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This study carried out a characterization of chill-cast NiAl alloys with copper additions, which were added
to NiAl, such that the resulting alloy composition occurred in the B-field of the ternary NiAlCu phase
diagram. The alloys were vacuum induction melted and casted in copper chill molds to produce ingots
0.002 m thick, 0.020 m wide, and 0.050 m long. X-ray diffractometry (XRD) and transmission electron
microscopy (TEM) performed in chill-cast ingots identified mainly the presence of the 3-(Ni,Cu)Al phase.
As-cast ingots showed essentially no ductility at room temperature except for the Nis Al Cu,, alloy, which
showed 1.79% of elongation at room temperature. Ingots with this alloy composition were then heat treated
under a high-purity argon atmosphere at 550 °C (24 h) and cooled either in the furnace or in air, until room
temperature was reached. 3-(Ni,Cu)Al and y'(Ni,Cu);Al were present in specimens cooled in the furnace
and B-(Ni,Cu)Al, vy’(Ni,Cu);Al plus martensite-(Ni,Cu)Al were present in specimens cooled in air. Ther-
mogravimetric analysis indicated that martensite transformation was the result of a solid-state reaction
with M, ~ 470 and M; ~ 430 °C. Tensile tests performed on bulk heat-treated ingots showed room-

temperature ductility between 3 and 6%, depending on the cooling media.
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1. Introduction

NiAl intermetallic compound is brittle at room temperature
and shows values of tensile ductility from zero to few percent-
age points.""! Because this intermetallic compound possesses a
variety of properties that could be beneficial for high-
temperature (HT) structural applications,'”) attempts have been
made to increase its room-temperature ductility, including
(among other techniques) solidification processing'* and the
influence of the addition of a third element.”* During solidifi-
cation of alloys, the solidification front velocity can lead not
only to loss of local interface equilibrium and the reduction in
degree of order, but also to solute trapping.'”! Ternary additions
to NiAl have been investigated by several researchers;>*! for
instance, it has been reported“o] that Cu additions substitute
equally for both Ni and Al. During solidification of Ni-Al
alloys with ternary additions of Fe, Co, Cr, or Cu, ternary
elements were distributed into the vy phase; in particular, Cu
additions induced formation of the y' phase!''!, small additions
of Cu to NiAl destabilized the B-phase and induced B’ mar-
tensite transformation,’'?! which deteriorated room-temper-
ature tensile ductility. This work presents results of microstruc-
ture in chill-cast ingots and after heat treatment, and the
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effect on bulk room-temperature ductility of chill-cast NiAl
intermetallic compound with copper additions.

2. Experimental Procedure

NiAl alloys with copper additions were prepared using Ni,
Al, and Cu elements with 99.9% purity. The elements were
placed into a boron nitride crucible and vacuum induction
heated until a exothermic reaction was reached; then the melt
was cooled to room temperature. Samples weighing 0.1 kg
were remelted under an argon atmosphere and casted in copper
chill molds to produce ingots 0.002 m thick, 0.020 m wide, and
0.050 m long. Table 1 shows the average chemical composition
of the resulting ingots (an average of five analyses). Heat treat-
ments of ingots were performed by heating them in sealed
quartz tubes at 550 °C (24 h) and cooling them in the furnace
(0.05 K/s) or in air (1 K/s) until room temperature was reached.
Characterization of microstructure was carried out using a
JEOL 2100 (MA, USA) scanning transmission electron micro-

Table 1 Ingoet Identification, Chemical Analysis (a), and
Lattice Parameters of Cu Chill-Cast Ingots

Lattice
Ni, Cu, Al, Parameter,

Field Identification at.%  at.% at. % A

B-(Ni,Cu)Al Al 50 0.5 bal. 2.887
B-(Ni,Cu)Al A2 45+05 504 bal. 2.888
B-(Ni,Cu)Al A3 4002 10202 bal. 2.893
B-(Ni,Cu)Al A4 35+0.1 15x0.1 bal. 2.901
B-(Ni,Cu)Al AS 30+0.1 20x0.1 bal. 2.907
B-(Ni,Cu)Al A6 bal. 5+03 45+03 2.889
B-(Ni,Cu)Al A7 bal. 10£0.2 40+£0.26 2.895

(a) Average of five analyses.
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scope (TEM) with microanalysis facilities. X-ray diffractom-
etry (XRD) was performed in a Siemens D-5000 diffractometer
(Munich, Germany) with 2° automatic step scanning and Cu-
Ka radiation. Tensile tests were carried out using flat speci-
mens (0.05 m long) in both as-cast and as-heat-treated condi-
tion in an Instron 1125 testing machine (Canton, MA) at a
strain ratio of 6 x 107 s™'. Before the tensile test, the specimen
was placed between the grips and strengthened 0.1 + 0.02 kg.
After that operation, an extensometer (0.025 m of gauge
length) was place on the sample and the load was calibrated to
zero. Thermogravimetric analyses were performed in a Perkin-
Elmer (Norwalk, CT) instrument by employing 2 x 107° kg of
the heat-treated alloy, which was heated at 1 K/s under an Ar
atmosphere.

3. Results and Discussion

Figure 1(a) shows a portion of the ternary NiAICu phase
diagram.!"*) In agreement with Fig. 1a, the resulting alloy com-
position of chill-cast ingots (see Table I) lies in the
B-(Ni,Cu)Al field. The as-cast microstructure consisted of
B-(Ni,Cu)Al dendrites with a dendritic arm spacing, d = 2.5
wm (Fig. 1b). From the dendrite arm spacing (4 = 5077,
where ¢ is the cooling rate in K/s,['*! a cooling rate of 0.8 x 10*
K/s was derived, which was assumed to be reached during the
chill-cast experiments. XRD performed on chill-cast ingots
showed mainly the presence of the B-phase with a shift in the
lattice parameter value from 2.887 A at stoichiometry compo-
sition to values up to 2.907 A (Table 2), because of the sub-
stitution of Ni or Al by Cu, in agreement with the results
reported in Ref. 15.

The microstructure of alloys was observed under the TEM
and the presence of B-phase was detected in all samples, in

Table 2 Phases Detected by XRD in As-Cast and
Heat-Treated Ingots

As-Cast and As-Cast and

As-Cast, Furnace Air Cooled,
d-Spacing, A 0.8 x 10°K/s  Cooled, 0.05 K/s 1K/s
3.636 M-(Ni,Cu)Al
3.599 v'-(Ni,Cu),Al v'-(Ni,Cu),Al
2.979 M-(Ni,CwAl
2.887 B-(Ni,Cu)Al B-(Ni,Cu)Al B-(Ni,Cu)Al
2.547 v'-(Ni,Cu),Al v'-(Ni,Cu),Al
2.304 M-(Ni,Cu)Al
2.100 M-(Ni,Cu)Al
2.070 ¥'-(Ni,Cu),Al v'-(Ni,Cu);Al
2.040 B-(Ni,Cu)Al B-(Ni,Cu)Al B-(Ni,Cu)Al
1.799 e B-(Ni,Cu)Al B-(Ni,Cu)Al
1.667 B-(Ni,Cu)Al B-(Ni,Cu)Al B-(N1i,Cu)Al
1.603 v'-(Ni,Cu),Al v'-(Ni,Cu), Al
1.475 M-(Ni,Cu)Al
1.461 v'-(Ni,Cu);Al
1.443 B-(Ni,Cu)Al B-(Ni,Cu)Al B-(Ni,Cu)Al
1.292 B-(Ni,Cu)Al B-(Ni,Cu)Al B-(Ni,Cu)Al
1.265 ¥'-(Ni,Cu),Al
1.233 M-(Ni,Cu)Al
1.178 B-(Ni,Cw)Al B-(Ni,Cu)Al B-(Ni,Cu)Al
1.078 v'-(Ni,Cu),Al
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agreement with the x-ray results. Commonly observed charac-
teristics in NiAl B-phase with copper contents up to 10 at.% are
shown in Fig. 2(a), such as long screw dislocations that become
helical by vacancy climb, as reported in quenched Al-Cu al-
loys!'® and in as-cast NiAl alloys."”! As the Cu-content in-
creases from 10-15 at.%, the presence of cluster of vacancies in
the B-(Ni,Cu)Al matrix (Fig. 2b) was observed. In the NiAl
alloy with 20 at.% Cu, the presence of spherical precipitates in

Al
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+ o A3
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N T — Al o A5
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+
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(b)

Fig. 1 (a) A portion of the ternary NiAlCu phase diagram, where
geometric figures show the location of alloys Al to A7 under study.
(b) Representative as-cast microstructure with B-(Ni,Cu)Al dendrites
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scope (TEM) with microanalysis facilities, Keray diffractom-
etry (XRD) was performed in a Siemens L5000 diffeavtomerer
(Munich, Germany) with 2° antomatic step scanning and Cos
Ko radiation. Tensile tests were carried out using fat spec
mens (005 melong) in both as-cast and as-heat-treated condi-
dondnan Insteon. 1125 festing muachine (Capton, MAYata
1 Before the tensile test, the speciraen

was placed between the grips and strengthened 0.1 = 0.02 kg
After that operation. an extensometer {0025 m of gauge
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atmosphere,
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where & is the cooling rate in K/s."*! a cooling rate of 0.8 x 10°
K/ was derfved, which was assurned 1o b reached during the
chill-cast experiments. XRD performed on chill-cast ingots
showed mainly the presence of the H-phase with-a shift-is the
lattice paramster value from 2887 A at stoichiometry compo-
sition to values up to 2907 A {Table 2}, because of the sub-
stitution of Ni or Al by Cu, in agrecment with the resulss
reported in Ref, 15

The microstructure of allovs was observed under the TEM
and the presence of B-phase was detected in all samples, in
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Heat-Treated Ingots
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(a)

(c)

(b)
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Fig.2 B-(Ni,Cu)Al phase. (a) NiAl with 5-10 at.% Cu shows long screw dislocations that become helical by vacancy climb. (b) NiAl with 15 at.%
Cu shows the presence of cluster of vacancies. (¢) NiAl alloy with 20 at.% Cu shows the presence of spherical precipitates in the B-(Ni,Cu)Al matrix.

(d) Electron diffraction pattern of (Ni,Cu),Al,

the B-(Ni,Cu)Al matrix was observed (Fig. 2d), which was
identified by means of its electron diffraction patterns and mi-
croanalysis as (Ni,Cu),Al; alloys.

Tensile tests performed in as-cast ingots showed nearly zero
ductility from ingots identified as Al to A6, and ingot A7
showed 1.8% elongation (Fig. 3). Despite this low value of
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tensile ductility at room temperature, ingot A7 was heat treated
at 550 °C for 24 h and cooled in the furnace or in air, until room
temperature was reached. The cooling rate of the specimen
cooled in the furnace was 0.05 K/s, and in air was 1 K/s. XRD
performed in the heat-treated ingot and cooled in the furnace
detected the presence of 3-(Ni,Cu)Al and y'-(Ni,Cu);Al (Fig.
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Fig.3 Tensile test of the NisoCu,gAly, alloy in the as-cast condition,
heat treated at 550 °C (24 h), air cooled and heat treated at 550 °C (24
h), and furnace cooled

4a). Compared to the as-cast ingot, the cooling rate achieved
during cooling of the specimen in the furnace was low enough
to allow sufficient precipitation of v'-(Ni,Cu);Al from
B-(Ni,Cu)AL The cooling rate achieved during cooling of the
specimen in air was high enough to allow the solid-state trans-
formation of martensite-(Ni,Cu)Al from B-(Ni,Cu)Al, which
consisted of a plate-like morphology. Inside martensite plates,
very fine striations were observed with a separation of 7 nm
between them (Fig. 4b).

Thermogravimetric analysis performed in heat-treated in-
gots showed that during cooling (cooling rate of 1 K/s), a
martensite transformation with an M, temperature of ~470 °C
and an M; temperature of ~430 °C occurred. Regarding the
presence of martensite in the NisCu;pAly, alloy, Kainuma et
all'"! studied the effect of alloying elements on martensite
transformation in the B-NiAl phase, and reported that additions
of Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ag, Ta, W, and Si stabilize
the parent B-phase, lowering the M; temperature. Conversely,
additions of elements such as Co, Cu, and Ag destabilize the
B-phase, increasing the M, temperature. For instance, in the
alloy NisCu,yAl,, with a Cu content of 10 at.%, the M, tem-
perature was 470 °C.

The room-temperature tensile test performed in the
NisoCu,pAly, heat-treated alloy showed values of ductility of
3.0 and 6.0% when the specimen was cooled in air or in the
furnace, respectively. This increase in ductility was attributed
to the presence of B-(Ni,Cu)Al grains and v'-(Ni,Cu),Al lo-
cated mainly at (3-grain boundaries. The distribution of y'-
(Ni,Cu);Al is almost continuous on the grain boundary of
B-(Ni,Cu)Al.

Room-temperature ductility for Ni alloys has shown values,
among others, from 0.5% in NiAlCo alloys with necklace mi-
crostructures having a film of ' (L1,)-Ni;Al phase on grain
boundaries of B-phase.!"®! Directionally solidified Ni-30 at.%
Al with B-phase and discontinuous rods of v’ showed 4%
tensile ductility, whereas B-phase and continuous rods of Y
showed 9% tensile ductility.!'”” Directionally solidified NiFe-
CrAl alloys with 8 and ~y lamellae exhibited 17% tensile duc-
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tility at room temperature."® This variation in ductility of
polycrystalline 1\{iAl with or without additions of ternary or
quaternary elements is evident, and this difference in ductility
in our case can be attributed to a combined effect of solidifi-
cation processing and resulting microstructure after heat treat-
ment, reaching a bulk tensile ductility of 6%.

4, Conclusions

1) NiAl alloys with copper additions showed the presence of
brittle B-(Ni,Cu)Al grains, which gave rise to nearly zero
ductility in as-cast ingots. However, alloy NisoCu,oAly,
showed 1.8% of elongation.

2) After heat treatment, the alloy Nis,Cu Al cooled in air
showed a microstructure consisting of B-(Ni,Cu)Al, v'-
(Ni,Cu);Al and M-(Ni,Cu)Al, and when the alloy was
cooled in the furnace, showed a microstructure consisting of
B-(Ni,Cu)Al and y'~(Ni,Cu),Al

3) This combination of microstructure improved room-
temperature ductility of as-cast ingots, showing values of
bulk room-temperature tensile ductility up to 6% for the
NisoCu; Al heat-treated ingot at 550 °C (24 h) and cooled
in the furnace at a cooling rate 0.05 K/s.
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