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Natural Convection in a polar suspension with internal rotation
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In this paper the natural convection in a polar suspension fluid layer with internal rotation is investigated when polarization is present due
to the influence of gravity. Constitutive equations obtained by means of extended irreversible thermodynamics [J. Chem. Phys. 96 (1992)
9102, and J. Colloid and Interface Sci. 178 (1996) 69] are used to describe the instability. This set of constitutive equations works to couple
the velocity, spin and polarization fields. It is shown that the stationary instability of the polar suspension layer only depends on the relative
magnitude of the Debye relaxation time and the polarization diffusity times. Besides, it is found that oscillatory convection can occur before
the stationary one when important anti-symmetric polarization gradients coupling parameters are large enough.
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En este artculo se investiga la conveccién natural en una capa de fluido formada por una suspensién polar en la que la polarizacién aparece
debido a la influencia de la gravedad. Para describir la inestabilidad se hace uso de las ecuaciones constitutivas obtenidas por medio de
la termodindmica irreversible extendida [J. Chem. Phys. 96 (1992) 9102 y J. Colloid and Interface Sci. 178 (1996) 69). Este conjunto
de ecuaciones tiene como fin acoplar los campos de velocidad, espin y polarizacién. Se demuestra que la inestabilidad estacionaria de la
suspension polar solo depende de la magnitud relativa del tiempo de relajamiento de Debye y de los tiempos de difusién de polarizacién,
Ademds, se encuentra que la convecci6n oscilatoria puede ocurrir antes que la estacionaria cuando pardmetros importantes de acoplamiento

de gradientes de polarizaci6n antisimétricos son suficientemente grandes.

Descriptores: Conveccin natural, suspensiones, polarizacién, espin
PACS: 44.27 +f; 44.35.+c; 47.27.Te; 47.55 kf; 47.50.4d

This paper is dedicated to Professor Leopoldo Garcfa-Colin Scherer on occasion of his 70th anniversary.

1. Introduction

Since almost half a century, suspensions have been the sub-
Ject of intensive research due to their important applications
in natural sciences as well as in industry. The increasing in-
terest on their behavior is reflected in the number of papers
published on this subject, reviewed extensively in Ref. 1. The
different properties of suspensions should be present in the
constitutive equations derived to describe their behavior, In-
ternal rotation, or spin, of the colloidal particles is one of the
main characteristics which appear when their friction with the
carrier fluid is relevant. When a polar suspension is under an
external field, like gravity or an electric field in dielectrics,
it polarizes producing rotation on its particles which try to
orient with the external field. In this way, the internal rotation
is intimately related with the polar properties of the medium.
Thus, the response of the polar suspension to the external
field has influence on the magnitude and direction of the spin
and, moreover, on the global fluid flow behavior according to
the boundary conditions.

Constitutive equations for polar fluids with internal rota-
tion have been put forward recently taking into account their
viscoelastic properties. For polar fluids with dielectric cha-
racteristics constitutive equations were obtained by means of
Extended Irreversible Thermodynamics by Dévalos-Orozco
and del Castillo [2]. In case the center of mass of the sus-
pended particle is displaced from its geometric center, it is
said that it is polarized with respect to gravity, which plays
the role of the external force. The constitutive equations for a
viscoelastic polar suspension with spin having these proper-

ties were obtained by Ddvalos-Orozco and del Castillo [3].

In this paper, the linear natural convection of a polar sus-
pension fluid layer with internal rotation polarized by gra-
vity is investigated using the constitutive equations obtained
in [3]. The results of this research will give a light on the role
played by all the parameters on fluid flow.

Simple boundary conditions are used to describe the sus-
pension fluid layer instability when heated from below. Both,
the stationary and oscillatory convective instabilities will be
investigated. Here, all the viscoelastic properties of the sus-
pension are neglected.

The structure of the paper is as follows. In Sec. 2, the
equations of motion along with the constitutive equations
for a fluid suspension are presented. These equations are li-
nearized and made non dimensional in Sec. 3, where the
stability analysis is developed to obtain an explicit expression
for the marginal Rayleigh number. The corresponding numer-
ical results for stationary and oscillatory convection are given
in Sec. 4. Finally, Sec. 5 has the conclusions.

2. Equations of motion and constitutive
relations

The system under investigation is a horizontal polar suspen-
sion fluid layer heated from below. The layer of thickness d
is parallel to the (z,y)-plane and its lower boundary is lo-
cated at z = 0. The suspension has a lower boundary with a
temperature Tj, + AT, higher than that of its upper boundary
at z = d which has a temperature T,. The acceleration of
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gravity is parallel to the z-axis but in its negative direction.
The suspension boundaries are supposed to be stress free and
to have fixed temperatures, that is, the boundaries thermal
properties are those of a very good conductor.

The constitutive equations of a viscoelastic polar sus-
pension with internal rotation, were obtained in {3]. Note
that here all the viscoelastic effects are ignored. Therefore,
the coupled system of equations of motion and constitutive
equations are
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Here, p is the density, @ is the velocity vector, p is the pres-
sure, § = (0,0, —g) is the acceleration of gravity, I is the
mean moment of inertia of the suspended particles, ¢J is the
spin vector, B is the gravity polarization vector of the par-
ticle, x, is the gravity polar susceptibility of the fluid, Q°
is the symmetric stress tensor, 4 is the viscosity, Q® is the
anti-symmetric stress tensor, ¢ is the vortex viscosity and €
is the three indexes alternating tensor. The operator d/dt is
always the lagrangian time derivative. The operator D /Dt
is the lagrangian, the corrotational or the codeformational
time derivative, depending on the model assumed. Here, in
the absence of viscoelastic effects, it is assumed to be the
Lagrangian time derivative. The coefficients d,, d3, 4, d5, 0

and &, which appear in front of the gradients of P, Qs
and Q° give the magnitude of the coupling of the spatial in-
homogeneities of polarization and the stresses. Besides, they
are important in the coupling with the velocity field. The
coefficient §,, is the inverse of the time scale representing
polarization decay in the absence of couplings. Here, it is
supposed that this representative time is the same as that for
spin decay in the absence of polarization and velocity fields.
That is

1 I
> T 5T g (6)
where 7, is the Debye relaxation time and the last result is
obtained from Eq. (2) after substitution of Q® in Eq. (5).
The above equations are coupled to the heat diffusion
equation through the velocity field and the changes of den-
sity due to the temperature gradient imposed to the fluid
layer. That is

ar .,
?d? - kTV T, (N

where T is the temperature, k. is the heat diffusivity.
The continuity equation for an incompressible fluid is:

V-ad=0. ®)

These equations are linearized in the following section where
the stability analysis is done.

3. Instability analysis

The instability of the suspension fluid layer is investigated
under the Boussinesq approximation. This means that the
density variation due to temperature is taken into account
only in the gravity term.

The system of equations given in the previous section
has the following hydrostatic solutions. From the imposed
temperature gradient, the resulting temperature profile ob-
tained from the heat diffusion equation is T = T/AT =
1 -z + Ty/AT. If B is the coefficient of thermal volume
expansion, the fluid density varies as

T,
p:po(l_ﬂT):po[l‘—ATﬂ<1—z+_A_T_>}

where p, is a reference density. It follows that the hydro-
static pressure, obtained from the z-component of Eq. (1) is
p = py — gp,2[l + ATB(z/2 — 1 — Ty/AT)]. Besides, it
is supposed that in the hydrostatic state the fluid polarization
is B, = x,§, where § is a uniform constant field.

Now, Egs. (1)=(5), (7), and (8) are perturbed and li-
nearized after substitution of the stress tensors. They are
made nondimensional using d for distance, d? /k for time,
kr/d for velocity, kp./d? for spin angular velocity, pok2/d?
for pressure, —2d84(/d for polarization and AT for tempera-
ture. In this way, after subtracting the hydrostatic solutions,
the linear equations for the convection instability are:

L 9% _Gp+ ok + N,V?B, + N,V(V-PB)
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5 "V V48, (12)
V-d=0. (13)
Here & = (u,v,w), D, ﬁp = ( pl’Pp2’ ), and

& = (w,,w,,w,) are the perturbations of velomty, pres-
sure, polarization and spin, respectively. In Eq. (12) use
has been made of the fact that dI'/dz = —1. The non-
dimensional parameters are defined as follows. Pr = pu/p kp
is the Prandtl number, R = gBATd?/vky is the Rayleigh
number, M = (/p is the vortex and fluid viscosities ratio,
and 7 = 7,/(d/kp), Ny = —206((85 + b7)/povkr,
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Ny = —=26¢(85 — 07)/povky, N3 = ~264(8,d?/Ik%,  and fluid viscosities with coupling terms of the symmetric

N, = D, /kp, Ny = Dy [k, Ng = Dy /(=266¢)- and anti-symmetric stress tensors. Equation (10), obtained in

a natural way by means of extended irreversible thermody-

Note that Dy = 8,83 — (64 + 05)/2 — §6d7 and  pamics [3], is a generalized version of the one proposed by
D, = §,65 — (6, — 85)/2 + 8¢d; contain diffusivity cons-  gyjjes and Hubbard [4].

tants of the rotational of polarization (transverse mode) and A combination of the equations resulting from the second

of tht? polarization clmrge density (longitudinal mode), re- rotational of Egs. (9) and (11), the first rotational of Eq. (10)
spectively [2]. Dy = 8,11 — 04, represents products of vortex  nq yge of Eqs. (12) and (13) lead to one equation for the
1 z-component of the velocity. That is

g{ (% _v ) {253 (%vz (.]2\]71 —oON,(L+ M)) v%} - 2N3Rv‘iw] — 14w =0, (14)

o= (5 - In(ae D))
e (G- () o] (G- -], vo

where ¢ and A are differential operators and
V2 = 9%/0z* + 8%/0y? is the two-dimensional laplacian.
Note that it was supposed that V - & = 0 (however, this term
relaxes to zero as shown from the divergence of the linear
spin equation).

The boundary conditions are the following. For stress
free boundaries w=D?w =0 at z=0,1 and =0
for a fixed temperature at z = 0,1. Besides, it is sup-
posed that at z = 0,1, DP,; = DP,, = P,; =0 and that 1 ‘
w, =w, = Dw, =0. Thisplboundarl; congitions are sa- R= E(H +a?)’ [1 T
tisfied consistently if it is supposed that all the com-
ponents of the perturbation vector fields have the form The new parameters are
f = AF(2) expi(a, + a,y +wt) and that they have the
next dependence on z

@ ~ [cos(nmz), cos(nmz), sin(n7z)], = <54 2652)

with

marginal Rayleigh number. A detailed analysis of the cons-
tant parameters and their products shows that they can be
simplified and that it is possible to find a better expression
for them in Eq. (17). Therefore, it is found that only a few
parameters are needed to describe the instability. The new
expression of the Rayleigh number (see Appendix) is

7,(7? + a?)
1+ (r, + 1) (72 + a?)

]. (18)

T, = TD(5253/d2,

P, ~ [cos s(nmz), cos(nwz), sin(nmz)], . o o .
which compare diffusivity times of polarization with the

& ~ [sin(nrz),sin(n7z), cos(nmz)). Debye relaxation time. It might seem that the spin effects
already disappeared from the stationary Rayleigh number
mainly because in the absence of polarization the effects of
the spin are not present in stationary convection. However, if
calculations are made for the polarization coupled alone with
the velocity field a similar equation for R is obtained but with
more coefficients. Therefore, it is concluded that if it were not
for the contribution of the spin the resulting equation would
not be as simple as Eq. (18). In this way, it is concluded that
the tull system of coupled equations is needed to describe,

Here, A is a constant amplitude, o, and a, are the z- and
y-components of the wavenumber, w is the frequency and n
is an integral number.

The solvability condition of Eq. (14) for the stationary
case will be given first. In this case the solution for the
marginal Rayleigh number is

1, . .
R= E(ﬂ'z + a2)3

. 7(N, — 4T MN,)(2Ng — 1)(n? + a?) a7 in a simple manner, convection in polar suspensions. This re-
31+ 7(N; — 27N3) (72 + a?)] . §ult was not expected due to the large number of parameters
involved.
The magnitude of the wavenumber vector is defined as The same analysis can be made in the complete equation
a’?=ad + 0‘5' 1t can be shown that n = 1 gives the smaller for the marginal Rayleigh number of oscillatory convection.

| From the solvability condition of Eq. (16) the equation is

_ 1. 2, oaye2 2y W e e N Ry
R—az(zw—i-w + a®)(7* + o) Pr+(7r +a?)|[{ M +1 Ny +R2 (19)
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where

N, .
= 1) - M
R, 4N3T(zw'r +1)

X [in +1—7(4rN3Ng — Ny + a2)], (20
R, = (iwr +1)?
+7[Ny(fwr + 1) — 27'N3](7r2 +a%). 21

Here, the coefficients may also be transformed as in the sta-
tionary case (see Appendix). The result is

R = %(iw + 7%+ a?)(n? +0?)
w 2 PN
w Al (22
X[Pr+(7r ta )RB]’ (22)
where
R, = 7,(n® + a®) + (iwT + 1)?
+iwrM (fwr + 1) + i{.«.)7'(7r2 +a?)

x [Tz ¥, +M<T1 T4, — 6;;)], 23)

Rp = (iwr + 1)* + (7% + a?)

X [7'1 + 7, + iwr (T, + 7, + 7'3)]. (24)

Note that, besides Pr the parameters 7 and M are still
present in the Rayleigh number for oscillatory convection.
The new parameters are 73 = —7,0¢d;/d? and § = —4,/d,.
When w = 0itis easily seen that Eq. (22) reduces to Eq. (18).
These two equations are analyzed numerically in detail in the
following section.

4. Numerical results
4.1. Stationary convection

The numerical results are presented in graphs of the critical
Rayleigh number against each of the two parameters which
appear in Eq. (18). The critical Rayleigh number of statio-
nary convection is defined as the minimum of the marginal
curves with respect to the wavenumber. The wavenumber
corresponding to the minimum is the critical one. It has been
shown [5] that in the absence of spin and polarization the
Newtonian critical Rayleigh number for stationary convec-
tion is R, = 277*/4 = 657.51 under the conditions of stress
free and very good thermal conducting boundaries. From
Eg. (18) it is clear that it is enough to make 7, = 0 to re-
cover the newtonian marginal Rayleigh number. This will be
reflected in the numerical results. Figure 1, for stationary con-
vection, presents graphs of the critical Rayleigh numbers and
corresponding wavenumbers against 7, and 7, for two values
of the fixed parameter. As reference, the values of the newto-
nian R, = 657.5 and o, = 2.221 are plotted with a horizon-
tal starred line. In Fig. la the continuous curves correspond
to R, against 7, for two fixed values of 7,. It is shown that R,
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FIGURE 1. Stationary convection. a) Critical Rayleigh number
against 7, and 75, and b) critical wavenumber against 7, and .
Where (—) correspond to critical values against 7, and two values
of 7, = 0.01, 0.1 and (- - -) correspond to critical values against 7,
and two values of 7, = 0.01, 0.1.

has a fast decrease with 7, and that it attains its newtonian
magnitude as 7, tends to zero. Therefore, 7, has a strong
destabilizing effect on the suspension convection. The diffu-
sivities represented by 7, are the contributions coming from
the shear of polarization in the symmetric stress tensor and
the constitutive equation for polarization. The dashed curves
in Fig. la correspond to R, against 7, for two fixed values
of 7,. In this case, R, tends to a small but finite value when 7,
tends to zero, depending on the contribution of 7,. As 7,
increases the critical Rayleigh number approaches the new-
tonian one. The diffusivities in 7, are contributions of the
symmetric and anti-symmetric polarization shears appear-
ing in the constitutive equation of polarization. The conti-
nuous curves of Fig. 1b show the dependence of the critical
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wavenumber against 7, for two values of 7,. It can be seen
that «, increases with 7, separating far from the newtonian
value. The contrary occurs in the dashed curves correspond-
ing to a,, against 7, for two different values of 7. In this case
they tend to the horizontal newtonian line.

4.2. Oscillatory convection

The Rayleigh number of Eq. (22) is a complex quantity.
Therefore, the marginal Rayleigh number of oscillatory con-
vection is obtained looking for a real frequency which
makes zero the imaginary part of the Rayleigh number for
a given wavenumber and fixed parameters. By changing the
wavenumber the marginal curve of the Rayleigh number is
obtained. The minimum of this curve is the critical Rayleigh
number with its corresponding critical wavenumber for the
given parameters values.

It is well known [5] that it is not possible to have linear
oscillatory convection in a newtonian fluid. Besides, note that
in the absence of polarization but with the presence of spin, it
is easy to obtain a quadratic equation for the square of the fre-
quency which makes zero the imaginary part of the Rayleigh
number. It is found that the three coefficients of the quadratic
equation are positive and that both roots of the square of the
frequency should be negative. Thus, it is not possible to have
a real frequency which satisfies the condition for a marginal
Rayleigh number. In other words, with spin coupling alone it
is not possible to have linear oscillatory convection. As will
be shown below, the coupling of the spin and velocity fields
with polarization makes it possible to have oscillatory con-
vection before the stationary one.

The numerical results are plotted in Fig. 2 for Pr = 7,
M = 0.5 and § = 1. This Figure presents three different
horizontal lines. The horizontal continuous and dashed lines
represent the magnitudes of the stationary critical Rayleigh
and wave numbers corresponding tc the parameter values of
the curves plotted in the Figure. The horizontal starred line
represents the newtonian critical Rayleigh and wave num-
bers for stationary convection. In Fig. 2, two curves of critical
quantities against 7, are given corresponding to two different
sets of parameter values. The continuous curve corresponds
tor = 0.01, 7, = 0.01, 7, = 0.01 and the dashed curve
tor = 0.1, 7, = 0.1, 7, = 0.1. The magnitude of M = 0.5
was selected because it is supposed that the vortex viscosity
is smaller than that of the fluid but of almost the same order
of magnitude. The selection of § = 1 means that the cou-
pling terms for the symmetric and anti-symmetric stress ten-
sors in the constitutive polarization equation make the same
contribution. The diffusivities represented by 7, come from
the anti-symmetric coupling in the polarization equation and
from the anti-symmetric polarization shear in the Q® stress
tensor. Therefore, as will be seen, the anti-symmetric contri-
butions are important to let oscillatory convection to appear
before stationary convection for the same fixed parameters.

In Fig. 2a the curves of the critical Rayleigh number are
plotted. As it can be seen, R decreases with 7, even far below
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FIGURE 2. Oscillatory convection for Pr = 7, M = 0.5 and
§ = 1. a) Critical Rayleigh number against 75, b) critical wavenum-
ber against 7, and ¢) critical frequency against 7,. Where (—)
and (- - -) correspond to critical values against 73 for 7 = 7, =
7, =0.0l and 7 = 7, = 7, = 0.1, respectively.

its corresponding stationary value (see Fig. 1a) which already
was below the newtonian one given by the starred line. Be-
sides, it is of interest to see that both critical wavenumbers in
Fig. 2b are larger than their corresponding stationary ones
and that they present maxima with respect 7,. The curves
for the critical frequency of oscillation also present maxima
with respect to 7, as shown in Fig. 2¢. Note that increasing
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the values of the 7’s decreases the magnitude of the critical
Rayleigh number making the suspension more susceptible to
oscillatory convection even though the corresponding line for
stationary R, is reduced simultaneously.

5. Conclusions

It has been found that the coupling of spin and polarization
with the suspension flow velocity field can give surprising
results not expected even with the coupling of spin and ve-
locity field alone. If only the spin and velocity fields were
coupled the effects of spin disappear in stationary convection.
if the spin is absent when polarization and velocity are cou-
pled Eq. (18) should contain more parameters. In this way, it
has been shown that the triple coupling of the equations of
motion, spin and polarization is essential to obtain a simple
expression for the stationary Rayleigh number in Eq. (18).
Curves of criticality were obtained by means of numerical
analysis of this Equation. It is found that the parameter 7,
plays an essential role in the stationary instability. The insta-
bility becomes that of a newtonian fluid when it tends to zero
and the critical Rayleigh number decreases rapidly with 7,
making the suspension layer very unstable. Therefore, the
suspension layer is more susceptible to stationary convection
when the symmetric shear of polarization is more important
in the polarization equation (7, « d,05). Note that for very
large 7, the R, tends to its newtonian value.

In the formula of the Rayleigh number for oscillatory
convection it is more clear that the coupling of the full sys-
tem of equations is important for the instability. It has been
shown, that from the spin contribution alone it is not possible
to obtain marginal oscillatory Rayleigh numbers because no
real frequency of oscillation exists which can make zero the
imaginary part of the Rayleigh number. However, the cou-
pling with spin and polarization makes it possible to find a
real frequency and, consequently, a real marginal Rayleigh
number.

An example was investigated in which all the parame-
ters are fixed except 7,. It has been shown that 7, is impor-
tant in the temporal instability of the suspension layer. It was
found that, in spite of the decrease in the critical stationary
Rayleigh number with respect to the newtonian one, R, of os-
cillatory convection becomes smaller with 7, very fast. This
brings about the possibility of having oscillatory convection
before the stationary one when the anti-symmetric shear (ro-
tational) of polarization is important in the polarization equa-
tion (1, « dgd7). _

The results presented in this paper show how polarization
and spin contribute simultaneously to the instability of a con-
vecting suspension layer. Besides, they demonstrate that spin
and polarization are not able alone to bring a simple descrip-
tion of the flow as they do coupled with the velocity field. The
example of natural convective instability given in this paper
shows the relevance the set of constitutive equations obtained
by Dévalos-Orozco and del Castillo [2], [3] may have in the
description of suspensions flows.

Appendix

In this appendix some steps are presented to obtain the ex-
pressions of the marginal Rayleigh numbers Eq. (18) and (22)
which include the new parameters. First, the steps to obtain
the terms of the stationary case are given.

Using the definitions of the original parameters it is found
that the terms of the numerator are equal to

—(N, —47MN,) = —256@3, (25)
pik
N, —1= -1 (26)
(0
therefore
—7{N1 —47MN;)(2Ng — 1) = 273 27

The term of the denominator is

T o, + 06
T(N4——2TN3):E<5253_ 42 5

) =7 +7, (28

These complete the terms needed for the expression of R in
Eq. (18). The calculations for R in the oscillatory case take a
little longer. After some simple algebraic transformations it
follows that

Ny :M@%H) :M(ﬁwl)‘ (29)

47N, 0 T,
This expression is used in different terms as in
N1 ot
— - M-1=M—-1 30
47N, T, ’ 30)

Ny .
M| — - 1| =
[4TN3M(WT+ 1) ]

MK(—SZ—i + 1) (lwr +1) — 1]. 3D

Ty

Next, the other factor of the numerator is

~7(47TNzNg = N)) =7, + 7, — (32)

Ts_
M’
and finally, the term in the denominator is transformed into
T[N Giwr + 1) = 27N5) = (7, + 7, + 7,) (fwT + 1)

+1 +7,. (33)

The expression of Eq. (22) is obtained after addition and
subsequent simplification of the algebraic fraction inside the
square brackets of Eq. (19).
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