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INTRODUCTION

Colloidal suspensions are one of a great variety of fluids
that are called ‘‘complex fluids’’ (1—4). This name implies

that the fluid has internal structure or microstructure and

behaves very different from water or air, for example,
when different forces are exerted on it. The difference has
been shown experimentally in many conditions, in par-
ticular, for example, by means of a fundamental physical
phenomenon like that of Rayleigh-Bénard instability (nat-
ural convection) due to buoyancy when the suspension is
heated from below (5). It is also important to take that
difference into account in industrial applications like, for
example, when the suspended particles undergo phase
transformations in solidification processes where natural
convection controls the freezing and melting rate of the
material (6). The ‘‘particles” in a colloidal suspension
have a size of the order of 10 to 100 nm and may be
polymers, emulsified drops, vesicles, or ink, paint, and
smoke particles. They are so small that they may interact
with other dissolved substances in the solvent. They are in
constant motion due to thermal fluctuations, behavior
called Brownian motion. The interactions are due to
different forces like van der Waals and electrostatic. The
macroscopic behavior of the suspension is then a con-
sequence of a statistical average of all the fluctuations
and interactions. An important consequence of the inter-
action of the particles among themselves and with other
substances is the so-called self-organization (1-3, 7) and
aggregation (flocculation) (8). It is the spontaneous ability
to form regular structures when the concentration of par-
ticles is above a certain magnitude. The self-organization
can be disrupted when some shear is applied to the sus-
pension, giving rise to a relation between rheology (the
science of flow) and structure. On the contrary, there are
suspension systems able to form structures when shear is
applied. By these means, it is possible to change the ratio
between the applied stress and the shear rate, usually
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called viscosity. The shear-thickening (that is, the increase

of viscosity) of a suspension is a result of an internal
structural change due to the application of a shear rate (9,
10). The flow of a colloidal suspension not only-depends
on the interaction forces but also on the size distribution of
the particles and their geometry, among other things (10).
Therefore, from the statistical mechanics point of view, the
simplest model available is that which supposes the par-
ticles as hard spheres of the same size. Here, the interac-
tion between particles is extremely repulsive and only
occurs when they touch. The difficulty of the model may
be increased considering soft particles of different kinds
(1, 2), etc. The particle geometry has an important role like
in fiber suspensions or polymeric solutions where the pol-
ymer chains are very rigid (10). They are modeled by rigid

_ rods, which can be handled by statistical mechanics (1). It

is interesting that these suspensions may show a natural
orientational order, which can be modified (for applica-
tions) if the particles are susceptible to an external force
field or to shear flow. When the particles deform under
stationary or time-dependent shear flow, other phenomena
are found like in red cells suspensions. Suspensions like
these are simulated experimentally by means of artificial
capsules (11).

The concentration of a colloidal suspension ranges
from that of a dilute suspension to that of very high con-
centration as in the case of mud (suspensions of clay in
water) (12, 13). For high concentrations, it could be nec-
essary to apply a very high stress, to overcome the yield
stress due to the close packing of the particles, before the
suspension starts to flow.

The stability of a colloidal suspension is also an impor-
tant issue in applications. If it is necessary to avoid sedi-
mentation, then the suspension stability may be controlled
by means of electrostatic interactions, for example (8). In
particular, in dipolar electric and magnetic colloidal sus-
pensions under strong fields, it is of importance to prevent
sedimentation or coagulation to ensure stability (14).
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Chemically and electrically stabilized colloids are widely
used in the chemical industry and have been the subject of
scientific research (15—-17). When sedimentation is al-
Jowed or needed, like in the chemical and petroleum in-
dustries for particle separation, flocculation or aggregation
plays an important role under gravity and centrifugation
(18-21). To destabilize a colloidal suspension, it is not
enough to apply an external force field. The force exerted
on the particle has to exceed that of the hydrodynamic
forces that depend on the viscosity of the carrying fluid,
the velocity, and the size of the particle itself (22).

There are other ways to make a suspension inhomoge-
neous. One of them is the effect of shear flow on the mi-
gration of particles or polymers (23~25). However, there
are methods developed to make a suspension or resuspend
the particles. Leighton and Acrivos (26) investigated the
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process of viscose resuspension by means of a shear flow,
Chemical engineers have proposed different methods for
making particle suspensions, like the new one by Taca and
Paunescu (27) of spherical stirred vessels.

In the following sections, it will be supposed that the
particles are hard spheres of the same size and that the
suspension is homogeneous even though external force
fields are applied to it. Therefore, a two-phase system
(28, 29) is considered, which is composed of a Newtonian
or a non-Newtonian fluid (30) (the carrying fluid) and a
solid phase made of dispersed particles. The hard spheres
are assumed to have rotation (intrinsic rotation or spin)
and to be susceptible to polarization under the application
of an external field. The suspensions whose particles have
a spin interacting with the solvent hydrodynamic vorticity
(rotation rate of a liquid elementary part) are called mi-

Table 1 Suspension viscosity as a function of particles volume fraction and polar effect corrections
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cropolar. The suspensions with polarizable particles (di-
electric or magnetic particles or polymers, for example)

are called polar. The micropolar suspension model is

satisfied by a suspension if the spin viscosity is important
- enough. The spin viscosity, as will be seen, is a result of
the friction between particles and the carrying fluid el-
ements rotating at different velocity. Besides, the polar
suspension model is satisfied by a suspension whose
particles polarize under the application of an external
force field. For example, when the particles or polymers
show an electric charge displacement while an electric
field is imposed on the suspension, they rotate, generating
spin, in order to align in the direction of the external field.
Due to fluid friction, the rotation is delayed in com-
parison to a particle in free space. With the action of the
same field, a pressure gradient is created on the suspen-
sion producing flow (31). Therefore, spin and polarization
have an intimate relation in the rheology of polar sus-
pensions. The same effect appears in magnetic suspen-
sions (32) and, in particular, in mass-dipolar suspensions
under gravity where the particles have the center of mass
displaced a distance from the geometric center (33) (see
Brenner’s diluted dispersion in Table 1). If the suspension
particles are not susceptible to the applied particular
external force field but the spin is still important, then the
suspension satisfies the micropolar model under shear
flow. Note that the external field does not necessarily
have to produce a bulk motion on the polar suspension to
present an interaction between polarization and spin. It is
possible to produce particle spin in a polar fluid filling a
closed vessel by the application of an oscillatory external
field. This case is relevant because, in this way, it is fea-
sible to characterize the response of the suspension to the
applied field in the absence of bulk flow effects. How-
ever, bulk motion can still be produced in a closed vessel if
the suspension is susceptible to an external magnetic or
electric field that is under rotation or if the vessel rotates in
a stationary external field. It is important to point out here
that there is a confusion in the scientific literature where
the terms micropolar and polar (dipolar) are used as syn-
onyms. Note that they are different concepts and that their
difference has already been made clear in the definitions
given above.

Summing up, it is of interest to understand the equi-
librium and dynamical properties of colloidal suspensions
as well as to describe their transport and response coef-
ficients that are necessary for their research and appli-
cation. In particular, the study of the formation and be-
havior of colloidal suspensions under different conditions,

2377

each individual particle such as ﬁydrodynamic interac-
tions, stress relaxation, Brownian fluctuations of particle
velocity, internal rotation or spin, polarization diffusion,
inertial and vorticity effects, etc. Different areas of physics
contribute to the understanding of colloidal suspensions
like continuum mechanics, electrodynamics, nonequilib-
rium statistical mechanics, and irreversible thermody-
namics. In what follows, the discussion of colloidal
suspensions will develop in steps that increase the diffi-
culty of the physical description of the model.

HYDRODYNAMICS OF SUSPENSIONS
OF NONPOLAR PARTICLES

The diffusion transport of hard sphere particles without

long-range interactions is described by the following set
of equations :

09 _ o7
B v.J (1)
J = -DV¢ ‘ " @)

where ¢, 7, and D are the volume fraction of suspended
particles, the particles’ flux, and the translational diffu-
sion coefficient, respectively. The translational diffusion
process is produced by the Brownian motion, which is

independent of the particles’ rotation. However, the trans-
lational effect of the flow modifies the particles flux by |
—DV¢ + ¢ii. This |
is the base of the so-called constitutive convective-dif- |
fusion equation. Supposing that # = 0 and substituting
Eq. 2 into Eq. 1, the Fick’s second diffusion law is ob-

adding a convective term, thatis T =

tained, that is

Here, D is assumed to be a constant in space. It is of i
interest to look for a solution of this equation in one di- |
mension for a large number of noninteracting particles lo- | |

cated initially at the origin. The solution is

¢(x,1) =

= = DV @

1 exp{—i} @
2(nDr)? 4Dt |

For the convective-diffusion case, the result given j

above still holds, replacing x with x — ut. After the dif-

fusion process is over, the solid particles are considered ‘
isotropically dispersed with a final concentration that may !
be high, low, or intermediate. The dynamics of a New- |

|

such as shear flow, and the influence of external fields are
of scientific and practical interest. In general, colloidal
suspensions are subject to a variety of effects that act on
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tonian fluid with suspended particles are described by the
so-called two-phase flow with the Navier-Stokes equation

dii
P“‘;t-m"VP'*‘V'Qs ‘ (5)
where
d a
T 5;+u-v

is the Lagragian time derivative of hydrodynamics, and the
total viscous stress tensor is given by @5 = ©* 4+ =
2n(ViE)®. Besides, © and T are the viscous stress tensor
of the background fluid and the induced pressure tensor due
to the presence of particles, respectively (34, 35). The
constant #g is the effective viscosity of the suspension. In
particular, for low concentrations, the Einstein’s formula
is very useful (36, 37), along with other effective shear
viscosities for semidiluted (38) and concentrated suspen-
sions (39-41), which are given in Table 1.

The rheological behavior of concentrated suspensions
of hard spherical particles has been the subject of exten-
sive research. Several conclusions about their behavior
have been reported. For example:

1. The distribution of particles is distorted by the
presence of strain. The fluid and the solid phase
give rise to separate mechanical stress contribu-
‘tions. .

2. The Brownian motion modifies Einstein’s for-
‘mula for semidiluted and concentrated suspen-
sions (see Table 1).

3. The linear relaxation of the viscous stress tensor '

has been confirmed experimentally for low de-
formation rate flow [for Maxwell’s, Voight’s, or
Oldroyd’s model (42)]. '

4. A nonlinear relaxation modulus for a large de-
formation rate flow is reported for concentrated
hard spheres. This effect is related to patterns of
clusters’ rupture or formation when increasing the
shear stress (43-45). Order-disorder transition
was reported in colloidal suspensions (46).

INTERNAL PROCESSES IN MICROPOLAR
FLUIDS AND SUSPENSIONS ’

A micropolar fluid is composed of molecules with intrinsic
rotation. Similarly, a suspension is called micropolar when
its colloidal particles have spin. Both cases will be treated
under the same continuum formalism in which the linear
momentum equation must be supplemented with a new
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variable, that is, the local average of internal rotations or
the spin of the particles, respectively (47).

Angular Velocity Distribution in
Colloidal Suspensions

For spherical and nonspherical particles, it is possible to
define a director vector along one of the symmetry axes. In
this way, the rotation of the particles is described by means
of the Euler angles in a stationary frame of reference in
space. The angular velocity distribution for noninteracting
particles is described by means of the Gibbs-Boltzmann
statistics (48). Therefore, the distribution function for ther-

mal equilibrium at the temperature T is given by

1
_ 1.} 152

@ = (saiz) »{ -5z} @
where I is the moment of inertia of the dispersed particles,
@ is the angular velocity defined around a perpendicular
axis of the director vector of the particle. Eq. 6 is the
analog of the Maxwellian distribution function of a par-
ticle-velocity component. This distribution is a Gaussian
centered at @ = 0. Considering that the particles have
two angular degrees of freedom and according to the
equipartition principle, the average in the angular velocity
is given by the equality

1

kgT = —2-Iwa3.
Therefore, from the statistical mechanics point of view, the
dispersed particles have rotational motion according to the

temperature of the suspension. The average angular veloc-
ity is given by

1
Way = (2kIBT)2 O]

Besides, the results of Eqs. 6 and 7 are fulfilled by
particles suspended in a diluted gas under equilibrium
conditions. For suspended particles in dense gases or
liquids in motion, the friction between the particle and the
fluid has to be taken into account. This friction effect pro-
duces a torque on the particle and thus an angular ac-
celeration that modifies the thermal equilibrium distribu-
tion of angular velocities, as will be seen in Eq. 11.

Rotational-Fick’s Diffusion

The angular position 8 is the angle of the director vector in
relation to a fixed axis and its temporal variation is
do

0)=—d'{.
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In a nonequilibrium situation, the rotational-Fick’s dif-
fusion takes place, and the angular distribution function
f(0) satisfies the following equation:

df (0’ t) 7. —
T+ Vo. J =10 (8)
where .7} = —D,Vif + f@y, fDqy is the rotational con-

vective flow, D, is the rotational diffusion coefficient, and
Vs is defined as

Considering diffusion in one dimension, the solution of
Eq. 8 has the form

2(11:D,t)% 4Dt

f(6,1) =

The rotational-diffusion constant may be obtained by
means of the angular root-mean-square displacement in a
long time period At

(6%)

iy ve (10)

Rotational Friction on Colloidal Particles Due
to Vorticity in the Flow Field

Spherical and nonspherical particles isotropically dispersed
do not rotate freely according to the average angular ve-
locity, as explained above. They rotate under an external
couple caused by the friction between the particles and the
fluid. In this case, the angular momentum balance equation
and the linear momentum balance equation have to be
taken into account. The former is

do

I? = -2(@ -~ Q) (11)
where
Q= lV X i

is the vorticity of the surrounding fluid and ¢ is the vortex
viscosity. It is clear that the friction between the particle
and the liquid brings about the relaxation mechanism,
which leads to the internal mechanical equilibrium of the
suspension. The equilibrium is attained when the particle
rotation rate follows the vorticity of the fluid flow, that is,
when @ = Q.

In case the flow velocity is very high, the effects of
inertia produce a noninstantaneous coupling between par-
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ticle internal rotation and local vorticity (49). Assuming |

that the relaxation of internal rotation or spin occurs in a
time scale shorter than the hydrodynamic one, Eq. 5
decouples from Eq. 11, and the velocity field can be solved
independently of the rotation dynamics but according to
the boundary conditions. However, the spin still feels the
effects of the flow field. Therefore, supposing £ as con-

" . stant in the rotation time scale and w(t = 0) = w,,, the

spin evolution can be given by the following expression

@(t) = gy exp (— T—;) + [1 — exp (-— }t;)] Q@)
(12)

where 7, is the spin-relaxation time given by

I _ pd v

Ts = 2 30n; ¢

The identity in Eq. 13 follows from the relations (50)

(13)

3
¢ = ‘2"1E
and
2
I = gpsvdz,

where v is the particle volume, p; is the density of the
particle, and d is its characteristic length. 7, is of the or-
der of 10 ps for particles of 0.01 pum. If the particles are
of 1 pm, 7, increases four orders of magnitude, giving the
possibility of a coupling between the particle spin and the
velocity field dynamics. In this case, the balance of mo-
mentum, Eq. §, is modified by the inclusion of a new term
arising from the antisymmetric contribution of the viscous
stress tensor Q% (51), namely

-

p%—ltf=—Vp+V-QS+V-Q“ (14)

where

Q= 2(Vd), Q° = ¢ (8- B) (15)
where £ is the three subindexes alternating tensor.
substituting Eq. 15 into Eq. 14, the modified linear mo-

mentum equation for an incompressible fluid (V -#& = 0)
is obtained,

p-‘%— = —Vp+nV%i— 2%V x (3 ~ @) (16)
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This result differs from the usual Navier-Stokes equa-
tion of hydrodynamics by the presence of the last term,
which is related to the coupling of the spin with the flow
via the antisymmetric stress tensor (52).

Spin Velocity Diffusion

The evolution of the rotation angle of the particles was
previously discussed as produced by the mechanism of
Brownian motion. Now, the diffusion of the spin velocity
is considered. This diffusion is produced by the hydro-
dynamic interaction via the vorticity induced by the par-
ticle rotation. .
Until now, it was supposed that inertial effects of par

ticle rotation are important in the description of the spin
relaxation mechanism according to Eq. 11. Along the
same line, inertial effects are a necessary condition to
have diffusion of spin when spatial inhomogeneities are
present in the system. In fact, when the spin variable is not
uniform, a distribution of spin produces spatial variation
in the symmetric part of the spin tensor given by the sur-
" face couple-stress tensor C = 2;15,,(\7@)5. This tensor is
the analog to the viscous stress tensor (32) and modifies
the balance of angular momentum Eq. 11, which changes
according to ' ‘

I% = —2%@-Q)+V .C (17)

By substituting the surface couple-stress tensor in
Eq. 17, it becomes a diffusion equation with a relaxation
term, the first at the right hand side, which also works as
a spin source by means of Q. That is

do

1
- = ’?(‘7’ - 0)+ D, VB (18)

where it was supposed that V- @ = 0, and

n
Dy, = %

The characteristic time for spin diffusion is

T 2
P 7 4n2Dy,’

and the parameter A is the characteristic length of the
spatial inhomogeneities of the distribution of spin (53, 54).
Egs. 16 and 18 have also been derived from the micro-
scopic point of view (55-57). It should be noted that the
spin diffusion has mostly a short length scale (10— 100 nm)
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(58). In this micro hydrodynamics scale, the spin diffu-
sion results are more important than vorticity friction, and
Eq. 18 becomes '

-di’- = D,V’® (19)
where the characteristic diffusion time is very short for
small particle radius (z,, = 107'? sec). This diffusion
effect is very fast from the hydrodynamic point of view
(59). However, spin diffusion is important to homoge-
nize the magnitude of the local angular velocity @ in a
volume element. In this way, it is shown that the terms

~ of Eq. 19 have an important physical interpretation in

the continuum formalism of micropolar fluids.

EQUATIONS OF MOTION OF SUSPENSIONS
OF POLAR PARTICLES

Several phenomena in electrorheology (ER) and magneto-
rheology (MR), like electroviscosity and magnetoviscosi-
ty, are produced by induced polarization (magnetization)
when an external field (electric or magnetic) is applied.
These effects are supported by the polarizability properties
of the dispersed particles. It is necessary to point out the
differences existing between an MR fluid and a magnetic
suspension. When a magnetic field is applied to an MR
fluid, the behavior changes from that of a fluid to a solid-
like one for certain shear stresses. However, when the
shear stress is increased above the magnitude of the yield
stress, the rheological behavior follows a Bingham model

in which case the solid-like behavior is disrupted and the

viscosity changes suddenly from a high value to a lower
one. On the other hand, in a magnetic suspension, it is
supposed that the hydrodynamic character never changes.
When a magnetic field is applied, the suspension viscosity
increases depending on the square of the magnetic field
strength (60) (see Table 1). In order to concentrate on the
goals of this review, the ER and MR fluids will be ex-
cluded from the discussion, and the description will con-
centrate on the hydrodynamic behavior of electric dipolar
and magnetic dipolar suspensions. The reader interested in
ER and MR fluids may consult the following references
(61-67). Here, a review of mass-dipolar suspensions will
also be included. The dipolar moment property of sus-
pended particles is a consequence of the separation of the
geometric center from the center of mass of the particle. In
the three cases of the electric, magnetic, and mass-dipolar
suspensions, the application of an external (electric,
magnetic, or gravitational) field produces a torque on the
particle, which works to rotate its dipolar vector to an
equilibrium position parallel to the direction of the exter-
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nal field. This is a relaxation process whose mechanism is
a combination of the rotational friction between the par-
ticle and the fluid and the rotational Brownian effect. This

process was first described by Debye (68) for a set of

electric dipolar molecules dispersed in a neutral fluid. His
description was for an ideal system in which the inter-
action between particles is neglected. Similar assumptions
have been made for magnetic (69) and mass-dipolar sus-
pensions (33, 70).

A distinction should be made between a suspension of
polar particles and a polar fiuid (60). The former one is
characterized by a second phase dispersed in the liquid,
which is represented by the particle volume fraction ¢. A
problem found in this system is that of agglomeration,
which occurs due to the (dielectric or magnetic) interac-
tion between the particles. Besides, a polar fluid is a one-
phase system where the polarization vector is a volume
average of the molecular dipolar moments. From the point
of view of the continuum formalism, both kinds of fluids
are described by the same constitutive equations because
the parameter ¢ for a suspension of polar particles is in-
cluded in the transport coefficients.

Polar Electric-Suspensions with Spin

In order to describe suspensions of polar particles, it is nec-
essary to consider the linear and angular momentum bal-
ance equations

Dii

Py =~V Qr+V-Qf ' (20)
D
17‘;’ =¢:Qf (21)

where @ = QS+1%, Q2 = Q“+ T4 p, =p+p,
and p, is the radiation pressure defined by

This is also recognized as a dynamic pressure as that
of magnetic colloidal dispersions, which takes the form

1 ,(0u
br= 8n PHo (6/’)1

where Hy is the magnitude of the magnetic field and u is

the magnetic permeability (71). T® and T are the sym-

metric and antisymmetric parts of the electromagnetic-

Maxwell stress tensor, respectively. They are defined as
1

‘TS——E'B—'%‘S+ I 2
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:T* = PxE ‘ (23) |

Ren

where P, D, and E are the polarization vector, the dis-

lacement vector, and the local electric field, respectively.
5‘5 is the traceless electromagnetic stress tensor. The right-
hand side of Eq. 23 is the torque produced by the electric
field on the dipole of the fluid particle. It should be noted
that the electromagnetic pressure (p,) does not contribute
to the dissipative part of the polarization and magnetiza-
tion (72), and this part will not appear in the constitutive
equations. On the other hand, the explicit form of the elec-
tric or magnetic stress tensors depends on the properties of
the material (73, 74).

Now, consider suspensions of small dipolar particles
for which the rotational inertia is negligible in comparison
with the viscous forces (75). In this case, the right-hand
side of Eq. 21 is zero. Therefore, the antisymmetric ten-
sors have no contribution to the stresses, and the last term
of Eq. 20 is not present. This means that the factors
favoring the internal rotation of the fluid do not affect the
fluid velocity profile (76, 77).

On the other hand, the torque the electric field produces
on the dipolar particles is counterbalanced by the frictional
effect with the fluid. Therefore, the mechanisms control-
ling the evolution of the dipoles, which tend to align in an
equilibrium position, are the thermal fluctuations (due to
Brownian molecular motion). Thus, this is a relaxation
process described by the Debye equation of the polariza-
tion vector, that is .

DP e =

el - 24
oy = HEE-P 24

where
1

X(E) = xo(cothé—g),

s _ HE[E|

kT

and, , is the electric susceptibility at zero frequency of
oscillation of the electric field. The operator D/Dt in
Eq. 24 is the corrotational or the codeformational time
derivative for a vector field as defined in Eqs. 3.2a and
3.2b of Ref. 78. The Debye relaxation time is given by

_ 4nd®n,

= 25
D T (25)

Until now, the polarization relaxation does not
contribute to the evolution of the flow field, but the
velocity vector field does modify the polarization through
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the corrotational time derivative. This is true for dilute di-
polar suspensions, but for concentrated ones, the interac-
tion effect becomes important for concentrations that
have not reached the agglomeration point. In fact, for
concentrated polar suspensions (electric or magnetic
ones), inter-particle interactions also induce polarization,
modify the distribution of particles, and produce the ex-
change of angular and linear momentum between parti-
cles and fluid. In this way, the effects of the polarization
on the symmetric and antisymmetric stress tensors are
understood. ,

In order to introduce these effects, it is supposed that
the polarization vector plays a similar role as that of the
velocity vector (31). Therefore, the constitutive equations
of the viscous stress tensors are given by (78)

DQ; S =\
Q5+ L = 2e(ViE)® + 263(VP) (26)
o 4 s %%T- = 2%s: (@-3) +26:(VF) @)

Under these assumptions, the Q3 and Q¥ are the total
stress tensors acting in a fluid particle, which also include
the electric or magnetic contribution. The coefficients 3
and &, are interpreted as shear-like viscosity and rotatio-
nal-like viscosity for polarization, respectively. Besides,
Eqgs. 26 and 27 also contain the stress relaxation times A2
and As. In these equations, the retardation times for the
delayed response of the coupling between the velocity and
the polarization have been ignored for the sake of simpli-
city (79). Note that here the operator, D/Dt, is the corrota-
tional or the codeformational (upper or lower convected)
time derivative for tensors (80).

Moreover, Eq. 24 may be generalized, assuming that -

the interactions between dipoles produce a viscous-stress
distribution that contributes to the evolution of the polar-
ization vector. This is given by the introduction of cou-
pling terms into the Debye equation

= y(E)E - P+ 6,1,V - Q} + 867,V - QF
(28)

‘t ————
D pt

Now, the situation is that the velocity field can modify
the evolution of polarization by means of the velocity
gradients that appear in the constitutive equations through
the stress tensors (see Eqs. 26 and 27). Besides, the polar-
ization in Eq. 28 modifies the velocity field in Eq. 20 by
means of Egs. 26 and 27. In fact, the same reciprocal
process affects the spin in Eq. 21.
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Polar and Magnetic Suspensions with Spin

The evolution equation for the magnetization per unit
volume is given by

DM

— = —(M— Mg 29

T ( 0éH) | (29)
where M, is the equilibrium magnetization given by the
magnetic equation of state

My = oMy (coth o - -:;) (30)

npuoM gHd?

o = T (3n
where po is the permeability of free space, M, is the
saturation value of the magnetization, and ey = H /H is
an unitary vector in the magnetic field direction.

In the presence of spatial inhomogeneities of the mag-
netization, the term 17,/ V2M has to be added to the right-
hand side of Eq. 29 (81).

In flow with vorticity @ # 0), the viscous torque
produces modifications in the resuiting local equilibrium
magnetization

M # Moy (32)

because of the change with respect to &y due to vorticity.
Depending on the flow, a different magnetization vector
can be obtained (75).

When magnetic suspensions are considered, another re-
laxation mechanism, different from the Debye-type relax-
ation, should be taken into account, that is, the so-called
Néel effect, which contributes to the evolution of the mag-
netization. In this case, the relaxation time is given by

1 1 1
— = - (33)
™M o W

where 7, is Néel’s relaxation time (82) defined as

Kv
v = TnO exp (7(—87) (34)

where K is the anisotropy constant and v is the particle
volume.

DIFFUSIONAL PROCESSES IN
SUSPENSIONS OF POLAR PARTICLES

The Polarization Diffusion

Replacing Eqs. 26 and 27 with Eq. 28, an expression
similar to that of Stiles and Hubbard (83) is obtained but
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with two additional source terms appearing in the rhs of
the following expression

DP = =
B+ V- BE-P)

= (1111_(52 — ¢06)V2ii — 2c66V x (@ - Q) (35)
The tensor J is defined by
= Dy(VP)® + Dy(VP)* (36)

By substituting Eq. 36 into Eq. 35, it is possible to
identify D, and D; as diffusion coefficients related to
translational and rotational polarization diffusion, respect-
ively. In terms of the coupling parameters of Eqs. 26 and
27, the diffusion coefficients are defined as D, = 26,05
and D3 = —2J¢0;. Moreover, the contribution of polar-
ization diffusion coming from the symmetric and antisym-
metric viscous stress tensors appears depending on the
materials. In fact, according to the Stockmayer classifica-
tion (84), the contribution of the antisymmetric viscous
stress tensor is related to the rotational Brownian motion
process, which appears in materials of low molecular
weight or in polymers with molecular dipoles oriented per-
pendicularly to the backbone chains, for this case D, <<
Dj3. On the other hand, the contribution of the symmetric
viscous stress tensor is related to hydrodynamics fluctua-
tions (Rouse’s mode) of polymeric materials with molec-
ular dipoles parallel to the backbone chains, for this case
D, >> Dj. A combination of these two relaxation modes
is included in Eq. 35.

Polarization Charge Diffusion

Now, consider the polarization charge density given by
pp = =V P, which represents the spatial variation of
the polarization vector. The local variation of pp only has

-contributions of the symmetric viscous stress tensor (79),

as shown by taking the divergence of the linear Eq. 35 and
substituting the linear Eqs. 26 and 27. The result is

dpp _ (%:)
8 N\ &),
S N PR
tD €0 Pp 2 Pp (37)

The subindex *‘sym’’ means that, in this equation, only
the symmetric part of the stress tensor contributes to the
variation of the polarization charge. This shows that the
spatial distribution of polarization charge in a dipolar sus-
pension evolves as a diffusion process, which influences
the flow through the symmetric stress tensor.
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Diffusion of the Transverse Component
of the Polarization Vector

‘Another diffusive phenomenon associated with suspen-
sions of polar particles is the diffusion of the rotational of

the polarization vector Py = V x P). Here, the diffusion
is that of a vector field (79) in contrast to that of a scalar

. field like in Eq. 37. In fact, applying the curl operator to

the linear Eq. 28, the diffusion equation for Py is
o T = DTV2P; (38)

where the spin diffusion contribution was neglected and

the spin was supposed to satisfy V- @ = 0. It should be
noted that in the evolution of the transverse component of
the polarization, both diffusion processes are present, that
is, the hydrodynamic coupling with the symmetric stress
tensor and that with the antisymmetric one, as can be seen
in the total diffusion coefficient

Dy = D+ D3 (39)

GENERALIZED HYDRODYNAMIC
DESCRIPTION OF SUSPENSIONS OF
POLAR PARTICLES

In the past few years, suspensions of Brownian particles
(particles larger and heavier than the molecules of the
solvent) have been investigated by a variety of experi-
mental and theoretical methods. The neutron and light
scattering (85), as well as ultrasonic absorption, are exam-
ples of experimental methods (86). Theoretically, suspen-
sions have been investigated by means of nonequilibrium
statistical mechanics, irreversible thermodynamics, and
computer simulation. One of the aims of nonequilibrium

“statistical mechanics is the evaluation of the velocity au-

tocorrelatation function and the corresponding memory
function in order to describe the dynamic response of the
system to small perturbations of external or internal origin
(fluctuations) (87). From this information and by means
of the fluctuation-dissipation principle and the linear re-
sponse theory, the transport coefficients or the response
coefficients can be obtained. The theoretical description of
the fast dynamics evolution in the local level (mesoscopic)
is done in such a way that the transport and response co-
efficients may depend on w and k (the frequency and the
wavenumber). The slow dynamics (hydrodynamic limit)
are obtained in the limit of zero w and k. The reader in-
terested in the details and the basis of these. theories,
should refer to Refs. 79 and 88.
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The Polarization-Autocorrelation Function

A particular insight of the evolution of the polarization
vector of polar liquids and suspensions is obtained by
means of the extended irreversible thermodynamics (89),
which is useful to calculate a generalized Debye equation
taking into account inertial terms, internal variables, and
hydrodynamic-coupling effects (78). In this section, the
first two effects are considered. The last one is discussed
in the following sections.

Suppose that the polarization-autocorrelation function
is
< 8P(t) - 6P >

——— (40)
< &P - 6P >

op(t) =

where 6P(t) = P(t) - <P>.

The linedr generalized Debye equation for @p is ex-
pressed, in the absence of hydrodynamic couplings and
i = 0,(90), as

s ) d*¢,
(w + At )d3‘°+( +2,121D) —

+(,13+rD)—‘2—+¢,,

( +A13 )¢E ‘ (41)

where the correlation between the electric field and the

initial polarization is given by

< 8E(t) - 6P >
%) =~ 5p.op> “
and OF is the fluctuation of the local electric field.
The parameters T, and w,, appearing in Eq. 41 have
already been defined in Eq. 25 and Eq. 7, respectively.
The parameter A3 comes from the mean square torque
produced by dipolar-dipolar interaction between mole-
cules, while A, is the cross-correlation time between the
dipolar relaxation and the libration of dipoles in the local
electric field (91). The last parameter, 4, is considered as
free, in the sense that it can be obtained by means of a
comparison between the predictions of the above equation
and the experimental data (90). When 4, = 43 = 0, a
particular case of Eq. 41 is obtained, which is the first
generalization of the Debye equation for ¢p. That is .

2
1 d°¢, do,
_ P —P 4 43
w?, dr? rn % = %% (43)
This result describes a resonant absorption with the
characteristic frequency w,,, which is a consequence of
the inertial effect. A comparison with experimental data
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for trichloroethane-hexane (92) solution is given in Ref.
90. Usually, this resonance peak is found at high frequen-
cies, but for the frequency-domain of dielectric relaxation,
this effect can be neglected. In this case, the decay re-
laxation equation is given by

d
() —F ¢”+¢ = %% (44)

Where 1p(f) is the Debye-relaxation time, which is a
time-dependent parameter (93). According to the coupling
model of Ngai (94), this parameter is given by

. 1-a
T t
" (—;;) (45)

() = —

where 7, and « are the average relaxation time and the
disorder parameter, respectively. The corresponding cor-
relation function is of the form of Kolhrausch-Williams-
Watts (95) when there is no correlation between the elec-
tric field and the initial polarization and @ = O (the

system has no ferroelectric properties):

8,(1) = ep{—(io)} o)

which indicates the presence of a distribution of char-
acteristic times of a series of relaxation processes in par-
aliel in such a way that the relaxation mechanism is due to
multiple channels of polarization-relaxation with different
rates (96).

On the other hand, a solution of Eq. 41 can be obtamed
supposing that the coefficients are constants and ¢ =0~
The solution can be cast into a third-order continued frac-
tion in the Laplace transform space. That is '

- 1 ,
op(S) = —— (a7)
S E
s+
43
s+ M
where
Yy
M=-= (48)
%
and
1 oo Y
Y = ( +2121>(—+/1'c> (49)
1 wgv D w‘zw 2'D
_] ‘
Yy = (A3+rp)( +l > (50)
a
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(A2 )\ :
Y3 = w? +;‘2‘ro (51)

av ¢

Del Castillo et al. (90) have shown that the result given v

in Eq. 47 reduces to the three variable theory (97) and
from comparison with the experimental data for chlo-
roform (98), they also have shown that the introduction of
the cross-correlation time is necessary. Now, considering
the linear response theory, the complex electric suscep-
tibility (88) is

(@) —to _ E(0)—8x _ .,
Yo— Yo 80— &0 = L(=¢»)
= 1 - ingp(w) (52)

where Xolor &,) and y_(or ¢ ) are the electric suscep-
tibility (or dielectric constant) defined at zero and at high
frequency, respectively. L(.) denotes the Laplace trans-
form.

Suspensions with Dipolar Particles:
Hydrodynamics Coupling and the Symmetric
Stress Tensor

Now, a discussion is given about the problem of the com-
plex electric and magnetic susceptibilities corresponding
to the hydrodynamic-like description of the evolution of
the polarization vector coupled with the symmetric and
antisymmetric total stress tensors, and their experimental
comparison. In particular, the effect of the polarization
distribution on the absorption bands is discussed. .

In Eq. 28, the evolution of the polarization vector is
governed by the modified-Debye equation with a coupling
term that represents the structural effect when the electric
dipole-particles are coupled with the translational velocity,
included formally in the total symmetric stress tensor (see
Eg. 26).

Now, it is supposed that the polar suspension is in
the equilibrium state at the onset. Then, an external oscil-
latory electric field of small strength is applied. Therefore,
there is no saturation effect and y(E) = x,. The polari-
zation vector 6P and the stress tensor Q5 are induced and
change with time at the same frequency as that of the
electric field. Consequently, Egs. 26 and 28 w1th 0 = 0
give (99) us

D6QS

8Q5 + Ap—L o = 2mp(VoR)® +285(VEP)S  (53)
DSP - o=
‘L’D—D-;— = xan — 0P+ 52‘CDV - 5Q§- (54)
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In order to close the system of differential equations,
the balance of the linear momentum equation for the fluc-
tuations is required, and use is made of its form given in
Eq. 20. Linearizing the system of equations, taking the
Laplace transform, and supposing that the initial values of

the variables are equal to zero, the following results are -

obtained for the longitudinal and transversal modes, res-
pectively,

k, . L=
————XL(XO‘”) = [1 + iwth]™! (535
' -1
XT(ki (D) _ . T DZkzt{) ' ‘
—————XO = |1 +iwt, + T+ iot) (56)

The contribution of the velocity modifies the relaxation
time 7, as

But if the electric field in the sample is supposed to be a

plane wave (w = ck and c is the speed of light in the ;
sample), the term that modifies 7, can be neglected for any

v,- Therefore, the effect of the translational velocity of the
dipole particles on the absorption band can not be detected
experimentally. However, the polarization diffusion effect
is an important contribution that should be taken into

account in the electric susceptibility, according to Eq. 56. -

A way to compare the result obtained in this equation with
experimental data on dielectric relaxation is to consider
the normal mode dielectric relaxation in which the po-

larization vector P is the resultant sum of the molecular |
dipolar vectors found along the backbone of the polymeric

chains. Therefore, D, is the diffusion coefficient of the

polarization process, which coincides with the same dif- |

fusion coefficient of the polymeric solution as described

by the Rouse-Zimm theory in the dilute case and with the

reptation theory in the case of concentrated solutions or |

polymeric melts (100).

Suspensions with Dipolar Particles:
Hydrodynamic Coupling and the
Antisymmetric Stress Tensor

In a similar way as in the preceding section, Eq. 28 de- .
scribes the evolution of the polarization vector governed
by the modified-Debye equation with a coupling term, :
which represents the structural effect when the. electric '
dipole-particles are coupled to the antisymmmetric stress -

tensor (see Eq. 26).

Now, suppose the polar suspension is in the equilib-
rium state at the onset and then an external oscillatory |
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electric field of small strength is applied. Therefore, there
is no sat_qration effect, and x(E) = x, The polarization
vector &P and the stress tensor Q7 change slightly with
the same frequency of the electric field. Consequently,
Eqs. 27 and 28 with J, = 0 give (101) us

DSQ-.

5Qg~ + As Dr = 257(V5F)a ' (57)
DSP - =
Do = X0F — 0P + 061,V - 6Q7  (58)

Linearizing the system of equations, taking the Laplace
transform, and assuming that the initial values of the
variables are equal to zero, the following results for the
longitudinal and transversal modes are obtained, respec-
tively

k,w
1 ), = [1 +iwtk]™ (59)
Xo
2.7 -1
1) [1+iwr,’>+—-——D3k. D (60)
%o (1+ iwT)

The polarization diffusion is present in the transverse
mode, which is measured in the laboratory when the par-
allel plate capacitor arrangement is used. The diffusion
mechanism for the polarization is produced by the Brown-
ian-vortex motion, which controls the diffusion rate when
the substance is in the undercooling regime at tempera-
tures higher than that of glass transition. The comparison
with experimental data is given considering the so-called
a-relaxation mode of dielectric relaxation. This' mech-
anism is associated with the polymeric substances as well
as with any glass-forming liquids (102).

The Role of the Interactions in the
Hydrodynamic Coupling Mechanism

Several authors have recognized (103, 104) that the effect
of the long-range contributions produced by the dipole-
dipole interaction can be introduced into the parameters
involved in the Debye relaxation equation, that is, into the
electric susceptibility, 7, and w,,. Therefore, this sort of
interaction should be excluded from the interpretation of
the hydrodynamic coupling diffusion. ’ )

The coupling between the polarization vector and the
viscous stress tensors should be considered of long range
and is of structural nature. Due to this, there exist local
structural differences, and consequently the wavenumber
shows dispersive effects, that is, k(w). Therefore, the fol-
lowing dispersion formula is used to improve the compar-
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ison between experimental data and the results of Egs. 56
and 60 (99)

k =k, (-3’;) (61)

where the parameter n can be determined by fitting the
experimental data.

General Expression for Dielectric o and
Normal Relaxations

For polymeric materials that have dipolar components
along the backbone of the polymeric chain as well as in the
perpendicular directions, both mechanisms of diffusion are
present. However, the frequency of the loss peak of the a-
relaxation is usually separated from the loss peak of the
normal-mode relaxation by two or three frequency dec-
ades (105). Therefore, we can consider that there is no
interaction between the respective relaxation mechanisms
and that a superposition of the two relaxation modes can be
established in the same equation as follows (99)

1, (k, )
XO

Dik? ‘L'Z
(1+ioy)

Dy <7 ]“
(1+iwt)
(62)

= [1+iwr[+

where 17 is the composition of the relaxation times re-
sulting from the expression

1 1 1
o))
T, D sym i) antisym

Fig. 2 of Ref. 99 shows the presence of two peaks, one
at the right associated with the dielectric a-relaxation and
another one at the left related to the dielectric normal
mode relaxation for the cis-polyisoprene data from Ada-
chi and Kotaka (106). In order to fit these curves with
Eq. 62, use was made of the dispersion relation k(w)
proposed above.

MICROPOLAR SUSPENSIONS:
APPLICATIONS AND EXPERIMENTS

Suspensions in which the spin of the particles is important
are called micropolar. Different theories have been put
forward to give the equations of motion of these fluids.
A particularly popular one is that due to Cemal Eringen
(107-115). Other theories have been developed, for exam-
ple, by Shliomis (116), Kline (117), Pérez-Madrid et al.
(118, 119), Dévalos-Orozco and del Castillo (120), and
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Faria and Kramer (121). The model equations obtained
by Dévalos-Orozco and del Castillo (120) reduce to
those of a micropolar suspension, inside the framework
of their theory, when the mass-polarization vector is zero
and the viscoelastic time constants are zero. Apart from
Ref. (120), a viscoelastic micropolar fluid theory has been
proposed by Yeremeyev and Zubov (122). Some review
works, for different periods, are those of Ariman et al.
(123), Cowin (124), the book by Stokes (125), and the
book by Lucaszewicz (115).

The equations of motion of a compressible micropolar
fluid are (125)

dp 7=
& —+pV-i =0 _ (64)
dﬁ -
P = -Vp+(A+u—-x)V(V-d)
+ (u+K)Vi +2kV x @ + pf
(65)
P = 4+ V(Y -B) + 475
+ 2KV X it — 4@ + pl (66)

Here, p is the suspension density, p is the pressure, i is
the fluid velocity, @ is the spin or internal rotation, j is the
micro inertia (mean moment of inertia of the g_articles), f
is an external body force per unit mass, and [ is a body
couple per unit mass. Besides, «, f, 7, k, 4, and u are
material constants (viscosities) that must satisfy the fol-
lowing inequalities derived from the Clausius-Duhem in-
equality:

304+2u 20 u>0 k>0 y-82>0
Y+B82>20 3a+B8+y>0

Next, some fundamental applications of the micropolar
fluids will be discussed.

Flow Solutions

The difficulty of the equations is based not only on the
increase in the number of terms but also on the non-
linearity. Therefore, one important goal is to obtain fun-
damental flow solutions. Saccomandi (126) obtained sta-
tionary solutions of plane flow by means of the Lie-group
analysis. In the flow between two rotating disks, spin is
generated, and the results obtained by Rao and Kasivis-
wanathan (127) are of interest to understand the flow. be-
havior in an orthogonal rheometer, which has this geom-
etry. Nonlinear equations were obtained by Chaturani and
Narasimman (128) and analyzed numerically.
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The problem of flow between coaxial walls in relative
motion, which corresponds to that of lubrication in journal -
bearings, was investigated by Prakash and Sinha (129)
who found that with micropolar fluids the effective vis-
cosity increases. When the journal bearing is rough, Sinha
and Singh (130) found that the effects of roughness were -
enhanced with a micropolar fluid. If the relative motion of
the boundaries is that of two parallel plates, interesting
applications to human joints have been found where the
lubricating synovial fluid (made of long-chain hyaluronic -
acid molecules) is supposed to be a micropolar suspension.
One model is that of two approaching solids, where one is |

porous, by Tandon and Jaggi (131). In the other model,

Tandon and Rakesh (132) include the effect of cartilage
roughness and found that load capacity increases with a
decrease of gap width and with an increase of particle '
concentration. Sinha et al. (133) modeled the hip joint as a
spherical bearing. They found that the effective viscosity
increases and that, for a damaged joint, the load capacity
decreases. Tandon and Gupta (134) introduced surface
roughness by means of a cosine wave over the two plane
surfaces and modeled the knee joint by rectangular plates
and the hip joint by circular plates. Singh et al. (135)
introduce a varying porosity model of the cartilage matrix
in the human joints in order to avoid modeling it as a three-
layer porous system. An interesting application of the
micropolar fluid model was made by Sinha et al. (136) to:
the cervical mucus. Besides, the effect of a flexible cer-.
vical wall with muscular activity is introduced by Phxllpf
and Chandra (137) who found that the propulsive velocxtyl
of the spermatozoa increases when the fluid is more non- |
Newtonian. The blood has been modeled as mlcropolarw
fluid in small capillaries and large arteries taking into ac-
count the rotation and deformation of the red cells by
Ariman et al. (138) who investigated the stationary and.
oscillatory blood flow and concluded that their results
have certain agreement with the experimental results of
Bugliarello and Sevilla (139). Chaturani and Upadhyaj
(140) modeled the blood as made of a micropolar core
region of red cells and a peripheral plasma layer and com-
pare their results with other models. Chaturani and Ma-|
hajan (141) propose a method to calculate the boundary
conditions of a suspension and compare their results withj
experiments of blood flow. Xiexian and Yuansheng (142)
change the typical circular cross section of the blood
vessel into an elliptical one to investigate the flow of mi-
cropolar blood. Stratification of the blood under flow is
investigated by Akay and Kaye (143) considering small
capillaries. Tandon et al. (144) introduced a small stenosis
(constriction) in the tube to the flow of a two-fluid blood
(the inner one being micropolar). The problem of stenosis
was also investigated by Hogan and Henriksen (145).
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More recently, Sanyal and Maiti (146) modeled the flow
of blood through a bifurcation with the goal of under-
standing some cardiovascular problems at the bifurcation.
The micropolar model has also been tested in the slow
flow approximation. The paradox of the drag on a body
of arbitrary shape was investigated by Ramkissoon (147).
The resistance of a particle to translational and rotational
motion was calculated independently by Brunn (143),
Ramkissoon and O’Neill (149), and Avudainayagam and
Ramakrishna (150). Calculations under the Oseen approx-
imation for two-dimensional flow have been done by
Olmstead and Majumdar (151). Small amplitude oscilla-
tions of a symmetric body stimulate vorticity, which gen-
erates spin motion through spin viscosity. In this case, Rao
and Rao (152) showed that, for longitudinal and rotational
oscillations of a sphere, the maximum drag or couple is
larger than that in a Newtonian fluid. The simultaneous
longitudinal and torsional oscillations of an infinite rod
in an unbounded micropolar fluid were investigated by
Ramkissoon et al. (153). Charya and Iyengar (154) found
a general formula for the drag on an axisymmetric body
performing longitudinal oscillatory motions. The bound-
ary layer flow is important in many applications when
the velocity is high and the viscosity is low. The bound-
ary layer on an accelerating extruded sheet with the ef-
fects of heat transfer was investigated 'by Hassanien (155).
Bhargava and Takhar (156) showed that in any stagnation
point of flow, the temperature in the boundary layer is
higher than that in a Newtonian fluid. An application to
shear waves along the interface of a linear elastic me-
dium and a micropolar fluid was investigated by Yerofe-
yev and Soldatov (157) who found that the shear surface
wave propagates almost without dispersion, in contrast
to the Newtonian fluid.

Flow Instability

The stability of flow is important to understand the be-
havior of fluids with spin under a perturbation. Natural
convection of a micropolar fluid layer heated from below
was investigated by Bhattacharyya and Jena (158) who
found that the spin does not affect the stability. Besides,
Bhattacharyya and Abbas (159) concluded that the spin
effects make a more unstable rotating convecting fluid
layer. Franchi and Straughan (160) investigated, by the
energy method, the nonlinear convective stability of a
fluid with temperature-dependent viscosity and found that
the effect of spin is very small. When the temperature gra-
dient is nonuniform in convection, -Siddheshwar and Pra-
nesh (161) determined that the micropolar fluid is more
unstable than the Newtonian one. Mrabti et al. (162) con-
cluded that when the fluid is enclosed in a cylindrical con-
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tainer heated from below, the heat tranfer rate is smaller
than that of a Newtonian fluid. When investigating natural
convection with heat sources, Hsu et al. (163) found that a
change of spin boundary conditions changes the heat trans-
fer of the convective layer. For an electric conducting fluid
under an external magnetic field, Rao (164) and Siddhesh-
war and Pranesh (165) found that the micropolar fluid is
more stable than the Newtonian one under the same condi-
tions. However, Rao (164) has shown that it is also pos-
sible to destabilized this system when the temperature
gradient is not adverse (that is, heated from above).

The stability is important when the fluid has a main
flow. For example, for the linear stability of a micropolar
fluid flowing between two parallel walls, Kuemmerer
(166) concluded that the spin has a destabilizing effect.
The nonlinear stability of a fluid layer flowing down an
inclined plane was investigated by Hung et al. (167). Their
general conclusion is that the spin effects are stabilizing.
Hung and Tsai (168) investigated the influence of the spin
on the rupture of a micropolar fluid on a horizontal wall
and found that the microstructure stabilizes by delaying
the rupture of the film.

Spin Boundary Conditions

In some papers reviewed above, the problem of the spin
boundary conditions at a solid wall were discussed. This
problem was taken as the main subject of research by
some authors. Tozeren and Skalak (169) posed this ques-
tion from the point of view of a suspension of spherical
particles. An analysis of different boundary conditions
was made by Migun (170) who also proposed a boundary

condition that depends on experimental parameters. Be- .

cause there is no experimental evidence of the correct
boundary condition, in general, some authors feel safe
using in their theoretical calculations a condition that con-
nects the spin with the vorticity by means of a linear pro-
portionality constant, as done by Hsu et al. (163) for nat-
ural convection and by Hogan and Henriksen (171) for
numerical analysis of flow through a constricted tube. The
problem is that this constant increases the number of
parameters in calculations of flow of micropolar fluids,
which was already large. Experimental research is needed
to solve this problem.

Fundamental and Applied Experiménts

Some authors have developed experiments to obtain the
magnitudes of the coefficients of micropolar fluids. For
example, Ebert (172) measured three constants and
showed that they can be determined by means of the geom-
etry variation of the measuring apparatus. Fodemski and



Hydrodynamic Behavior of Suspensions of Polar Particles

Morawski (173) subjected water, ethyl alcohol, and nitro-
benzen, to a rotating electric field to calculate the corres-
ponding spin viscosity and the internal volume torque.

Viscometric and thermal measurements were done by Kol-

pashchikov et al. (174) to obtain two characteristic param-
eters of micropolar fluids. They also give formulas for the
value of the linear proportionality constant of the bound-
ary condition, which relates the spin with the vorticity at
the solid boundary. Besides, the micropolar fluids theory
is used for experimental capillary penetrant testing by
Prokhorenko et al. (175). The micropolar theory has
been checked experimentally for fluid behavior in mic-
romachined channels by Papautsky et al. (176). They
showed that the micropolar theory predicts expenmenta]
data better than the Newtonian one.

MAGNETIC FLUIDS: APPLICATIONS
AND EXPERIMENTS

The magnetic fluids have interesting applications, and,
therefore, many experiments have been developed in order
to characterize their response to magnetic fields under
different conditions, isothermal or nonisothermal, with
increase or decrease of particle concentration, etc. In what
follows, some experiments on magnetic fluids are dis-
cussed, and later some applications are presented. -

General reviews of magnetic fluids appear in the books
by Rosensweig (32), Bashtovoy et al. (177), Berkovsky et
al. (178), Berkovskii and Bashtovoy (179), and Blums et
al. (180). Discussions ranging from the fundamental con-
cepts, flow problems, and applications may be found in
those references.

Aggregation

One problem in magnetic fluids is that of the aggregation
of particles, and it has been the subject of experiments
(181, 182). Aggregation in pipe flow has been investigated
by Kamiyama and Satoh (183). Zubko et al. (184) inves-
tigated magnetic suspensions under oscillating electric
fields.

Pattern Formation

Interfacial instabilities were found very early, were inves-
tigated by Cowley and Rosensweig (185), and were in-
cluded in the more general area of pattern formation by
Tsebers and Blums (186). Interesting patterns were found
in a two-layer system made by a magnetic fluid over a
nonmagnetic one by Petit et al. (187). Interfacial patterns
were investigated by Okubo et al. (188) when an alternat-
ing magnetic field is applied. Boudovis et al. (189) inves-
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tigated axisymmetric shapes of sessile diops under a mag-

netic field.

Rotating Magnetic Fleld

The spin-up of a magnetic fluid in the presence of a rotat-
ing magnetic field has been the subject of different ex-

periments made to confirm the theory and to find new

mechanisms of flow (190-192). When small nonmagnetic

spheres are confined in thin magnetic fluid layers and the
magnetic field rotates, it has been shown by Helgesen and

Skjeltorp (193) that the spheres rotate in the opposite

direction as the field but without translation. The bending
of drops in the rotating magnetic field was investigated by

Lacis (194).

Viscosity and Negative Viscosity

An interesting theoretical result has been corroborated ex-
perimentally, that is, the appearance of a negative viscosity |
when an alternating magnetic field is applied to a flow.

Shliomis and Morozov (195) found this phenomenon theo-
retically, and Bacri et al. (196) obtained the experimental
results (see also Ref. 197). It has been shown by Shliomis
and Kamiyama (198) that a nonuniform magnetic field
causes an inhomogeneous distribution of magnetic parti-
cles even in oscillatory flow. Besides, Larrondo and van de
Ven (199) concluded that magnetic suspensions present
viscoelastic properties ‘under an oscillating shear and a
magnetic field. The viscosity of magnetic suspensions was
investigated by Choi et al. (200) as a function of concen-
tration and shear rate.

Flow Instability

The problem of stability of flow has been the subject of
intensive research due to the difficulty of controlling the
flow in potential applications. Therefore, experiments of
fundamental character have been done in this area. Ber-
kovsky and Bashtovoi (201) discuss the rupture of drops,
layers, and cylinders. Besides, Rothert and Richter (202)
investigate the rupture of a liquid bridge. When a fluid
layer is heated from below, natural convection patterns
appear whose form depends on the field strength and
boundary condmons as shown experimentally by Schwab
et al. (203-205). In' contrast with a Newtonian fluid, fer-
rofluids in natural convection have the magnetic Rayleigh
number (apart from the usual one) whose influence alone
was investigated in microgravity experiments by Oden-
bach (206). Another fundamental problem is that of Tay-
lor-Couette flow investigated by Odenbach and Gilly
(207) under an azimuthal magnetic field who used their
results to obtain the rotational viscosity as a function of the
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magnetic field strength. Recently, two methods for the
measurement of the velocity profile have been proposed.
One is the ultrasonic Doppler method by Kikura et al.
(208), and the other one is small-angle neutron scattering
by Odenbach et al. (209).

Magnetic Susceptibility

An important investigation is that related with the exper-
imental calculation of the magnetic susceptibility of a
magnetic colloidal suspension. The experiments are made
for particular kinds of suspended particles. Experiments
have been done for manganese compounds (210, 211),
ferrite particles (212), magnetite particles (213), cobalt
particles (214, 215), and iron-oxide (211, 216). In some
experiments, Néel relaxation has been detected (217-220).
It is also of interest to check the dependence of suscep-
tibility on temperature and concentration, like, for exam-
ple, in the case of magnetite (221).

Magnetic Fluids Applications

The increasing theoretical development of magnetic fluids
is due to the potential they have for applications. Ber-
kovsky et al. (222) have proposed the use of magnetic fluid
coatings in different hydrodynamic' systems to control
flow separation, drag, and heat transfer. Applications to
loudspeaker drivers, to inspection of internal passages,
to instrument damping, and to accelerometers were ex-
plained by Bailey (223). Other uses are in seals, journal
bearings, magnetogravimetric separators, and to transdu-
cers, as discussed by Anton et al. (224). Charles (225) re-
views other uses, such as magnetic inks and to produce
magneto-optic effects in the microwave region like bire-
fringence and dichroism. As lubricants, they have other
applications as supports and dampers (178). Applications
to engineering reach areas like energy conversion systems
(226), shock absorbers (227), inertial sensors (228), and
brakes (229). In biomedicine, they have been applied to
hyperthermia for the treatment of cancer by Jordan et al.
(230) and to the treatment of other related problems by
Hiergeist et al. (231). More information on applications is
found in chapters 4 and 5 of Ref. 179 and in chapters 4,5,
and 6 of Ref. 178.

FUTURE OF SUSPENSIONS

The attraction of suspensions has increased in recent years
due to the important applications they have, not only in
industry, but also in everyday life. The fascination of this
subject has spread in such a way that today more scientists
are working theoretically and experimentally in all the
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classic areas and in the new ones. Many scientists are in-
vestigating the so-called ‘‘intelligent’’ fluids of which new
properties are found constantly. The frequency of confe-
rences on electro- and magneto-rheological fluids has in-
creased to almost one a year, and they are held in different
geographical regions. This is proof that the fever to find
new properties and possibilities for colloidal suspensions
is increasing all over the world. The science of colloidal
suspensions is far from being exhausted, and a large num-
ber of fundamental details are still waiting for an expla-
nation and to be assigned a practical application, apart
from the many more that are waiting to be discovered.
However, from the basic point of view, several prob-
lems are still open and are of particular interest. For exam-
ple, they are the spin boundary conditions at a wall and at
an interface, the nonhomogeneous stress distribution-in-
duced diffusion, the nonlinear relation between the inter-
nal rotation of a polar fluid and hydrodynamics for high
and low shear rate limits, and dispersion effects in com-
pressible and concentrated colloidal dispersions.
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