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Instability of a thin film flowing on a rotating horizontal or inclined plane

L. A. Dávalos-Orozco
Instituto de Investigaciones en Materiales, Universidad Nacional Auto´noma de Me´xico, Ciudad Universitaria, Apartado Postal 70-360,

Delegación Coyoca´n, 04510 Me´xico Distrito Federal, Mexico

F. H. Busse
Physikalisches Institut, Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 20 August 2001; published 25 January 2002!

In this paper the instability of a thin fluid film flowing under the effects of gravity, Coriolis, and centrifugal
forces is investigated. It is supposed that the film flows far from the axis of rotation on a plane which may be
horizontal or inclined with respect to the horizontal. In the former case, the flow is only driven by the
centrifugal force while in the latter case, the flow is driven by the components of centrifugal force and gravity
along the plane. This case may also be considered as the flow down a rotating cone but far from the apex. The
stabilizing influence of rotation on the film flow increases with the rotation rate. Up to a certain critical rate of
rotation, the film flowing down the rotating inclined plane~or cone! is more stable than the flow on the
horizontal rotating plane while above this rate of rotation the situation is reversed. The instability above the
critical rate is associated with a finite wave number in contrast to the vanishing wave number of the instability
below the critical rate. The possibility of Ekman layer instabilities is also investigated. An equation describing
the nonlinear evolution of surface waves is also obtained. Moreover, this equation is simplified for the case in
which the amplitudes are very small. An equation including dissipation as well as dispersion is derived whose
solutions may possess solitary waves, as in the case of similar equations considered in the literature. These
solutions are likely to correspond to the solitary spiral waves observed in experiments.

DOI: 10.1103/PhysRevE.65.026312 PACS number~s!: 47.15.Fe, 47.20.2k, 47.32.2y, 47.35.1i
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I. INTRODUCTION

The instability of fluid layers coating a surface is a pro
lem of concern in many industrial applications where t
finishing should be smooth. Therefore, this problem has b
investigated for many years in order to understand the
havior of thin liquid films in motion. Benjamin@1# investi-
gated theoretically the linear instability of a thin film flowin
down an incline. The presentation of his results was sim
fied by Yih @2#, who also considered separately the limit
small wave numbers and small Reynolds numbers. An eq
tion for waves of finite amplitude with the small wave num
ber approximation was derived by Benney@3#. This equation
is highly nonlinear and has been reduced, by means
the small amplitude approximation, to the Kuramot
Sivashinsky equation@4,5#.

The possibility of propagation of solitary waves on th
films down an inclined plane was first confirmed theore
cally by Pumiret al. @6# by means of the Benney equatio
Later, using the reference frame moving with the solita
wave, Nakaya@7# solved the stationary Benney equation a
boundary value problem. He proposed a selection rule
determine which kind of solitary wave really appears.

Numerical analysis of the Benney equation by means
Fourier spectral methods has been done in two dimens
by Jooet al. @8# and in three dimensions by Joo and Dav
@9#. Finite differences were used by Da´valos-Orozcoet al.
@10# to obtain a solution of the Benney equation which
cludes an extra term of an external perturbation equivalen
a local sinusoidal pressure fluctuation.

Numerous experiments on films flowing down incline
planes have been performed in recent years. Liu and Go
1063-651X/2002/65~2!/026312~10!/$20.00 65 0263
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@11# investigated the transition to turbulence and later~Liu
and Gollub@12#! studied the appearance and interaction
solitary waves. Three-dimensional waves and their evolut
towards solitary waves were investigated by Liuet al. @13#.

The flow on a rotating horizontal disk has been inves
gated by several authors. Depending on whether the flui
injected from above or below the rotating disk, different th
oretical and experimental results have been obtained. C
wat et al. @14# have measured the thickness and stability
the thin film on a horizontal disk rotating about its vertic
axis and compared their results with an asymptotic soluti
Their experiments showed circular and spiral waves bes
irregular waves. From their linear analysis they obtained
result that disturbances propagating at an angle with res
to the radial direction are most unstable. They found agr
ment with the measured angle of the spiral waves in th
experiment. Rauscheret al. @15# presented asymptotic solu
tions for the thin film including various effects like surfac
curvature and surface tension. Needham and Merkin@16#
developed a theory for the nonlinear description of localiz
disturbances on a steady film. They were interested in
trance effects and they used matched asymptotic expans
They also discussed the conditions for the instability of
film. Experiments have also been done by Azuma a
Nunobe @17# who were concerned with the dependen
of the stability on the input flow rate and on the height abo
the rotating disk of the discharging circular tube. They o
served persistent perturbations presumably generated
the tube. Similar experiments have been done more rece
by Leneweitet al. @18#. Supposing that the entrance acts a
periodic wave generator they present, systematically for v
ous flow rates, results obtained through varying the heigh
the tube nozzle above the disk.
©2002 The American Physical Society12-1
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The instability of a thin film resulting from a combinatio
of inclination and rotation was first investigated by Da´valos-
Orozco and Ruiz-Chavarrı´a @19#. They assumed a fluid flow
ing down a rotating inclined plane close to the axis of ro
tion, in order to neglect centrifugal effects. The line
instability of the film was described in the limit of sma
wave numbers and small Reynolds numbers. A stabiliz
effect of the Coriolis force was found.

In the case of a rotating inclined plane, the centrifug
force can be introduced in the same way as done by H
mann and Busse@20# for the problem of flow inside two
parallel coaxial rotating cones. It is supposed that the flow
investigated in a region very far from the apices and that
cones can be approximated as plane and parallel plates
rotation vector thus makes an angleg with respect to the
normal of the plates. This procedure is applied in the pres
paper. The mathematical formulation of the problem and
basic flow are presented in Sec. II. After the linear instabi
is discussed in Sec. III, the Ekman layer instability is inve
tigated in Sec. IV. The nonlinear problem is studied in Sec
and a nonlinear evolution equation of the Benney type
derived to describe the thin film surface deformation
small rotation parameter. The paper ends with the con
sions in Sec. VI.

II. DESCRIPTION OF THE SYSTEM AND EQUATIONS
OF MOTION

The system under investigation is a thin film flowin
down a plane which is inclined with an angleg with respect
to the horizontal and rotating about a vertical axis as sho
in Fig. 1. The origin of the coordinate system is fixed at t
unperturbed free surface of the film with thex and y axes
parallel to the surface and thez axis perpendicular to it. In
the absence of rotation the basic flow is parallel to thex axis.
The angular velocity vectorVW has the componentsVx5

2uVW using and Vz5uVW ucosg. The acceleration of gravity
has thex andz componentsg sing andg cosg. In this sense,
the problem can be regarded as an approximation for a
film flowing down a rotating cone at a position sufficient
far from the apex. For a vanishing angle of inclinationg the
limit of a rotating horizontal plane is obtained.

FIG. 1. Sketch of the geometrical configuration for the fluid fi
down a rotating inclined rigid plane or cone. The rotating horizon
disk is obtained wheng50°.
02631
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The motion is described by the Navier-Stokes and co
nuity equations for an incompressible fluid in a system
coordinates fixed to the rotating plane. They are

rF]uW

]t
1uW •¹W uW 12VW 3uW 1VW 3~VW 3rW !G

52¹W p1rgW 1rn¹2uW , ~1!

¹W •uW 50, ~2!

wherer is the density,uW 5(u,v,w) is the velocity vector,p is
the pressure, andn is the kinematic viscosity. The Coriolis
acceleration has three components,

2VW 3uW 52uVW u~2v cosg,u cosg,2v sing!, ~3!

while the centrifugal force is given by

VW 3VW 3rW052r 0uVW u2~cosg,0,sing!, ~4!

where r̄ 05x0 cosg1z0 sing. For simplicity we restrict the
attention to anglesg in the interval 0<g<90° correspond-
ing to a positive sense of rotation.

Centrifugal force and gravity can be combined into
effective gravity vector

gW e5Ag21 r̄ 0
2uVW u4 ~sinĝ,0,cosĝ ! ~5!

with

sinĝ5
g sing1 r̄ 0uVW u2 cosg

Ag21 r̄ 0
2uVW u4

,

cosĝ5
g cosg2 r̄ 0uVW u2 sing

Ag21 r̄ 0
2uVW u4

. ~6!

The thus defined angleĝ describes the direction ofgW e in the
x,z plane. In order to avoid separation of the film from th
planeĝ,90°, i.e., tang,g/r̄0uVW u2 must be required.

Assumingd, d2/n, n/d, andr(n/d)2, as scales for length
time, velocity, and pressure, respectively, we write the eq
tions of motion in dimensionless form,

]u

]t
1uW •¹W u22x2v52

]p

]x
1¹2u1Re, ~7!

]v
]t

1uW •¹W v12x2~w tang1u!52
]p

]y
1¹2v, ~8!

]w

]t
1uW •¹W w22x2v tang52

]p

]z
1¹2w2Re cotĝ, ~9!

¹W •uW 50, ~10!

l
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INSTABILITY OF A THIN FILM FLOWING ON A . . . PHYSICAL REVIEW E 65 026312
where Re and x2 are defined by Re

5Ag2 1 r̄ 0
2uVW u4sinĝd3/n2 andx25V cosg with the rotation

parameter given byV5uVW ud2/n. The boundary condition a
the rigid lower plane is given by

uW 50 at z521. ~11!

At z5H, whereH is the deviation fromz50 of the free
surface, the normal and the tangential stresses are

2p1F]u

]x
Hx

21
]v
]y

Hy
21S ]u

]y
1

]v
]xDHxHy2S ]v

]z
1

]w

]y DHy

2S ]u

]z
1

]w

]x DHx1
]w

]z G~11Hx
21Hy

2!21

5S@~11Hy
2!Hxx1~11Hx

2!Hyy

22HxHyHxy#~11Hx
21Hy

2!23/2, ~12!

S ]w

]z
2

]u

]xDHx2
1

2 S ]u

]y
1

]v
]xDHy1

1

2 S ]u

]z
1

]w

]x D ~12Hx
2!

2
1

2 S ]w

]y
1

]v
]zDHxHy50, ~13!

S ]w

]z
2

]v
]y DHy2

1

2 S ]u

]y
1

]v
]xDHx2

1

2 S ]u

]z
1

]w

]x DHxHy

1
1

2 S ]v
]z

1
]w

]y D ~12Hy
2!50, ~14!

whereS is the capillary number,S5sd/rn2, with the sur-
face tensions. The distortionH must satisfy the kinematic
boundary condition

w5
]H

]t
1uHx1vHy . ~15!

whereHx and Hy indicate partial derivative ofH with re-
spect tox andy.

The solutions for the basic flow are given by thex,y, and
t independent solutionsu5U, v5V of Eqs.~7!–~10! which
can be written in the complex formF5U1 iV,

F5U1 iV5 iGS cosh~11 i !xz

cosh~11 i !x
21D , ~16!

where G5Re/2x2. The nondimensional flow rateQ
5*21

0 Udz is

Q5
G

2x

sinhx coshx2sinx cosx

cosh2 x2sin2 x
. ~17!

Note that it is proportional to the Reynolds number, but d
pends in a complex way on rotation. In fact, in the limit
x→0, Q→Re(1/3268x4/315). The pressureP is obtained
through integration of Eq.~9!. Some graphs ofU andV for
different values ofx can be found in the paper by Da´valos-
Orozco and Ruiz-Chavarrı´a @19#.
02631
-

III. LINEAR STABILITY ANALYSIS

In this section the stability of the basic flow Eq.~16! is
investigated with respect to infinitesimal perturbations. F
this purpose, the linearized versions of Eqs.~7! to ~15! are
solved with a shooting method@21#. The perturbation of the
velocity vector is introduced through the general represe

tion for a solenoidal fielduW 5¹W 3¹W ( k̂f)1¹W 3( k̂c) wherek̂
is the unit vector in thez direction. The potentialsf andc
have a representation in normal modes of the fo
f (z)exp@ia(xcos«2ysin«2ct)# where « is the angle of
propagation of the perturbation with respect to thex direc-
tion. Since we use a right-handed coordinate system with
x coordinate in the radial direction the fluid film has a neg
tive component of velocityV in they direction and a positive
angle« must be expected in general.

Critical Reynolds numbers for instability as a function
the rotation parameter have been computed for selected
ues ofĝ, g, andS. The corresponding critical values of th
wave number, the phase velocity, and the angle« can be used
to infer some typical properties of the instabilities.

As is evident from the variation of Re withV in Figs.
2~a!, 3~a!, and 4~a!, rotation strongly inhibits the onset o
instability. For low values ofV the instability occurs in the
form of long wavelength waves in the same way as in
nonrotating inclined layer where the critical wave numb
also vanishes. The angle« increases from zero withV as
shown in Figs. 2~b!, 3~b!, and 4~b!. The long-wave instability
is replaced by an instability with finite values of the wa
number a when V exceeds a certain critical value whic
increases with the parameterĝ. This change in the characte
of the instability is also reflected in Re,«, andc, as shown in
the figures. It is of interest to see that the flow down a rot
ing inclined plane is slightly more stable than that on a ho
zontal plane in the case of the long wavelength instabil
The reverse is found for the finite wave number instabilit

Typical results for the functionsf andc are shown in Fig.
5. The form of the function does not change much withg and
only representative examples have been plotted to exhibit
dependence onV. In the small wave number limit the am
plitudes off and c can be chosen such that the imagina
parts vanish. In the small wave number approximation
amplitude ofc increases withV relative to the amplitude of
f. As the mode with a finite critical wave number becom
preferred the form of the functionsf andc changes and the
uy component of the disturbance velocity shifts in phase
nearly 90° relative to theux component owing to the high
value of the frequency of oscillation. The typical form of th
functionsf andc at a high value ofV is shown in the third
plot of the figure. The fourth plot shows the dependence oz
of f andc in the case of the Ekman layer instability.

For small wave numbersa andx the results agree with the
analytical expressions obtained by Charwatet al. @14# for a
rotating horizontal plane. Using the linearized version of t
nonlinear equation derived in Sec. V we present here ana
cal stability results for arbitraryg assuming a surface defor
mation of the formH5H0 exp@ia(xcos«2ysin«2ct)1Gt#.
In this way we obtain from the nonlinear Eq.~31! in the
small wave number and smallx approximation the following
2-3
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nondimensional phase velocityc and growth rateG:

c5Re~cos«1 4
3 x2 sin«!1 8

45 x2a2Re sin«, ~18!

FIG. 2. ~a! The critical Reynolds number Re~solid curves, left
ordinate! and the critical wave numbera ~starred curve, right ordi-
nate! as a function of the rotation parameterV in the case ofĝ
530°, S5500. The critical wave numbera vanishes forV&1.75
where the mode of instability changes. In order to indicate
crossing more clearly the Reynolds number and other prope
have been extended by dashed lines here and in the following
ures into the region where the mode is no longer critical. The up
~lower! curve of Re corresponds tog520° ~0°! for V&1.75. For
V*1.75 the upper~lower! curve of Re as well as ofa corresponds
to g50° ~20°!. ~b! The angle« ~solid curves! and the plane ve-
locity c ~starred curve! for the same cases as in~a!. The upper
~lower! curves correspond tog50° ~20°! in the case of« and to
g520° ~0°! in the case ofc.
02631
G5a2@ 2
15 Re2 cos2 «2 1

3 Re cotĝ2 1
3 Sa2

1x2 sin« cos«~ 4
7 Re22 3

20 Re tang!#. ~19!

The last term of Eq.~18! arises from the first order in the
expansion and is a dispersion contribution to the phase
locity due to the presence of rotation.

The angle« of maximum growth is given by

tan 2«5x2S 30

7
2

9

8

tang

Re D ~20!

e
es
g-
er

FIG. 3. ~a! Same as Fig. 2~a! except thatĝ550° has been used
The upper and lower curves of Re correspond tog540° for V
&2.25 and tog50° for V&2.5, respectively. ForV*2.5 the up-
per curve of Re as well as ofa corresponds tog50° and forV
*2.25 the lower curve of Re as well as ofa corresponds tog
540°.~b! Same as Fig. 2~b! except thatĝ550° has been used. Th
upper~lower! curves correspond tog50° ~40°! in the case of« and
to g540° ~0°! in the case ofc.
2-4
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INSTABILITY OF A THIN FILM FLOWING ON A . . . PHYSICAL REVIEW E 65 026312
which depends on Re andg.
The general expression for the critical Reynolds num

at whichG vanishes is rather complex and will not be giv
here@see Eq.~37!#. Instead we shall discuss particular cas

For S50 or for a very small, the critical Reynolds num
ber is

Rec5

1
3 cotĝ1 3

20 x2 tang sin« cos«

2
15 cos2«1 4

7 x2 sin« cos«
. ~21!

FIG. 4. ~a! Same as Fig. 2~a! except thatĝ587° andS52500
has been used. The upper and lower curves of Re correspondg
540° for V&3 and tog50° for V&4, respectively. ForV*4 the
upper curve of Re as well as ofa corresponds tog50° and for
V*3 the lower curve of Re as well as ofa corresponds tog
540°. ~b! Same as Fig. 2~b! except thatĝ587° andS52500 has
been used. The upper~lower! curves correspond tog50° ~40°! in
the case of« and tog540° ~0°! in the case ofc. Note that« for
g540 remains negative up toV&0.12.
02631
r

.

If in addition g50, the angle of propagation minimizin
Rec is

tan 2«5
30

7
x2 ~22!

as found by Charwatet al. @14#. However, whengÞ0, the
minimum is given by

tan 2«5q2q1A11tan2 2« ~23!

whose solution is

FIG. 5. Graphs of the functionsf andc with respect toz along
the thickness of the fluid layer. The solid curves are the real par
f and the dashed ones are the real part ofc. The starred curves
~solid and dashed! correspond to the imaginary parts. The first fi
ure is forV51.75, Rec554.48,«5143.7,c59.788,G516.56,a
→0; the second is forV52, Rec572.36, «5103.55,c527.22,
G519.25, a50.3446; and the third is for V520, Rec
510 427.68, «5223.6, c5222.81, G5277.42, a50.2863. All
three figures are forg520°, ĝ530°, S5500. The fourth figure is
for g50°, ĝ530°, S5500 000 and hasV57.5, Rec53095.08,
«515.97, c589.01, a50.965. This one presents profiles corr
sponding to the Ekman boundary layer which destabilizes at a s
angle«.
2-5
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tan 2«5
q2q1A11q22q1

2

12q1
2 ~24!

with q159x2 tang tanĝ/40 andq530x2/72q1 .
Expression~24! reduces to Eq.~22! in the limit g→0. The

condition that the radicand in expression~24! remains posi-
tive

tanĝ,
11~ 30

7 x2!2

9
20 x2 tang~ 30

7 x2!
~25!

yields an upper bound for the angleĝ.
Though usually positive angles« are found at finite rota-

tion rates, it is possible to find the onset of disturbances w
«,0 as shown in Fig. 4~b!. Accordingly to expression~24!
positive angles« are obtained for

tanĝ,
200

21 tang
. ~26!

For example, in the caseĝ587°, g,26.52° is required
for positive «, while « becomes negative for larger inclina
tions. The reason for the appearance of negative angles p
ably can be explained as done by Da´valos-Orozco and Ruiz
Chavarrı´a @19# for the case of a rotating vertical plane und
slow rotation.

The parameter valuesĝ587° andS52500 in Fig. 4 have
been chosen since they are close to those of the experim
by Leneweitet al. @18# at large distances from the rotatio
axis. The critical Reynolds number is shown in Fig. 4~a!.
Note that the differences in stability between the inclined a
horizontal plane are more marked than in the other figur

IV. EKMAN BOUNDARY LAYER INSTABILITY

Besides the instabilities which depend on distortion of
free surface of the film there are other instabilities wh
occur also in the absence of free surface. The analog of
Tollmien-Schlichting-type instability in channel flow ca
usually be neglected since it occurs at rather high Reyn
numbers. But shear flows in rotating systems typically
hibit Ekman layer instabilities which could be relevant sin
their critical Reynolds numbers are usually lower. An attem
has thus been made to find Ekman layer instabilities in ca
of high surface tension when a distortion of the surface
strongly inhibited for finite wave numbersa. Using S55
3105, g50, ĝ530 we found the following results:

V52.5, Gc5426.5, «5216.9°, a50.945 c566.4,

V55, Gc5240.4, «54.1°, a50.966, c574.2,

V57.5, Gc5206.4, «516.0°, a50.965, c589.0,

whereG is defined below Eq.~16!. These results agree quit
well with those of Gusev and Bark@22# ~see also Ref.@23#!
who have determined the onset of Ekman instability of ty
II or A in a channel flow in a system rotating about an a
normal to the wall. We have usedG here instead of the
02631
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Reynolds number Re defined below Eq.~9! sinceG corre-
sponds to the Reynolds number used by Gusev and B
The Reynolds number for the onset of the surface instab
is still lower and the critical valuesGc577.7, 99.2, and
120.7 atV52.5, 5, and 7.5, respectively, are attained
much lower values ofa for S553105. But since the two
instabilities do not interfere much with each other, they m
eventually be observed simultaneously.

V. NONLINEAR WAVE EQUATION

In this section a nonlinear wave equation for the surfa
deformation is derived. To reach that goal, it is necessar
rescale Eqs.~7! to ~15! in a way convenient for the sma
wave number and the smallx approximation. Letd be a
small parameter@10# which is proportional to the ratio of the
thin film thicknessd and a representative disturbance wav
length l 0 , that is,d;d/ l 0 . By means ofd the independent
variables are scaled asx5dx8, y5dy8, z5z8, and t5dt8.
Note that in this calculation the solid plane will be suppos
located atz50 and the free surface atz5h, whereh51
1H.

The dependent variables are expanded@14# with respect to
the two parametersd andx

u5u001du101x2u011dx2u111¯ , ~28!

with analogous expansions forv, d21w, andp.
In this way, following the procedure@3,2,8,9,10# for the

derivation of the Benney equation, an equation describ
three-dimensional waves is obtained,

ht1Re~h2hx2 4
3 x2h4hy!1d$ 2

15 Re2~h6hx!x

2 1
3 ¹W •@Re cotĝh3¹W h2Sh3¹W ~¹2h!#%1dx2

3@2~ 4
7 Re2h8hx2 3

20 Re tangh5hx!y1Re¹W •~ 5
6 h5hy¹W h

1 8
45 h6¹W hy!2 4

3 Sh4~hy¹
2hx2hx¹

2hy!#

50, ~29!

where S5Sd2. Besides, ¹W 5(]/]x ,]/]y), ¹25]2/]x2

1]2/]y2 and subindexest, x, andy indicate partial deriva-
tives. This equation reduces to that obtained by Roskes@24#
~note the different nondimensional parameters! and by Joo
and Davis@9# whenx250.

Now, a rotation by the angle« of the coordinate system i
done

x85x cos«2y sin«,

y85x sin«1y cos«, ~30!

such that the disturbances depend onx8 but no longer ony8.
Accordingly, the equation for the surface deformati

transforms into
2-6
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ht1
]

]x
$R~ 1

3 h3 cos«1 4
15 x2h5 sin«!1d@ 2

15 Re2 cos2 «h6hx

2 1
3 ~R cotĝh3hx2Sh3hxxx!#

1x2d @sin« cos«~ 4
7 R2h8hx2 3

20 Re tangh5hx!

2Re sin«~ 5
6 h5hx

21 8
45 h6hxx!#%50, ~31!

where the primes have been omitted in order to simplify
notation. Obviously this equation has the form of a ma
conservation equation:

ht1Qx50, ~32!

whereQ represents the terms inside the curly brackets.
The linearization of Eq.~31! leads to the results of Eqs

~18! and ~19! presented in Sec. III when use is made
normal modes which are assumed such thatdhx and d21ht
are replaced byiah and (2 iac1G)h, respectively. Note tha
the last term of Eq.~31! is the dispersion term which corre
sponds to the last one of the phase velocity in Eq.~18!.

Assuming spatial periodicity with a wave numbera the
solution of Eq.~31! can be analyzed in the form

h511(
m

@Am~ t !exp$ i m a x%1c.c.#, ~33!
n
s

g
E

is
m
f

02631
e
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where c.c. means complex conjugate and the complex am
tudes Am(t) can be written in the form Am(t)
5uAm(t)u exp$ium%. Restricting the attention to just two o
these amplitudes@25# we obtain

duA1u
dt

52C1r uA1u2C2r uA1u32~C3r cosD1

2C3i sinD1!uA1uuA2u, ~34!

duA2u
dt

52C5r uA2u2~C4r cosD11C4i sinD1!uA1u2,

~35!

dD1

dt
526B92~C4i cosD12C4r sinD1!

uA1u2

uA2u
, ~36!

whereD15u222u1 and the subscriptsr and i refer to the
real and imaginary parts of the coefficients, respectively. T
coefficientsCm (m51,...,5) andB9 are given in the Appen-
dix.

The purpose of these coupled nonlinear amplitude eq
tions is twofold. First they allow us to determine the satu
tion of the amplitudeA1 of the wave in dependence of th
Reynolds number Re. For a given value of the wave num
a the growth rate is negative for low values of Re. Wi
increasing Re the growth rate vanishes when the relation
ac5A3/SARe2~ 2
15 cos2 «1 4

7 x2 sin« cos«!2Re~ 1
3 cotĝ1 3

20 x2 tang sin« cos«! ~37!

is satisfied and it becomes positive for higher values of Re. This relation describes the curve of criticality in a plot ofac against
Re. Below the curve of criticality the wave grows until saturation is attained. In this case, steady equilibria with

uA1u25
C1rC5r

~C3r cosD12C3i sinD1!~C7r cosD11C7i sinD1!2C2rC5r
, ~38!
a-

e

the
d.

st
uA2u52~C7r cosD11C7i sinD1!A1
2/C5r , ~39!

tanD15
26B9C7r1C5rC7i

C5rC7r16B9C7i
~40!

are possible according to the vanishing of the right-ha
sides of Eqs.~34!, ~35!, and~36!. Note that these equation
are only meaningful as long asuA2u!uA1u2 is satisfied since
otherwise the amplitudes of higher harmonics can no lon
be neglected. This condition has actually been used in
~35! in order to neglect terms of higher order.

The expression left on the right-hand side of Eq.~38!
without C5r was analyzed numerically. It was found that it
positive in a range of Reynolds numbers not too far fro
criticality. Therefore,C5r should be positive and the curve o
d

er
q.

subcriticality is determined by the locus of the points in p
rameter space whereC5r changes sign. In a plot ofas against
Re, whereas is the wave number of subcriticality, the wav
does not saturate in the above approximation fora,as for a
fixed Re or for Reynolds numbers larger than those of
curve of subcriticality when the wave number is fixe
Crossing the curve of subcriticalityC5r becomes negative. In
this way, the approximate curve of subcriticality for the fir
two Fourier modes is defined byC5r50 or by

as5
1
2 ac , ~41!

which reduces to that of Gjevik@25# whenV50. Note that
C1r is the negative of the growth rate and thatC5r is the
2-7
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negative of the constantb2r used by Gjevic. It is importan
to point out that condition Eq.~41! does not restrict, in the
small region betweenac andas , the evolution of the waves
described by Eq.~31!. In fact, in the case ofV50, it has
been shown by Da´valos-Orozcoet al. @10# through the use of
finite differences and by Jooet al. @8,26# with Fourier spec-
tral methods that saturation may be found still far away fr
the curve of subcriticality. However, Eq.~41! gives an ap-
proximation to the limitations of the theory. Besides, it gu
antees that saturation occurs in the area belowac and above
as .

The second purpose of Eqs.~34!–~36! is to show that the
linearized version of Eq.~34! contains the growth rate2C1r
and that the imaginary part ofC1 equalsac as given in Eq.
~18!.

When the small wave amplitude assumption is introduc

Ht1clHx1cnHHx1db1Hxx2db2Hxxx1db3Hxxxx50
~42!

is obtained from Eq.~31!, where

cl5Re~cos«1 4
3 x2 sin«!, cn52Re~cos«1 8

3 x2 sin«!,
~43!

b15 2
15 Re2 cos2 «2 1

3 Re cotĝ1x2 sin« cos«~ 4
7 Re2

2 3
20 Re tang!, ~44!

b25 8
15 x2Re sin«, b35 1

3 S ~45!

have been used. This equation reduces to the Kuram
Sivashinsky equation@4,5# for b250. The equation with a
positive dispersion term has been shown by Kudriashov
Zargaryan@27#, Fan @28# and others to admit exact solitar
wave solutions. Fan@28# also has shown that it admits sol
tary wave solutions when the sign of dispersion is negat
as in the present case. A complete numerical investigatio
the properties of Eq.~42! for positive or negative dispersio
term has been done by Changet al. @29#. In that paper, the
branches for the appearance of solitary waves are inv
gated and the shapes of the waves corresponding to ea
the different branches are presented.

Assuming, that the spiral waves shown in the photogra
of Leneweitet al. @18# are solitary waves we can calcula
the phase velocity based on Fig. 3 of Changet al. @29#. To
use the results of Changet al. @29#, it is necessary to firs
transform Eq.~42! to a one parameter equation. By means
H5(z2cl)/cn the amplitude is transformed, wherecnÞ0, in
order to obtain

z t1zzx1db1zxx2db2zxxx1db3zxxxx50. ~46!

Further, this equation is transformed into a system wh
the wave is stationary,]/]t→]/]t2b]/]x, whereb is the
velocity of that system. Then, the following stretched va
ables:z5db1Ab1 /b3j, x5Ab3 /b1x8, t5(b3 /db1

2)t8, s̄
5b2 /Ab1b3, and c̄5b/Ad2b1

3/b3 are introduced, yielding

2 c̄1jjx81jx8x82s̄jx8x8x81jx8x8x8x850 ~47!
02631
-
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as the final equation. The parametersc̄ and s̄ correspond to
the velocityl and parameter2d in Fig. 3 of Changet al.
@29#. In the case of the experiments@18# the parameters̄ is
very small. However, according to its definition and Eq.~44!,
s̄ increases when the Reynolds number approaches crit
ity in the absence of surface tension@see Eq.~21!#. Since
solitary waves do not occur fors̄ larger than a value aroun
0.4 ~in the case of branchb in Fig. 3 of Changet al. @29#!,
we conclude that solitary waves are possible only for re
tively large Reynolds numbers.

Note that the derivation of Eq.~47! has been general
taking into account all allowed angles of inclination. In ord
to predict the behavior of the phase velocity for future e
periments we assume thatg50 and select the data of Lene
weit et al. @18# corresponding to a flow fluxQ50.5. The
magnitude ofc̄ is taken from Fig. 3 of Changet al. @29# in
which the branchb of the figure has been selected becau
the associated surface profiles seem to be most simila
those shown in the photographs of Leneweitet al. @18#.

The phase velocityct of the spiral waves, shown forQ
50.5 in Table I, decreases with distance from the axis
rotation. Note that the phase velocity in the table is given
the same nondimensional way as in Ref.@18#. Calculations
made for different values ofQ also show the decrease wit
distance from the axis. This agrees with comments made
Azuma and Nunobe@17# who say~see p. 2145!, ‘‘Now, when
the variation off ~here«! and ud ~the phase velocity! was
investigated for each rotation frequency and in a range o
to 90 mm, it was observed thatf has some decrease with th
radius and alsoud has some decrease in the same directio

VI. CONCLUSIONS

The main results of this paper are that the usual surf
wave instability of a fluid film flowing down an inclined
plate is only slightly modified in a rotating system as long
the rotation rate is small. Only the direction of propagati
of the wave is turned, usually in a direction opposite to th
of rotation. When the rotation rate exceeds a critical val
however, a new instability occurs, characterized by a fin
value of the critical wave number. Given a direction of t
effective gravity force, the flow for large rotation rates
more unstable when the plate is inclined in contrast to
case of low rotation limit where the opposite situation p
vails. The Ekman layer instability has also been conside
But except in unusual situations it will not precede the s
face wave instabilities.

A three-dimensional nonlinear wave equation, genera
ing Roskes’ @24# equation has been derived. The tw
dimensional version generalizes the equation obtained
Benney@3#. From the resultant equation, two equations we
derived corresponding to the amplitudes of the first two F
rier modes of the surface deformation. From this set of eq
tions a condition for wave saturation can be obtained.

For small amplitudes the two-dimensional nonlinear wa
equation reduces into an equation which differs from
Kuramoto-Sivashinski equation only by the dispersion ter
Transforming Eq.~40! and using stretched variables we ha
obtained the velocity of the solitary wave in terms of t
2-8



ed

-
s
flow

s

iven here

.1310

.1080

.0758

.0502

INSTABILITY OF A THIN FILM FLOWING ON A . . . PHYSICAL REVIEW E 65 026312
TABLE I. Prediction of the phase velocity for future experiments. The flow flux selected isQ50.5. The data presented were obtain

using the formulad/r 50.701 13 (Qn/uVW u2r 5)0.3287obtained from Fig. 5 of the paper of Leneweitet al. @18#. To determine the nondimen
sional parameters, use was made ofr5998.2 kg/m3, n51.00731026 m2/sec, ands57.3631022 N/m of water at 20 °C. In the experiment
@18#, radial distances are measured in units ofl 5(9Q2/4p2nv)1/4. The columns of the table are organized as follows. First column: the
flux Q; second column: radial distancer from the axis in centimeters and inl units; third column: the angleĝ (g50); fourth column:
experimental Reynolds number Re; fifth column: the linear critical Reynolds number fora→0; sixth column: the linear critical Reynold
number whena50.065 ~as observed in the experiments@14,18#!; seventh column: the capillary numberS ~note S5Sd2 and d50.1,
always!; eighth column: the rotation parameterV; ninth column: the linear critical«; tenth column: the dispersion parameters̄ of Eq. ~47!;
eleventh column: the linear phase velocitycph calculated from Eq.~18!; twelfth column: the solitary wave velocitycs obtained using Eq.
~47!; and the thirteenth column: the total phase velocity obtained by adding the eleventh and twelfth columns. The velocities are g
in the nondimensional form of Ref.@18#.

Q
~m/sec!

r
~units of
1022 m!

H
~units of
1025 m! ĝ Re

Rec

(a→0)
Rec

(a50.065) S V «

s̄
~units of

1023
) cph cs ct

0.5 4.383~81! 3.129 86.7582 5.409 0.1393 0.5607 2274.8 0.061 07 7.334 2.95 2.004 10 0.1275 2
0.5 4.931~91! 2.900 87.1148 4.808 0.1244 0.5353 2108.8 0.052 48 6.338 3.21 2.003 23 0.1048 2
0.5 6.026~111! 2.549 87.6387 3.934 0.1023 0.4949 1853.3 0.0405 4.923 2.06 2.001 89 0.0739 2
0.5 7.669~141! 2.182 88.1440 3.091 0.0806 0.4509 1586.9 0.0297 3.627 1.21 2.001 01 0.0492 2
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parameters deduced from the experiment and shown in T
I. This solitary wave velocity was added to the linear pha
velocity to give the total velocity of the wave. The concl
sions are that, for each flow flux, the wave velocity decrea
with distance from the rotation axis. This result agrees w
the experimental results by Azuma and Nunobe@17#. But
convincing agreement with the measurements of the ph
velocity by Leneweitet al. @18# could not be attained. A
reason for this disagreement could be the indirect way
which the phase velocity was measured in the experim
They found at some radial interval that the phase velo
first increases and later decreases. Farther away they obs
for different flow fluxes, that the phase velocity increas
monotonically at some interval after which it attains a nea
constant magnitude. It should be noted that the experime
results depend on the flow flux and on the perturbation
the inlet. The frequency of those perturbations is unkno
but it seems that changes are found varying the height of
inlet. Therefore, the experimental results are not conclus
With Table I our purpose is to set, theoretically, the possi
behavior of the phase velocity of spiral waves with respec
the radial distance using data taken directly from an exp
ment. Moreover, Table I can be used to check with fut
experimental data.
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APPENDIX: COEFFICIENTS OF EQS. „34…–„36…

The coefficients will be written in terms of theBi param-
eter groups. They are

C153iaB115iaB22a2B31a2B41a4B52a2B61a2B7

1 ia3B9 , ~A1!

C253iaB1130iaB2215a2B313a2B413a4B5228a2B6

110a2B725ia3B8145ia3B9 , ~A2!

C356iaB1120iaB226a2B313a2B4121a4B528a2B6

15a2B724ia3B8130ia3B9 , ~A3!

C456iaB1120iaB2212a2B316a2B416a4B5216a2B6

110a2B712ia3B8112ia3B9 , ~A4!

C556iaB1110iaB224a2B314a2B4116a4B524a2B6

14a2B718ia3B9 , ~A5!

B15 1
3 Re cos«, B25 4

15 Rex2 sin«,

B35 2
15 dRe2 cos2 «, B45 1

3 dRe cotĝ, B55 1
3 dS,

~A6!

B65
4

7
dx2Re2 sin« cos«, B75 3

20 dx2Re tang sin« cos«,

B85 5
6 dx2Re sin«5 75

16 B9 . ~A7!
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