

Microstructure and Superconducting Properties of LaBaCaCu₃O_{7-δ}-Ba₂HoNbO₆ Ceramic Composite

J. ALBINO AGUIAR^a, N. O. FERREIRA^a, J. M. FERREIRA^a, ERIVALDO MONTARROYOS^a, Y. P. YADAVA^b, R. A. SANGUINETTI FERREIRA^b, J. GUZMANN^c and E. CHAVIRA^c

^aDepartamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil, ^bDepartamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 50741-530 Recife, PE, Brazil and ^cInstituto de Investigaciones en Materiales, Universidad Autonoma de Mexico, 70630 Mexico-DF, México

In this work, we have synthesized and studied structural and microstructural characteristics of LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites Ba₂HoNbO₆ has an A₂BB'O₆ complex cubic perovskite structure with lattice constant $a=8.439\text{\AA}$. Ba₂HoNbO₆ is chemically and physically compatible with LaBaCaCu₃O₇₋₈ superconductor. So, we infer that Ba₂HoNbO₆ could be a potential substrate material for the fabrication of the LaBaCaCu₃O₇₋₈ superconducting films.

Key words LaBaCaCu₃O_{7-δ}, Ba₂HoNbO₆, ssuperconducting composites,

I. INTRODUCTION

Investigation on new substrate materials for high temperature superconducting films is a significant concern in materials research. Recently, complex perovskite oxides are being investigated for such applications [1-4]. In

the present work, we have synthesized and studied structural and microstructural characteristics of a complex cubic perovskite oxide Ba₂HoNbO₆, using xdiffractometry and scanning electron microscopy, respectively, for its use as a substrate material for the fabrication of LaBaCaCu₃O_{7-δ} superconducting films. LaBaCaCu₃O₂₋₈ is one of the important family of high temperature superconductors exhibiting superconductivity around 78K [5]. Chemical stability of Ba₂HoNbO₆ with LaBaCaCu₃O_{7.8} was examined by x-ray diffractometry of LaBaCaCu₃O_{7.8}-Ba₂HoNbO₆ composites. Back-scattered scanning electron microscopy was used to study the interface interaction between Ba₂HoNbO₆ and LaBaCaCu₃O₇₋₈ grains in the LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites. Congruent melting aspect of the Ba₂HoNbO₆ was studied to know whether this material could be grown as single crystal by melt growth processes. The effect of Ba₂HoNbO₆ addition on the superconductivity of LaBaCaCu₃O₇₋₈ was investigated by measuring magnetic susceptibility of LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites. These studies show that Ba₂HoNbO₆ has favorable substrate characteristics and it could be a potential substrate material for the fabrication of high T_c LaBaCaCu₃O_{7-δ} superconducting films.

II. EXPERIMENTAL DETAILS

 Ba_2HoNbO_6 has been prepared by solid state reaction process. Stoichiometric mixture of high purity (99.99%) constituent chemicals Ho_2O_3 , $BaCO_3$, Nb_2O_5 were mixed thoroughly, pelletized and calcined at a temperature of 1100°C for 40h. The calcined material was reground, pressed as circular discs and sintered at 1200°C for 60h. Single phase LaBaCaCu₃O₇₋₈ with nominal composition La₁Ba₁Ca₁Cu₃O₇₋₈, was also prepared by solid state reaction process. Details of synthesis and characterization of La₁Ba₁Ca₁Cu₃O₇₋₈ material are reported in our earlier publication [6].

X-ray diffraction (XRD) spectra of the materials were recorded by a Siemens D5000 x-ray diffractometer, using Cu-K α radiation (λ = 1.5406 Å). SEM micrographs were recorded by a Leico-Cambridge model stereoscan 440 electron microscope. For the study of chemical compatibility, Ba₂HoNbO₆ -LaBaCaCu₃O_{7- δ} composites, with 0 to 30wt% of Ba₂HoNbO₆ component, were synthesized. For the synthesis of composites, component materials were mixed in desired wt% ratios and the mixture was pelletized as circular discs at a pressure of 2ton/cm². These discs were heat treated at 950°C for 24h in flowing

oxygen and cooled down slowly at a rate of 2°C/min to room temperature for proper oxigenetion. Chemical stability of Ba₂HoNbO₆ with LaBaCaCu₃O₇₋₈ was examined by x-ray diffraction. Back-scattered electron microscopy was used to examine the interface interaction between Ba₂HoNbO₆ and LaBaCaCu₃O₇₋₈ grains. Effect of Ba₂HoNbO₆ addition on superconductivity of LaBaCaCu₃O₇₋₈ superconductors was investigated by a. c. magnetization measurements of LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites in the temperature range 5 to 300K, using a Quantum Design SQUID magnetometer.

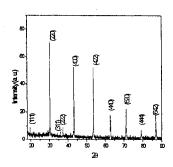
III. RESULTS AND DISCUSSION

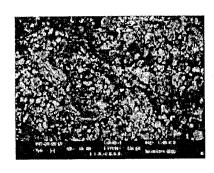
X-ray diffraction (XRD) spectrum of single phase Ba₂HoNbO₆ is shown in Figure 1. The XRD spectrum of Ba₂HoNbO₆ is similar to that expected for A₂BB'O₆-type ordered complex cubic perovskites, reported in JCPDS files. As for many perovskite of the general formula A₂BB'O₆, an ordered arrangement of B and B' cations is most probable when large differences exist in either their charges or their ionic radii [3]. This is due to the fact that in a substitutional solid solution BB', there is random arrangement of B and B' cations on equivalent position in the crystal structure. If upon suitable heat treatment the random solid solution rearranges into a structure in which B and B' occupy the same set of positions but in a regular way, such structure is described as superstructure [6]. In the superstructure the positions occupied by B and B' is no longer equivalent and this is exhibited in the XRD spectrum by the presence of superstructure reflection lines.

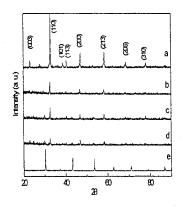
As seen from Figure 1, the XRD pattern of Ba₂HoNbO₆ consists of strong peak, characteristics of primitive cubic perovskite plus few weak lines arising from the superlattice. The significant presence of superstructure reflection lines (111) and (311) clearly reveal the Ho³⁺ and Nb³⁺ cations ordering on B and B' positions in A₂BB'O₆ structure of Ba₂HoNbO₆. In Ba₂HoNbO₆, Ba²⁺ cation (ionic radius 1.34 Å) with the largest ionic radius in this composition, occupies A position and Ho³⁺(ionic radius 0.89 Å) and Nb³⁺ (ionic radius 0.69 Å) cations occupy B position due to their smaller ionic radii compared to that of Ba²⁺ cation. Due to the ordering of B and B' cations on octahedral site of the primitive ABO₃ unit cell, there is doubling in the lattice parameter of the basic cubic perovskite unit cell.

Based on above considerations, we have indexed the XRD peaks of Ba_2HoNbO_6 as an ordered complex cubic $A_2B'B'O_6$ crystal structure. The lattice parameter of Ba_2HoNbO_6 , calculated fro XRD data, is a=8.439 Å. Lattice matching of the superconductor with the substrate is an important aspect for the fabrication of good quality superconducting films. Ba_2HoNbO_6 has a double cubic perovskite structure. As discussed earlier, (½)a of $Ba_2HoNbO_6=4.219$ Å. LaBaCaCu₃O₇₋₆ has a tetragonal crystal structure with lattice parameters a=3.869Å and c=11.617Å.

Therefore, Ba_2HoNbO_6 has $\sim 9\%$ lattice mismatch with $LaBaCaCu_3O_{7-\delta}$ superconductor.




FIGURE 1 XRD spectrum of Ba₂HoNbO₆.


It may be noted that currently MgO is most widely used substrate for microwave applications. It has a cubic crystal structure (lattice constant a = 4.208 Å) and has a comparable lattice mismatch with LaBaCaCu₃O₇₋₈ superconductor..

The SEM micrographs of Ba_2HoNbO_6 and $LaBaCaCu_3O_{7.8}$ show that materials present homogenous surface morphology. Average particle sizes of the Ba_2HoNbO_6 and $LaBaCaCu_3O_{7.8}$ materials are estimated to be 3 - 5 microns and 3 - 10 micron, respectively. In the fabrication and processing of high T_c superconducting films, grain interface interaction between the grains of the substrate and superconductor material is an undesirable factor. Even MgO, most widely used substrate for high T_c superconducting films, does form an interlayer of barium salt at the superconductor-substrate interface, if the temperature of processing is higher than $700^{\circ}C$ [7].

In present work, back scattered electron micrographs of the Ba2HoNbO6, LaBaCaCu₃O_{7- δ} single-phase materials and the LaBaCaCu₃O_{7- δ}-Ba₂HoNbO₆ composite materials were recorded using quarterback scattering detector. The back-scattered electron SEM micrographs of LaBaCaCu₃O_{7- δ}-Ba₂HoNbO₆ composite, presented in Figure 2, shows that there is no detectable interface interaction between Ba₂HoNbO₆, and LaBaCaCu₃O_{7- δ} grain and Ba₂HoNbO₆ grains are distinguishably distributed in the LaBaCaCu₃O_{7- δ} matrix

Chemical stability of Ba₂HoNbO₆ with LaBaCaCu₃O₇₋₈ superconductor was investigated by x-ray diffractometry on LaBaCaCu₃O_{7.8}-Ba₂HoNbO₆ composites. Figure 3 shows the XRD spectra of these composites. As seen from the XRD results, all the XRD peaks correspond either to Ba₂HoNbO₆ Chemical stability of Ba₂HoNbO₆ with LaBaCaCu₃O₇₋₈ or LaBaCaCu₃O₇₋₈ and there is no extra peak corresponding to any impurity phase These results show that there is no chemical interaction between these materials and Ba₂HoNbO₆ is chemically compatible with LaBaCaCu₃O₇₋₈ superconductors.

Back-scattered SEM FIGURE 3 FIGURE 2 micrographs Ba₂HoNbO₆ component

XRD spectra of the LaBaCaCu₃O₇₋₈- LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ Ba₂HoNbO₆ composite containing 30wt% containing (a) 0wt%, (b) 5wt%, (c) 20wt%, (d) 30wt%, and (e) 100wt% Ba₂HoNbO₆

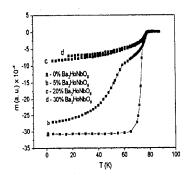


FIGURE 4 a.c. magnetization versus temperature curves of LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites

Figure 4 shows the temperature dependence of the real part of the ac magnetization for LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites. All the composites gave a T_c of 78K, same as of pure LaBaCaCu₃O₇₋₈ superconductor. However, with decreasing superconductor volume fraction the magnitude of magnetization decreases in all the composite samples. Accordingly, we infer that addition of the Ba₂HoNbO₆, an insulating ceramic material, has no deteriorating effect on the superconducting properties of the LaBaCaCu₃O₇₋₈ superconductors.

IV. CONCLUSIONS

In conclusion, we have studied structural and microstructural characteristics of LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composite. Ba₂HoNbO₆ has fairly good lattice matching (lattice mismatch ~9%) with this superconductor. X-ray diffractometry, scanning electron microscopy and magnetic measurements made on LaBaCaCu₃O₇₋₈-Ba₂HoNbO₆ composites show that Ba₂HoNbO₆ is chemically compatible with LaBaCaCu₃O₇₋₈. These favorable characteristics show that Ba₂HoNbO₆ could be used as a potential substrate material for the fabrication of the LaBaCaCu₃O₇₋₈ superconducting films.

V. REFERENCES

- 1. C. D. Brandle and V. J. Fratello J. Mater. Res. 5 2160 (1990)
- 2. J. A. Alonso, C. Cascales, P. Garcia Casado and I. Rasines J. Solid State Chem. 128 247 (1997)
- 3. J. Albino Aguiar, D. A. L. Tellez, Y. P. Yadava and J. M. Ferreira, <u>Phys.</u> Rev <u>B</u> 58 2454 (1998)
- 4. J. Albino Aguiar, C. C. De Souza Silva, Y. P. Yadava, D. A. L. Tellez and J. M. Ferreira Physica C 307 189 (1998)
- 5. V. P. S. Awana, R. Singh, D. A. L. Tellez, J. M. Ferreira, J. Albino Aguiar and A.V. Narlikar, *Physica C* 277 265 (1997)
- A. F. Wells, <u>Structural Inorganic Chemistry</u>, 5th ed. Clarendon Press Oxford, U.K. (1986)
- 7. C. T. Cheung and E. Ruckenstein, J. Mater. Res. 4 1 (1989)