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E xact results of the Kubo conductivity in macroscopic Fibonacci systems:
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Abstract

In this work, the Kubo–Greenwood formula is used to investigate the electrical conduction in macroscopic Fibonacci lattices within a
single-band tight-binding model. This investigation is carried out by means of a renormalization method, which allows the iterative
evaluation of the products of the Green’s function in an exact way. The results of d.c. conductivity show an extremely fine band structure
and a periodic oscillating pattern in the neighborhood of the transparent state. The a.c. conductivity of these transparent states as a
function of the frequency shows a regular oscillating behavior, whose maximums decay following an inverse power law. Furthermore, the
d.c. conduction in two-dimensional Fibonacci superlattices reveals a smooth dependence on the Fermi energy location and finally the
transition from one- into two-dimensional conductivity is also analyzed.
 2002 Elsevier Science B.V. All rights reserved.
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1 . Introduction wood formalism [10]. In this paper, we report a detailed
analysis of the d.c. and a.c. conductivity in macroscopic

The electronic conduction in macroscopic quasicrystal- Fibonacci chains by using a novel renormalization method
line lattices is an interesting but not widely studied subject, [11]. Also, the d.c. conduction in two-dimensional
since both the quantum transport and macroscopic-scale Fibonacci superlattices is investigated.
quasiperiodic system per se are not easy topics. Nowadays,
there is a consensus that in these systems the electronic
wave functions are critical and the corresponding eigen- 2 . Results
value spectra are singular continuous [1]. The level-spac-
ing analysis shows an inverse-power-law distribution of A mixing Fibonacci chain (MFC) is constructed by
gaps [2,3] and a semi-Poisson distribution of bands [4], alternating two sorts of atoms, A and B, following the
both neither conventional Poisson nor Wigner ones. Hence, Fibonacci sequence and the hopping integrals between
the transport properties of these critically localized states these atoms depend on the nature of them, leading to the
are a fascinating and still unclear theme. The hopping existence of two different parameterst and t 5t [9].AA AB BA

conduction in Fibonacci chains has been addressed by Let us define the first generationF 5A, and the second1

means of the Miller–Abrahams equations [5,6]. The F 5BA. The next generations are given byF 52 n

optical conductivity has been analyzed within a general- F %F , for example,F 5BAABABAA. It would ben21 n22 5

ized Drude formula [7] and the temperature dependence worth mentioning that this sequence is chosen in order to
has been investigated by summing the relevant ladder obtain the transparent states reported in Refs. [9] and [12],

2diagrams of electron–phonon interactions [8]. Recently, whose energies (E ) are determined byE 5a(11g ) /T T
2 2 2 2 2transparent states with unity transmission coefficient have (12g ) andE 2a 54t cos (Kp /N), where1a(2a)T

been found in mixing Fibonacci chains [9] and its a.c. are the on-site energies of atoms A(B),g 5 t /t is theAA AB

conductivity has been studied within the Kubo–Green- ratio of the Fibonacci hopping parameters,t is the hopping
integral of the periodic leads,K and N /K are integer
numbers [12]. On the other hand, a two-dimensional*Corresponding author.
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repeating periodically the MFC, which are connected by a t 5 t 5 t and m # u4tu, analytical results exist and they' i

hopping integralt . are'

In order to isolate the quasicrystalline effects on the
2t

transport properties of the system, a simples-band tight- u( 2t 2 m 2E ) dEu u u u2D ]]]]]]s (m, 0)5s E ]]]]]P Pbinding Hamiltonian is considered as given in Ref. [10]. 2 2
p (2t) 2 (m 2E)œ22tFor the sake of simplicity, a uniform bond length,a51, is

taken in both directions of a 2D-MFS. The analysis of the s um u22tP 21S D] ]]]5 cos . (4)electrical conduction is carried out by means of the Kubo– p 2t
Greenwood formula [13]

For quasiperiodic systems, the Kubo–Greenwood for-
`

2 mula is evaluated by using a previously developed re-2e " f(E)2 f(E 1"v)
]] ]]]]]s(m,v)5 lim E dE2 normalization procedure [11], which computes iteratively"vV→` Vpm

2` the products of the Green’s function in Eq. (1). Let us
1 1 consider a MFC withk 5N /K53, as defined in Ref. [12],3 Tr[ p Im G (E 1"v)p Im G (E)] (1)

connected to two infinite periodic leads with hopping
where V is the volume of the system,f(E)5 11h integrals t and null on-site energies. Fig. 1a shows the

21exp[(E 2m) /k T ] is the Fermi–Dirac distribution withjB zero-temperature one-dimensional d.c. Kubo conductivity
1Fermi energym and temperatureT, G (E) is the retarded as a function of the Fermi energy position, for a MFC with

one-particle Green’s function, andp 5 im /" oj a50.225utu, t 51.25t, t 5t 5t and n 5 35. TheAA AB BA
t u jlk j 1 1u2 t u jlk j 2 1u is the projection of theh jj, j11 j, j21 spectrum contains 800 000 items of data and has been

momentum operator along the applied electrical-field calculated in quadruple precision. The imaginary part of
210direction. the energy in the Green’s function is 10utu and the

For an infinite periodic linear chain with null self- transparent state energy (E 521.025utu) is indicated by aT
energies and hopping integralt, the conductivity of a dashed line. Observe that the band structure is quite fine in
segment ofN atoms at zero temperature can be calculated comparison with that obtained in Ref. [10], since now the
analytically and it is given by [14] MFC contains 14 930 352 atoms forn535. An almost

constant behavior is found in the neighborhood of the1D
s (m 5 0,v)P transparent state. An amplification of this zone (Fig. 1a9)

2 2 shows a periodic oscillating pattern, which can be obtained8e t "v
]]]] ]5 12 cos (N 2 1) , (2)H F GJ3 2 by a perturbation analysis of the transmittance formula2utup(N 2 1)" v

[11]. Note that the spectrum around the transparent state is
where the segment length isV 5 (N 21), sincea51. In scaled by the inverse of the system size, in spite of the fact
the limit of v→0, the d.c. conductivity within the energy that the whole spectrum does not. Fig. 1(b–d) show the

1D 2band iss ;s (m, 0)5 (N 2 1)e /(p"). d.c. Kubo conductivity of 2D-MFS with the same parame-P P
24 22Two-dimensional quasiperiodic superlattices can be built ters as Fig. 1a butt 5 10 t, t 5 10 t, and t 5 t,' ' '

by stacking periodically MFC and its electrical conduc- respectively. These spectra are calculated by integrating
tivity in the MFC direction can be calculated by taking
advantage of the translational symmetry in the periodic-
lattice direction, defining ak vector, which leads to [15]'

p

12D 1D]s (m, 0)5 E s m 2 2t cos(k ), 0 dkf gi i ' ' '2p
2p

`

1D 1D
5E s (E, 0)DOS (m 2E) dE, (3)i '

2`

1Dwheres is the one-dimensional conductivity along thei
1Dapplied-electrical-field direction andDOS is the density'

of states of periodic chains, which is given by

u( 2t 2 E )u u 1, if x $0u u'1D ]]]]DOS (E)5 , beingu(x)5 .H]]]' 2 2 0, if x ,0p 4t 2Eœ '

Note that the results of Eq. (3) can also be obtained Fig. 1. D.C. conductivity of 2D-MFS (b–d) in comparison with that of a
within the convolution scheme [16]. MFC (a). An amplification of the neighborhood around the transparent-

In particular, for the periodic-superlattice case, being state, indicated by dashed lines, is shown in (a9).
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scaling spectrum around the transparent state and an
inverse-power-law a.c. behavior. The latter is similar to
that of periodic systems, but very different from the a.c.
behaviors of other high d.c.-conductivity states in MFC
[11]. On the other hand, the smooth d.c. conductivity
spectrum obtained from 2D-MFS reveals a high sensitivity
of quasiperiodic systems to the periodic stacking and
suggests that the Fibonacci superlattices could not be good
candidates to observe experimentally the multifractal con-
duction band structure. Finally, the a.c. conduction in
2D-MFS is currently under study.
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