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A new kind of shear-clongational rheometer capable of measuring the shear propertics of polymeric solutions in a viscometric flow situation
through a concentric cylindrical device and relating the results to simultaneous measurements on elongational flow has been described
earlier by Gama and coworkers [1992]. The viscometric flow between concentric cylinders provides torque and first normat stress difference
measurements, and imposes a viscometric pre-shearing history on the fluid. A suction device applicd through an orifice at the bottom of
the gap between the concentric cylinders provides a uniaxial extensional flow. The average tensile stress is measured through flush mounted
pressure transducers in the Couette device, and the change in the filament diameter in the extensional flow region betwecen the orifices
provides a measurement of the instantaneous rate of elongation. The influence of the pre-shearing history upon the elongational properties is
measured directly by transduccrs and computed using the average value of the tensile stress growth coefficient. Measurements are presented
for a constant shear viscosity, elastic fluid of the Boger type. Next, by considering a simple, single integral model, it is shown that the tensile
stress growth cocefficient is affected by pre-shearing, and is higher than without any pre-shearing. This theoretical result, obtained also for a
KBKZ model [1], demonstrates that the increase depends on the extensional flow rate, the shear rate, the relaxation time and the first normal
stress difference.
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Un nuevo tipo de reémetro elongacional y de corte, capaz de medir propicdades simultdneas en esfuerzo cortante simple y en flujo extensional
uniaxial, ha sido reportado por Gama et al (1992). Un flujo viscométrico entre cilindros concentricos proporciona mediciones de torque y
primera diferencia de esfucrzos normales al mismo tiempo que impone una historia de deformaciones conocida sobre ¢l material en estudio.
A continuacién, un fujo uniaxial extensional se forma mediante succién através de un orificio colocado en la parte inferior del intersticio
entre los cilindros concéntricos. El esfuerzo de tension sobre el filamento sc mide mediante transductores de presion montados al ras en
lugares estratégicos del aparato y la rapidez de elongacién es medida épticamente al observar ¢l cambio de didmetro del filamento con una
cémara de alta resolucién, La influencia de la historia de deformaciones sobre las propiedades elongacionales se refleja como un cambio
en la viscosidad elongacional o coeficiente de crecimiento de esfuerzo de tensién.  Se presentan mediciones para un fluido eldstico de
viscosidad al corte constante del tipo Boger. A continuacién se demucestra que para un modelo integral simple y para un modelo del tipo
KBKZ. [11, los resultados tedricos predicen un aumento en la viscosidad elongacional cuando ¢l fluido ha sido sometido a una historia previa
de deformaciones. Dicho aumento depende del flujo extensional, de la rapidez de deformacién, del tiempo de relajamiento y de la primera
diferencia de esfuerzos normales del material.

Descriptores: Viscosidad elongacional; viscosidad al corte; rcometria.

PACS: 47.50.+d; 47.60.41

1. Introduction

Elongational properties of polymeric materials may depend
strongly on the way they have been deformed prior to clon-
gation {Walters, 1992]. In particular, viscosily measure-
ments are quite sensitive to the deformation history, which
almost always includes some shearing. However, commer-
cially available viscometers which provide elongational vis-
cosity measurements [Barnes. Hutton & Walters, 1989] do
not take this into account, leaving the data open to uncertain
interpretation.

A new clongational viscometer, which aims at correct-
ing this situation by applying a well known, controllabie
pre-shearing motion, has been described by Gama and co-
workers [1992]. In this system, the fluid is subjected to a
Couette simple shearing regime as it enters the gap between

two concentric cylinders and flows in a descending spiral.
This provides the controlled pre-shearing motion, after which
the liquid exits through a small hole at the bottom of a cone
and plate arrangement. It is worth noting that, even though
the flow is indeed helicoidal, the vertical component of the
motion is so much weaker than that along the principal di-
rection that, for all practical purposes, all the fluid feels is
simple shearing between parallel plates. Moreover, the time
of residence within the gap between the two cylinders is long
enough for the fluid to behave as if such a state of deforma-
tion is all it has ever been through. Care has been taken not to
exceed shear rates so high that inertia would be likely to play
arole. As il is, it plays none whatsoever in this experimental
setup.

Through a second, smaller hole, vertically aligned with
this one a few centimeters below, the liquid is pulled by
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means of a vacuum pump. Pressure transducers located on
the outer (fixed) cylinder, along with a vacuum meter at the
suction orifice, provide a measurement of the tensile stress
which drives the elongation of the fluid filament. This is
monitored with a video camera and the image is digitalised
through a computer, allowing for the determination of the rate
of elongation and the axial variation of the filament diameter.
From these measurements we are able to establish the extent
of the test zection, in which the rate of elongational is essen-
tially constant (Figure 5).

Here, we present experimental results for both Newtonian
and non-Newtonian fluids, and a theoretical analysis which
shows how the tensile stress growth coefficient is affected by
the shearing motion which precedes the elongation.

2. Experimental results

The apparatus was first calibrated with a well characterised
Newtonian oil (Mobil SAE-30) with a shear viscosity of
3.6 poise [Gama et.al, 1992]). Even for such a low value,
this elongational viscometer succeeds in reproducing the pre-
dicted value of Trouton’s ratio. Measurements of this kind are
scarcely found in the literature [Gupta & Sridhar, 1988].

Next, we tested a commercial transmission oil (Rosh-
fran’s 30) which behaves like a Boger fluid (Figures 1 and 2).
Although not extremely elastic, its shear viscosity remains
almost constant while its elongational properties vary notori-
ously. Fig. 3 shows how the tensile stress, as a function of
axial distance, increases on the pre-sheared flows. A momen-
tum balance along the filament has been used to determine,
through an iterative numerical procedure [Gama, 1992], the
tensile stress.

In Fig. 4, the elongational modulus is seen to be greater
for those flows which have been subjected to shearing prior
to elongational. In other words, a greater tensile stress is re-
quired to elongate a fluid fiber which has been pre-sheared.
The rate of elongation in the test section remained virtually
constant; this may be inferred from Fig. 5, where the axial
velocity varies linearly with axial distance.

The experiments lead to the following conclusions:

I.- The flow field in the test section approximates quite
well that of uniaxial extension at a constant rate of elonga-
tion, except for the immediate vicinity of the orifices.

-2.- Shearing the fluid previous to elongation brings about
the following changes:
a) velocity increases along the filament;
b) so does the tensile stress;
.¢) as the rotational speed of the Couette viscometer increases,
so does the tensile stress growth coefficient, nf; (¢, £);
d) the tensile stress growth coefficient, nj; (,€), increases
along the axis of elongation,
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FIGURE | Rheometric data for a constant viscosity elastic commer-
cial oil.

3.- Accurate shear and elongational viscosity measure-
ments can be obtained with this apparatus for Newtonian flu-
ids, even for low viscosity solutions. For dilute and semi-
dilute polymer solutions, average values of the elongational
modulus are provided within a larger range of elongation
rates than other viscometers can, and with no less accuracy.

3. Theoretical analysis

Consideration of the kinematics of simple shear followed by
steady elongation will show, at least qualitatively, that the
tensile stress growth coefficient o (¢,¢) should indeed be
an increasing function of the rotational speed of the Couette
viscometer, and grow with axial distance along the fiber.

Let the fluid undergo a simple shearing motion over
—oo < 7 < 0 after which it flows in simple extension over
0 < 7 < 1. The relevant quantities for the kinematic analy-
sis are given by the relative strain history tensor, C, (7), and
the deformation gradient tensor, F (¢), both with respect to a
reference configuration at time ¢ = 0. In terms of the relative
deformation gradient,

F.(7) ZF(T)'F(T)—l, 1

one has

Ci(r) =F(r)" - Fy(7)

= [F (t)—’-]T-C(T)-F(T)*‘

Here, C (7) is calculated with respect to the reference
configuration.

Assume the simple shearing motion to be given by the
viscometric field
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FIGURE 2 First normal stress difference as a function of shear rate
for the oil of Figure 1.
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FIGURE 3 Tensile stress as a function of the axial distance at dif-
ferent pre-shearing rates. @ = 40 mi/min.

t=0, y=1z, =0, 3)

for all times up to £ = 0. The strain history corresponding to
this part of the motion is

1+427% 47 0
C(r)=| 47 1 0|,-00<7<0. (4
0 0 1

For t > 0, a simple extensional regime follows:

i=-tz, y=-%y, i=¢éz ®

The deformation gradient is then

e——é‘r/2 0 0
F(r)=| 0 e~z 0 |, (6)
0 0 e’

and so
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FIGURE 4 Tensile stress growth coefficient versus axial distance at
different pre-shearing rates. @ = 40 ml/min.
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FIGURE 5 Velocity vs. axial distance for the experimental condi-
tions of Figures 3 and 4.

yfor0<r<t. (M)

It is worth noting that

A €M =ln =1

the identity matrix. In this sense, the transition from one
regime to the next is a smooth one. Furthermore, flow visu-
alization of the transition region in the actual apparatus [von-
Ziegler, 1992] confirmed the abscnce of vortices or any other
distuptive feature. During this transition, the strain history
tensor reflects changes occurring after the shearing motion
has stopped and during the subsequent build-up of the exten-
sional motion. For the first set of calculations, one uses the
expression
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e~¥/2 0 0 1+4%r2 47 0 T2 0
Ci(n=10 e~¢7/2 0 | AT 1 0{-10 e/ 0|, (8)
0 0 T 0 0 1 0 0 e’
while for 0 < t < t one uses
-
A ORI O
eé(t—r) 0 0
: -N y 0
=10 it-7) ) 9 e V1 oY
) 0 (e) (2(t=7) ® =N ey 00 0. (3)
0 0 0

A constitutive equation must be specified before any cal-
culation can be made. We propose a single integral model for
the extra stress:

t
S(t) =p / T2 Cy (1) dr, (10)

1 being a constant and A the relaxation time. The extra stress
may be decomposed into contributions from shearing and
from elongation, as follows:

S(1)= et [F (T)“-‘] T( / BRIy (1) (1T>

— 00

ot
xF ()™ + ,ue‘t/’\/ e" C, (7) dr
0

= e t/A [F (t)“‘]T SY.F® +8E (D

The viscometric stress tensor for simple shear, SV, is
given by

—N1 770"')/ 0
SV=1|my 0 01, (12)
0 0 0

with Ny being the first normal stress difference, 7o the zero-
shear viscosity and  the shear rate in (3).

The shearing contribution to the extra stress can then be
written as

From this result one can see that the sign of € — 1/ deter-
mines whether the viscometric stresses relax after cessation
of the shearing motion —as they would had the subsequent
elongation not been there—, or grow, if the argument in the
exponential turns out to be positive.

On the other hand, the time dependent extensional stress
SE in (11), which can easily be shown to be diagonal, is un-
affected by the previous history due to the fact that the consti-
tutive equation is linear. In the end, to the contribution from
S* one must add the corresponding term arising from the
modification of the viscometric stresses. Thus, a time ¢ after
the extensional flow has started, the total tensile stress is

To: (t) = Tow (t) = SE (1) = SE, () 4+ e!C-VV N, (14)

Dividing by the rate of elongation yields the tensile stress
growth coefficient, nJEr (t,€). From our experimental obser-
vations {Mena, Huilgol & Phan-Thien] we know that A & 1«
and € = 10s™', so that € — 1/X > 0, and since the first nor
mal stress difference is also positive and quadratic in 4 at lov
shear rates, one concludes that 77;5 (t,2) must be an increasin;
function of the shear rate. Moreover, it can be easily show:
that d [nf (¢,€)] /dt > 0, and hence the tensile stress growt
coefficient must grow with axial distance along the fiber.

In summary, the effect of shearing the fluid prior to elor
gation, under the circumstances noted above, is to increas
the tensile stress needed to perform the extension. These re
sults agree qualitatively with our experimental observatior
with the Boger type Roshfran’s transmission oil. Even thoug
Boger fluids like this one are generally modelled as Oldroy
B, whereas our theoretical assessment rélies on a single i
tegral model, the conclusions presented herein are still val
because the latter predicts similar values for Ny and nf; (¢,
as the integral part of the Oldroyd-B model.

4. Predictions For A More General Viscoelast
Fluid

In order to examine whether the increase in nf; (¢,€) witt
is predicted by a non-linear model, we examine a constitut
relation of the form
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¢ .
' S(t)z/~ o (t—71,1-1,1;)Cy (r)~

oy (E=7 Iy, 1) C (7) dr, (15)

where p_1 and y are functions of ¢t — 7, and the invariantes
I, and I are given by:

Iy =tr [Ct (T)‘l] , ad Iy =tr {Ct (T)"l] . (16)

Here, tr denotes the trace operator. It is known that in
simple shear the normal stress coefficients are given by

0 .
Uy = [°_ (e = ) T2dr,
U,y = jfoo uiTdr,

a7
when the two invariants satisty

I_, =1 =3+4%r%

Because ¥y > 0 and ¥, < 0, it is clear that 43 > 0 and
p < Oforl_y =1 =3+ 42

Turning now to the stress at time ¢ due to the initiation of
an elongational flow after simple shearing, one finds that the
kinematics described in §3 lead to the following two separate
integrals:

0 26t __ ,—¢t 't 26(t—T1) __ ,—Eé(t—7)
_ m H—1 (e e ) H—1 (6 e )
Saz (1) = Saa (t) = /_oo < (€72 — et (1 +4272)) >d'f + /0 ( g (e 20T — eet=m)) dr. (18)

Here, in the first integral, the invariants are:

I ) = e¥t +e 82 + 4212,

I, = e~%t 4 f4(2 4 4272). (19)
Let us rewrite the terms in the first integral in the form
) 0 N . 0
(et - e“”)/ pioidr + (7% - ) / prdr
—00 —00

0
—eftq? / prdr. (20)

Now, if 0 < ¢t < 1, then the invariants in (19) do not difter
too greatly from their viscometric counterparts and thus one
may assume that their values are approximately given by

[_1 = Il =3+ ")’27'2.

Accepting this to be the case and recalling that £_, > 0 and
111 < 0, we find that each component of the above expression
(19) is positive and an increasing function of time ¢. More-
over, because of the presence of 42, the above expression is
an increasing function of the shear rate.

Next, it is interesting to note that the contribution from
the second integral to the stress difference in (18) does not
depend on the viscometric flow. This is because over the time
interval 0 < 1 < ¢, the invariants are:

I = e'Zé(f.—T) + 26—5’(1-7),

I, = e=%t=7) 4 9eélt=1), 21

Putting it all together, we see that the chosen model pre-
dicts that the tensile stress growth coefficient 17;5 (t,€,7), in
an extensional flow after simple shearing, depends on £ and
is an increasing function of both 4 and of the axial distance.

It is probably unrealistic to expect an analysis based on
Continuum Mechanics, suchs as this, to also offer a physi-
cal interpretation of a phenomenon which quite likely stems
from the molecular properties of these complex fluids. Af-
ter al, simple Newtonian fluids, with no elastic response and
no dependence on the rate of deformation, do not exhibit any
change in elongational properties after being sheared.

Polymeric liquids, on the other hand, do respond to flow
deformation at the molecular level. Macromolecules tend
to orient themselves along the principal direction of motion,
and, if the flow is strong enough locally, they will also find
themselves uncoiled and stretched to some degree, despite
their internal resistance to such a change in configuration.
When they reach the bottom of the cone and plate region,
and as they abandon the simple shearing regime without hav-
ing had a fair chance to relax from their stretched configura-
tion, they are suddenly subjected to an even more demanding
deformation regime—uniaxial extension, characterised by an
exponential increase in strain with axial distance.

This picture allows one to discriminate between the re-
sponses of molecules which have already been stretched
during pre-shearing, and those which enter the extensional
regime closer to their unperturbed internal configuration. The
former, much more streamlined and in configurations corre-
sponding to less restoring energy, would present less resis-
tance than the latter.
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