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Abstract

A binary gas of noninteracting, temperature-dependent Cooper pairs in chemical/thermal equilibrium with unpaired fermions

is studied in a two-dimensional (2D) boson-fermion statistical model analogous to an atom plus diatomic-molecule system. The

model naturally suggests a more convenient definition for the bosonic chemical potential whereby access into the degenerate

Fermi region of positive fermion chemical potential is now possible. The linear (as opposed to quadratic) dispersion relation of

the pairs yields substantially higher Tcs than with BCS or pure-boson Bose-Einstein condensation theories, and fall within the

range of empirical Tcs for quasi-2D copper oxide superconductors. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

We provide support for a widespread conjecture (or

‘paradigm’) that superconductivity in general is a Bose-

Einstein condensation (BEC) of the charged Cooper pairs

[1] (CPs) observed in magnetic flux quantization experi-

ments in classical [2,3] as well as copper-oxide (or cuprate)

[4] superconductors. The same general conjecture is also

often made regarding the superfluidity of liquid helium-3 in

terms of CPs consisting of neutral-atom 3He fermions. As

CPs coexist in a superconductor with unpaired electrons (or

holes), a binary gas model suggests itself. BEC as a

statistical (as opposed to a dynamical ) mechanism of

superconductivity has been entertained, among others, by

Anderson [5], by Lee [6] and by Mott [7] and their co-

workers. But BEC normally occurs only for dimensions d .

2 while some modern superconductors are quasi-2D or even

quasi-1D materials [8–10]. In this paper we recall, however,

how CPs can undergo BEC for all d . 1 and obtain

reasonable critical temperatures Tc without any adjustable

parameters, thus bolstering the earlier mentioned conjecture

even before including full many-body self-consistency.

More detailed, sophisticated treatments actually link

[11–16] BEC (characterized by a nonnegligible bosonic

condensate fraction ) with the BCS theory (characterized by

a fermionic energy gap ), but report no successful attempts

to calculate specific Tcs to compare with experiment. A

binary gas BEC picture of superconductivity is consistent

with the recent discovery of a so-called ‘pseudogap’ in the

electronic density of states [17–23] above Tc in certain

cuprates, at least with one of its major interpretations as

‘pre-formed CPs’ without long-range coherence or conden-

sation, while in BCS theory CP formation and condensation

occur simultaneously below the same Tc: We submit here

that, along with the zero-center-of-mass– momentum

(CMM) CPs, a natural candidate for such pre-formed CPs

are the nonzero-CMM CPs usually neglected in BCS theory.

In Section 2 we recall the linear dispersion relation for

Cooper pairs in a 2D gas of electrons at T ¼ 0 interacting

via a constant pairing interaction, nonzero only in a thin

annulus about the Fermi surface—viz. the BCS model

interaction. The binding energy of a single pair near the

Fermi surface (CP problem) decreases almost linearly with
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the CMM of the pair for all values of the momentum below a

breakup momentum which is typically only about four

orders of magnitude smaller than the Fermi momentum. In

Section 3 a simple boson-fermion binary gas statistical

model is introduced by constructing the Helmholtz free

energy for an ideal mixture of pairable but unpaired

fermions plus paired fermions (both zero and nonzero

CMM pairs), all in chemical and thermal equilibrium, to

give the relative number of bosons in the mixture as function

of both coupling and temperature. In Section 4 the critical

BEC singularity temperature is obtained first by ignoring the

unpaired fermions in a pure boson-gas model and then

exactly for the boson-fermion binary gas mixture model

from a T-dependent dispersion relation derived and

calculated numerically, and results are compared with

empirical cuprate superconductor Tcs. Finally, Section 5

contains conclusions.

2. Dynamics of Cooper pairs and their dispersion

relation

To fix the interfermion dynamics take a 2D system of N

fermions of mass m confined in a square of area L 2

interacting pairwise via the BCS model electron–phonon

interaction Vk;k0 ¼ 2V ; with V . 0; whenever mðTÞ2

"vD , ek1
ð; "2k2

1=2mÞ; ek2
, mðTÞ þ "vD; and zero

otherwise, where k ; 1=2ðk1 2 k2Þ is the relative wave-

vector of the two particles; mðTÞ the ideal Fermi gas (IFG)

chemical potential, which at T ¼ 0 becomes the Fermi

energy EF ; "2k2
F=2m with kF the Fermi wavenumber; and

vD the Debye frequency. In most materials "vD p EF:
After much debate on the precise interfermion dynamical

nature of copper-oxide materials, striking direct evidence

for significant electron–phonon coupling in high-temperature

cuprate superconductors from angle-resolved photoemis-

sion spectroscopy (ARPES) experiments has recently been

reported [24].

If "K ; "ðk1 þ k2Þ is the CMM of a CP, let EK be its

total energy (besides the CP rest-mass energy). The original

CP [1] eigenvalue equation at T ¼ 0 is

1 ¼ V
X

0

k

uðk1 2 kFÞuðk2 2 kFÞ

2ek þ "2K2=4m 2 EK

; ð1Þ

where uðxÞ is the Heaviside unit step function, and the prime

on the summation sign denotes the conditions k1;2 ;
lK=2 ^ kl , ðk2

F þ k2
DÞ

1=2 ensuring that the pair of particles

above the Fermi ‘surface’ cease interacting beyond the

annulus of energy thickness 2"vD ; "2k2
D=m; thereby

restricting the summation over k for a given fixed K.

Nonzero CMM pairs have K values in all directions and are

thus unrelated to the current-carrying state having a drift-

velocity momentum in a fixed direction. Setting EK ;
2EF 2 DK ; a pair is bound if DK . 0; so that Eq. (1)

becomes an equation for the (positive) pair binding energy

DK : Our DK and D0 follow Cooper’s notation and should not

be confused with the BCS energy gap DðTÞ at T ¼ 0: Let

gðeÞ be the electronic density-of-states (for each spin) in the

normal (i.e. interactionless) N-fermion state; in 2D it is

constant, gðeÞ ¼ L2m=2p"2 ; g: For K ¼ 0 it becomes a

single elementary integral, with the familiar [1] solution

D0 ¼ 2"vD=ðe
2=l 2 1Þ valid for all coupling l ; gV $ 0:

The Cooper equation (1) for the unknown quantity DK can

be analyzed beyond the usual zero-CMM, K ¼ 0; case and

for small K and l gives [25]

DK !
K!0

D0 2
2

p
"vFK þ OðK2Þ; ð2Þ

where vF ;
ffiffiffiffiffiffiffiffiffi
2EF=m

p
is the Fermi velocity. This linear

dispersion relation is the 2D analog of the 3D result stated

by Schrieffer as far back as 1964 in Ref. [26], p. 33 (see also

Ref. [27], p. 336). Although some treatments (Ref. [28]) of

CPs are more sophisticated than the original Cooper picture

(1) numerically yield resonant pairs (i.e. with an imaginary

term in the energy) with a leading quadratic dispersion,

linearly-dispersive resonances appear analytically from a

Bethe–Salpeter equation many-body approach [29] to CPs

in 3D—provided it is based on the BCS (where holes are

treated on an equal footing with particles), not the IFG,

ground state. In 2D, see also Refs. [30,31]. These linarly-

dispersive CPs are commonly confused with the also

linearly-dispersive sound phonons of the collective exci-

tation sometimes referred to as the Anderson–Bogoliubov–

Higgs mode (which for zero coupling reduces [32] to the

IFG result "vFK=
ffiffi
d

p
). The IFG sound speed c ¼ vF=

ffiffi
d

p

follows trivially from the zero-temperature IFG pressure

P ¼ n2½dðE=NÞ=dn� ¼ 2nEF=ðd þ 2Þ via the familiar ther-

modynamic relation dP=dn ¼ mc2; where E is the ground-

state energy and n ; N=Ld ¼ kd
F=2d22pd=2dGðd=2Þ is the

fermion-number density. But the simple result (2) in fact

refers to actual ‘moving’ (or ‘excited’) CPs in the Fermi sea,

which clearly ‘break up’ for K . K0 as defined by DK0
; 0:

Both kinds of distinct soundwave-like solutions—moving

CPs and ABH phonons—appear in the many-body, ladder-

summation scheme of Ref. [29].

In the opposite limit of strong coupling (and/or low

density) instead of the linear term in Eq. (2) one gets, at least

for an attractive interfermion delta interaction [31], the

quadratic "2K2=2ð2mÞ as expected in the vacuum limit of no

Fermi sea. But as quite well-known this expression gives a

zero BEC Tc; see Eq. (11) below.

These CP integer-spin objects are considered bosons

even though their creation and annihilation operators for

fixed k1 and k2 (or, alternatively, fixed relative k and total

CM K wavevectors) are known not to obey the usual Bose

commutation relations (Ref. [26] p. 38). However, indefinite

occupation in a state of given K; needed to ensure the Bose-

Einstein distribution in turn required for BEC, indeed occurs

(see Ref. [33], p. 181 ff.) for the objects whose energy EK is

a solution of Eq. (1) as it depends only on K but not on k: As

a result, in the thermodynamic limit, for any coupling
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(Ref. [25], see Fig. 1) there will be indefinitely many values

of the relative momenta k for a given K so that CPs formed

with the BCS model interaction do in fact obey the BE

distribution.

3. Boson-fermion binary gas in chemical/thermal

equilibrium

The number of bosons in the boson-fermion mixture to

be studied turns out to be both coupling- and temperature-

dependent. And it is in conserving the total fermion number

self-consistently that a BEC-like singularity arises. As is the

case for the pure boson gas, a linear rather than a quadratic

dispersion relation is needed to obtain BEC in 2D. This

emerges in a statistical model for the ideal binary mixture of

bosons (the CPs) and unpaired (both pairable and unpair-

able) fermions in chemical equilibrium [35,36] for which

thermal pair-breaking into unpaired pairable fermions is

explicitly allowed [37]. Assuming the BCS model inter-

action the total number of fermions in 2D at any T is N ¼

L2k2
F=2p ¼ N1 þ N2; where N1 is the number of unpairable

(i.e. noninteracting) fermions while N2 is the number of

pairable (i.e. active) ones. The unpairable fermions also

obey the usual Fermi–Dirac distribution with the IFG

chemical potential m but the N2 pairable ones are simply

those in the interaction shell of energy width 2"vD so that, if

b ; ðkBTÞ21;

N2 ¼ 2
ðmþ"vD

m2"vD

de
gðeÞ

ebðe2mÞ þ 1
¼ 2g"vD; ð3Þ

which is independent of T. At fixed interfermionic coupling

l and temperature T these N2 fermions form an ideal

mixture of pairable but unpaired fermions plus CPs created

near the single-fermion energy mðTÞ; with binding energy

DK ðTÞ $ 0 and total energy

EK ðTÞ ; 2mðTÞ2 DKðTÞ: ð4Þ

This generalizes the T ¼ 0 equation EK ; 2EF 2 DK

introduced below Eq. (1).

The Helmholtz free energy F ¼ E 2 TS; where E is

the internal energy and S the entropy, of this binary

‘composite boson/pairable-but-unpaired-fermion system’

at temperatures T # Tc is then readily constructed [37]

in terms of: (a) the average number of unpaired but

pairable fermions with fixed energy; (b) NB;K ðTÞ; the

number of CPs with nonzero-CMM, 0 , K # K0; with

the CP-breakup value K0 defined [25] by DK0
; 0; and

(c) NB;0ðTÞ; the number of CPs with zero CMM at

temperature T. The free energy F2 of just the N2

pairable fermions is to be minimized subject to the

constraint that N2 is conserved, i.e. one seeks the

minimum of F2 2 m2N2 with respect to (a)–(c) just

mentioned. The total number of pairable but unpaired

fermions N20ðTÞ is then

N20ðTÞ ¼ 2g
ðmþ"vD

m2"vD

de
1

ebðe2m2Þ þ 1

¼
2g

b
ln

1 þ e2bðm2m22"vDÞ

1 þ e2bðm2m2þ"vDÞ

" #
: ð5Þ

Note that if m2 ¼ m this becomes the rhs of Eq. (3), as it

should. The relevant number equation for the pairable

fermions is thus

N2 ¼ N20ðTÞ þ 2½NB;0ðTÞ þ
XK0

K.0

NB;K ðTÞ�

; N20ðTÞ þ 2NBðTÞ; ð6Þ

where
PK0

K.0 NB;K ðTÞ ¼
PK0

K.0 ½e
b{EK ðTÞ22m2} 2 1�21 is the

total number of excited CPs (namely with CMM values

0 , K , K0). One can rewrite EK ðTÞ2 2m2 here as

1KðTÞ2 mBðTÞ; with 1KðTÞ ; D0ðTÞ2 DK ðTÞ $ 0 a (non-

negative) excitation energy as suggested by Eq. (2). Hole–

hole and particle–particle CPs can be shown to have the

same excitation energy 1KðTÞ: The remaining unknown

mBðTÞ is then

mBðTÞ ¼ 2½m2ðTÞ2 mðTÞ� þ D0ðTÞ ¼ 0; ð7Þ

for 0 # T # Tc since NB;0ðTÞ is negligible for all T . Tc:
This is precisely the BEC condition for a pure boson gas,

although one now has a binary boson-fermion mixture.

Thus, rather than 2m2 Eq. (7) is a more convenient definition

for a binary mixture of the boson chemical potential.

Furthermore, Eq. (7) improves upon the definition in Ref.

[36] p. 123, which is precisely Eq. (7) but with 2mðTÞ

instead of our 2½m2ðTÞ2 mðTÞ�; that definition severely

handicaps the binary system since mB # 0 implies 2m #

2D0 and so the system ‘can never enter the Fermi

degeneracy region’ [36] where a positive mðTÞ guarantees

a Fermi surface.

To determine NBðTÞ from Eqs. (5) and (6) we use Eq. (7)

and see that

N20ðTÞ ¼
2g

b
ln

1 þ e2b{D0ðTÞ=22"vD}

1 þ e2b{D0ðTÞ=2þ"vD}

" #
; ð8Þ

for 0 # T # Tc: Thus 2NBðTÞ=N2 ; 1 2 N20ðTÞ=N2 is

obtainable for 0 # T # Tc from Eq. (8) if D0ðTÞ were

known.

For this, uðk1 2 kFÞ ; uðek1
2 EFÞ in Eq. (1) becomes

1 2 nðjk1
Þ where nðjk1

Þ ; ðebjk1 þ 1Þ21 with jk1
; ek1

2

mðTÞ; the IFG chemical potential mðTÞ in 2D being given

exactly by mðTÞ ¼ b21 lnðebEF 2 1Þ! EF as T ! 0: Simi-

lar arguments hold for uðk2 2 kFÞ: Since for K ¼ 0; k1 ¼ k2

which implies that jk1
¼ jk2

; Eq. (1) then provides a simple

generalization to finite-T of the K ¼ 0 CP equation, namely

1 ¼ l
ð"vD

0
djðe2bj þ 1Þ22½2jþ D0ðTÞ�

21: ð9Þ
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Its numerical solution shows D0ðTÞ to decrease monotoni-

cally with T for fixed l and "vD; and zero only at infinite T.

(This infinite ‘de-pairing’ temperature is obviously spurious

as the BCS model interaction loses meaning when mðTÞ

turns negative at large T.) Thus also 2NBðTÞ=N2 decreases

with T; it is plotted in Fig. 1 as 2nBðTÞ=n2; since nBðTÞ ;
NBðTÞ=L2 and n2 ; N2=L2: Using Eq. (3) for N2 the

fractional number of pairable fermions that are actually

paired at T ¼ 0 becomes simply

2NBð0Þ=N2 ¼ D0=2"vD ¼ ðe2=l 2 1Þ21 !
l!0

e22=l; ð10Þ

for l # 2=ln 2 . 2:89; and equals 1 (all pairable fermions

paired into bosons) for l $ 2:89: This fraction is also

plotted against coupling l in Fig. 1. It contrasts sharply with

the ‘heuristic model’ of Ref. [34], Eq. (16), where

2NBð0Þ=N2 ; 1 for all coupling. The fractional number is

now qualitatively similar to that of BCS theory—which is

not [38] a BEC theory—where, in any d, a coupling-

dependent fraction is estimated (Ref. [39] p. 128) to be

ðD="vDÞ
2 ; ðsinh 1=lÞ22 ! 4 e22=l as l! 0: Here D

(again, not to be confused with the CP binding energy D0)

is the T ¼ 0 BCS energy gap for the same BCS model

interaction used in this paper. It is graphed as the thin curve

in Fig. 1 and seen to be much larger than Eq. (10) for fixed l:

4. Critical temperatures in BEC and BCS

For NB bosons of mass mB and energy 1K ¼ CsK
s with

s . 0 and Cs a constant, a BEC temperature singularity

occurs at Tc – 0 for any dimension [40,41] d . s in the

number equation NB ¼
P

K ½eð1K2mBÞ=kBT 2 1�21 at vanish-

ing bosonic chemical potential mB # 0 when the number of

K ¼ 0 bosons just ceases to be negligible upon cooling. This

critical temperature is given [34] by

Tc ¼
Cs

kB

sGðd=2Þð2pÞdnB

2pd=2Gðd=sÞgd=sð1Þ

" #s=d

; ð11Þ

with nB ; NB=Ld; and gsðzÞ the usual Bose integrals

expandable as infinite series which for s . 1 become

zðsÞ; the Riemann zeta function of order s; but diverge for

s # 1: Thus Tc ¼ 0 for all d # s: For s ¼ 2 and d ¼ 3 one

has zð3=2Þ . 2:612; and since C2 ; "2=2mB Eq. (11) then

reduces to the familiar formula Tc . 3:31"2n
2=3
B =mBkB of

‘ordinary’ BEC. But for bosons with (positive) excitation

energy 1K ; D0 2 DK given approximately by the linear

term in Eq. (2) for all K (meaning that s ¼ 1 and C1 ;
aðdÞ"vF with aðdÞ ¼ 2=p and 1/2 for d ¼ 2 and 3,

respectively) the critical temperature Tc is nonzero for all

d . 1—precisely the dimensionality range of all known

superconductors down to the quasi-1D organo-metallic

(Bechgaard) salts [8–10].

If the background unpaired fermions are not considered

one has a pure boson gas of CPs but with T-dependent

number density nBðTÞ: Converting the explicit Tc-formula

(1) for s ¼ 1 and d ¼ 2 into an implicit one by allowing nB

to be T-dependent leaves

Tc ¼
4

ffiffi
3

p

p3=2

"vF

kB

ffiffiffiffiffiffiffiffi
nBðTcÞ

p
; ð12Þ

since g2ð1Þ ; zð2Þ ¼ p2=6: This requires nBðTÞ ;
NBðTÞ=L2 which from Eq. (6) requires Eq. (8), along with

D0ðTÞ from Eq. (9). Solving these three coupled equations

simultaneously for l ¼ 1=2 gives the remarkably constant

value Tc=TF . 0:004 over the entire range of n ; "vD=EF

values 0.03–0.07 typical of cuprate superconductors, see

Fig. 2. On the other hand, the BCS theory formula TBCS
c .

1:13QD e21=l with l ¼ 1=2 yields Tc=TF ¼ 0:005–0:011

over the same range of n values. Unfortunately, both sets of

predictions are well below empirical cuprate values of

Tc=TF varying [42] from 0.03 to 0.09. Pure gas model results

[34], where all (pairable) fermions are paired, for either

breakable or unbreakable bosons are shown in Fig. 2 to

overestimate empirical Tc=TF values by factors ranging

from two to more than two orders of magnitude. All these

results are wide off the mark.

To obtain the critical temperature without neglecting the

background unpaired fermions, one needs the exact CP

excitation energy dispersion relation 1K ðTÞ ; D0ðTÞ2

DKðTÞ which is neither precisely linear in K nor independent

of T. To determine DK ðTÞ we need a working equation that

generalizes Ref. [25] for T . 0 via the new CP eigenvalue

Eq. (9). For the critical temperature from the finite-

temperature dispersion relation, besides solving for DK ðTÞ;
one requires Eqs. (3), (6) and (8). At T ¼ Tc both NB;0ðTcÞ .
0 and mBðTcÞ . 0 so that Eq. (6) leads [37] to the implicit

Fig. 1. Fractional number of pairable fermions that are actually

paired vs. coupling l for the present statistical model at three

different temperatures (thick curves) and estimated for BCS theory

at T ¼ 0 as explained below Eq. (10) (thin curve). The number of

pairable fermions with the BCS model interaction used is just Eq.

(3); all of them are paired at T ¼ 0 (unrealistically) in the heuristic

BEC model, Ref. [34] Eq. (23).
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Tc-equation for the binary gas

1 ¼
~Tc

n
ln

1 þ e2{ ~D0ð ~TcÞ=22n}= ~Tc

1 þ e2{ ~D0ð ~TcÞ=2þn}= ~Tc

" #

þ
8ð1 þ nÞ

n

ðk0ð ~TcÞ

0

kdk

e½
~D0ð ~TcÞ2

~Dkð ~TcÞ�= ~Tc 2 1
; ð13Þ

where quantities with tildes are in units of mðTcÞ . EF or TF;
while k ; K=2

ffiffiffiffiffiffiffiffiffiffi
k2

F þ k2
D

p
and n ; QD=TF: Four coupled

equations must now be solved self-consistently for the exact

Tc for each l and n; including Eq. (9) for ~D0ð ~TÞ; and Eq. (35)

of Ref. [37] for both ~Dkð ~TÞ and k0ð ~TcÞ: Results with l ¼ 1=2

labeled ‘binary gas’ in Fig. 2 show a huge enhancement of

Tc; with respect to the self-consistent result from Eq. (12),

arising from the equilibrating presence of the unpaired

fermions, in spite of the very small number of bosons

suggested by Fig. 1 for l ¼ 1=2:
For cuprates d . 2:03 has been suggested [43] as more

realistic since it reflects inter-CuO-layer couplings, but our

results in that case would be very close to those for d ¼ 2

since, e.g. from Eq. (11) Tc for s ¼ 1 (but not for s ¼ 2)

varies little [44] with d around d ¼ 2: Indeed, if mB’ and

mB are the boson masses perpendicular and parallel,

respectively, to the cuprate planes, an ‘anisotropy ratio’

mB=mB’ varied from 0 to 1 allows ‘tuning’ d continuously

from 2 to 3.

Other boson-fermion models [6,12,16,28,45,46] have

been introduced, some even addressing [16,46] d-wave

interaction effects as opposed to the pure s-wave considered

here, and some also focusing [16,28] on the pseudogap. But

successful calculations of cuprate Tc values in quasi-2D

without adjustable parameters are not reported–and indeed

predict Tc ; 0 in exactly 2D.

5. Conclusions

A statistical model treating ordinary CPs, of fixed CMM

but indefinite relative momenta, as noninteracting bosons in

chemical and thermal equilibrium with unpaired fermions

yields a boson number that rises very slowly from zero with

coupling, and that decreases with temperature. The model

naturally suggests a more convenient definition of the boson

chemical potential whereby the degenerate Fermi region of

positive fermion chemical potential can be accessed unlike

previous treatments. When the CP dispersion relation is

approximately linear, as it must be because of the Fermi sea,

it exhibits a BEC of zero-CMM pairs at a finite temperature

at precisely 2D. Such a critical temperature Tc would vanish

for a quadratic dispersion appropriate not to the Fermi sea

but to vacuum. Transition temperatures for the boson-

fermion mixture based on the exact CP dispersion relation

for the BCS model electron–phonon interaction are greatly

enhanced over both BCS theory as well as over pure-Bose-

gas BEC Tcs, and without any adjustable parametersare in

rough agreement with empirical cuprate superconductor Tcs.
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