCS model interaction) restric-
tions. The conditions (30) and (31) can be studied separately but must be satisKed

simultaneously. If K ¡ 2
√
k2� − k2D, (30) and (31) are equivalent to

(k2� − 1
4K

2 sin2 �)1=2 + 1
2K cos �¡k ¡ [(k2� + k2D)− 1

4K
2 sin2 �]1=2 − 1

2K cos � :

(32)

Note that for K ¿
√
k2� + k2D −

√
k2� − k2D there exists a minimum value �min of �

given by

cos �min ≡ k2D

K
√
2(2k2� + k2D)− K2

; (33)

while �min=0 for K ¡
√
k2� + k2D−

√
k2� − k2D. We introduce the dimensionless variables

0 ≡ K
2(k2F + k2D)1=2

6 1; / ≡ k
kF

; �̃0 ≡ �K

EF
; � ≡ �D

TF
≡ k2D

k2F
; (34)

with kB�D ≡ ˝!D ≡ ˝2k2D=2m and kBTF ≡ EF; where kB is Boltzmann’s constant.
Recall the d = 2 constant expression (4) for g(”), the restrictions (32), and that for
K¿ 0 and T ¿ 0 the step functions in (2) �(k1;2 − kF) ≡ �(| 12K ± k| − kF) become
[exp{−,[˝2( 12K±k)2=2m−�(T )]}+1]−1—but with 2”k in (2) replaced by ”k1 +”k2 , EF

by �(T ) and �K by �K (T ). One Knally arrives at a working equation for the binding
energy �K (T ) that generalizes Eq. (18) of Ref. [22], namely

1 =
4
�
�
∫ �=2

�min

d�

×
∫ /max(�)

/min(�)
d/ /

[1 + exp{−,̃[/2 + (1 + �)02 + 2
√
1 + � 0/ cos �− 1]}]−1

2/2 + 2(1 + �)02 − 2 + �̃0(T̃ )

×[1 + exp{−,̃[/2 + (1 + �)02 − 2
√
1 + � 0/ cos �− 1]}]−1 ; (35)
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Table 1
Critical temperatures Tc=T� for � = 1

2 depicted in Fig. 4 according to (36). The exact result is com-
pared with the linear-in-K approximation for both �K (T ) and �K (0) in order to test sensitivity of a
temperature-dependence of the CP binding energy for nonzero K

� Linear approx. with �K (T ) Linear approx. with �K (0) Exact

0.03 0.078 0.068 0.065
0.04 0.089 0.079 0.075
0.05 0.100 0.088 0.084
0.06 0.109 0.096 0.091
0.07 0.117 0.104 0.098

where � ≡ ˝!D=�, /min(�) ≡ √
1 + � 0 cos � +

√
1− (1 + �)02 sin2 �, /max(�) ≡

−√
1 + � 0 cos �+

√
(1 + �)(1− 02 sin2 �) and

�min =

{
0 if 20¡1−

√
(1− �)=(1 + �) ;

cos−1(�={4√1 + � 0
√

1 + �=2− (1 + �)02}) otherwise :

In (35) we have introduced the more general dimensionless quantities /≡ k=k�; �̃0(T̃ )≡
�K (T )=�, where T̃ ≡ kBT=� or ,̃ ≡ �,, and 0 ≡ K=2

√
k2� + k2D.

To obtain the critical temperature from the Knite-temperature dispersion relation,
besides solving (29) for �K (T ), one needs (12), (15), (22) and (26). At T = Tc both
NB;0(Tc) � 0 and �B(Tc) � 0 so that one gets the implicit Tc-equation for the binary
mixture gas

1 =
T̃ c

�
ln

[
1 + e−{�̃0(T̃ c)=2−�}=T̃ c

1 + e−{�̃0(T̃ c)=2+�}=T̃ c

]
+

8(1 + �)
�

∫ 00(T̃ c)

0
d0

0

e[�̃0(T̃ c)−�̃0(T̃ c)]=T̃ c − 1
:

(36)

This must be solved numerically for the exact Tc for each � and � in conjunction with
(27) for �̃0(T̃ ) and (35) for both �̃0(T̃ ) and 00(T̃ c). Results for �=1=2 are shown in
Table 1 and Fig. 4 for a range of � values typical [35] of cuprates.
In order to make this comparison we have taken T�=TF � 1, a very good approxi-

mation up to the highest temperatures dealt with. For example, from Fig. 4 the highest
Tc=TF � 0:14 already gives T�=TF � 0:9999 from (26), while for smaller Tc=TF the
values of T�=TF are even closer to 1. The Tc resulting from the exact dispersion rela-
tion for T =0 (dot-dashed curve) is somewhat higher than the exact result (full curve)
but lower than that using the linear approximation for �K (T ) (dotted curve). It is also
clear that the eNect of using the exact or linear (in K) cases dominates the eNect of
the dispersion relation T -dependence. For cuprates d � 2:03 has been suggested [37]
to be more realistic as it reLects inter-CuO-layer couplings but our results in that case
would be very similar to those reported here for d= 2.
Thus, for � = 0:05 the exact Tc is seen to be about 46% lower than the heuristic

result found in Ref. [31], Eqs. (15) and (23). It is curious that all results depend very
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Fig. 4. Critical BEC temperature Tc in units of TF , resulting for the boson–fermion mixture from (36) for
� = 1

2 for varying � ≡ ˝!D=� � �D=TF : with no approximations (full curve); using �K (T ) evaluated at
T = 0 (dot-dashed); using the linear-in-K approximation for �K (T ) (dotted). The dashed straight line is
the BCS formula Tc � 1:13�De−1=� for � = 1

2 . The very lowest full horizontal line is the solution of the
implicit Tc-equation (28) for the pure unbreakable-boson gas for �=0:03; 0:05 and 0:07. A huge Tc enhance-
ment thus follows from the mere presence of background unpaired fermions. Cuprate data are taken from
Ref. [36].

weakly on the T -dependence of the CP binding energy �K (T ), in spite of its being
substantial throughout the temperatures spanned in this paper, as seen in Fig. 2.
We defer study of the condensate fraction NB; 0(T )=NB(T ) below Tc and merely

surmise that it may ultimately help explain the apparent absence [38,39] in cuprates
of the Hebel–Slichter peak of nuclear-spin (NMR) relaxation rates vs. temperature for
0 6 T 6 Tc. Such a peak, originally seen [40] in aluminum, is perhaps the most
stringent and qualitatively convincing experimental test of BCS theory (Refs. [23]; p.
71 and [41], p. 79 N). Besides cuprates, it is also absent [42] in several quasi-1D
Bechgaard [9] and in several quasi-2D (ET) organic salt superconductors.

7. Conclusions

A simple statistical model treating CPs as non-interacting bosons in thermal and
chemical equilibrium with unpaired fermions is proposed. The model gives rise to
a boson number that is strongly coupling- and temperature-dependent. Since the CP
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dispersion relation is approximately linear, it exhibits a Bose–Einstein condensation
of zero-CMM pairs at precisely two dimensions. Exact transition temperatures for the
boson–fermion mixture based upon the exact CP dispersion relation are in reasonable
agreement with empirical cuprate data.
Needless to say, further corrections are yet to be included in the present simple

binary mixture boson–fermion model, e.g., (i) realistic Fermi surfaces, (ii) Van Hove
singularities [43] or other means of accounting for periodic-crystalline eNects, as well
as (iii) the all important d-wave interfermionic interaction, (iv) the boson–fermion
interaction and (v) residual interbosonic interactions. As to the latter, also generally
neglected in BCS theory, if the lowering [44] of Tc in liquid 4He by about 29% with
respect to the ideal Bose gas BEC Tc is any guide, interbosonic interactions will also
lower Tc in a more realistic picture. As to the boson–fermion interaction, it is precisely
this ingredient that enabled T.D. Lee and coworkers [18], and Tolmachev [19] more
generally, to link BCS and BEC through a relation stating that the BE condensate
fraction is proportional to the (BCS-like) fermionic gap �(T ) squared.
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