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Generalizing BCS for Exotic Superconductors
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A new boson–fermion statistical model with two-hole (h) as well as two-electron (e) Cooper
pairs (CP) exhibiting Bose–Einstein condensation (BEC)—which simultaneously reduces to
BCS theory in weak coupling for perfect eh symmetry and to BEC when no hole CPs are
present—yields reasonable transition temperatures for exotic superconductors, whether quasi-
2D cuprate or 3D ones, for moderate departures from perfect eh symmetry.
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Boson–fermion (BF) models of superconductiv-
ity go back to the mid-1950s [1–3], pre-dating even
the BCS–Bogoliubov theory [4,5]. Although the lat-
ter only contemplates the presence of Cooper “cor-
relations,” BF models [1–3,6–12] posit the existence
of real bosonic Cooper pairs (CPs). Unfortunately,
however, there seems to be no experiment yet that
distinguishes between electron (e) and hole (h) CPs.
With two exceptions [10,11] all BF models neglect 2h-
CPs formulated on an equal footing with 2e-CPs and
so cannot contain BCS theory where perfect eh sym-
metry holds. In our complete BF model (CBFM) of
unpaired electrons coexisting with both CP species,
2h-CPs are distinct from (and kinematically indepen-
dent of) 2e-CPs as their Bose commutation relations
exhibit a sign change while electron and hole Fermi
anticommutation relations do not. The unperturbed
Hamiltonian corresponds to an ideal BF gas, while
the interaction one is reminiscent of the Fröhlich (or
Dirac QED) interaction Hamiltonians involving two
fermion and one boson operators, but with two types
of CPs instead of phonons (or photons). Those Hamil-
tonians are the most natural ones to use in a many-
electron/phonon (or photon) system; one can conjec-
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ture likewise for the BF system under study, as had
already been assumed by several authors [6–9].

The CBFM leads to a set of three coupled in-
tegral equations (Ref. [10], Eqs. (7)–(9)): two gap-
like relations (one each for the 2e-CP and 2h-CP
BE-condensed boson number densities) plus a third
“number” equation involving both number densities.
They encompass four different theories as special
cases. For perfect electron-hole (eh) symmetry in the
CPs the CBFM reduces to (i) ordinary BCS theory if
the CBFM interaction parameters are properly iden-
tified with those of BCS. On the other hand, for
no 2h-CPs present the CBFM also contains (ii) the
Bose-Einstein condensation (BEC) BF model in 3D of
Friedberg and Lee [7], and for zero coupling (iii) the
ideal BF model of Ref. [12] that predicts nonzero BEC
Tcs even in 2D, as well as (iv) the familiar transition-
temperature Tc-formula of ordinary BEC in 3D.

Here we sketch how the CBFM yields size-
able enhancements in Tcs over BCS theory for
moderate departures from perfect eh symmetry, for
the same (BCS model) interaction. In Ref. [11]
the three coupled equations were solved numer-
ically in 3D for the usual BCS interaction pa-
rameters λ = 1/5 and hωD/EF = 0.001 where it
was found that, along with the normal phase
consisting of an ideal BF gas [12], three differ-
ent stable (plus unstable, probably metastable, i.e.,
of higher Helmholtz free energy) BEC phases
emerged—all surrounding the BCS Tc value on
the T/eh-symmetry plane. They consisted of two
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Fig. 1. Phase boundaries in the temperature/eh-symmetry plane according to the CBFM for 2h-CP (full) and of 2e-CP (dashed)
BEC Tcs in 2D (left) and 3D (right). Dot is BCS result while open circle is explained in text. Data taken from Refs. [14,15].

pure phases of either 2e- or 2h-CP BE-condensates,
and a lower temperature mixed phase with ar-
bitrary proportions of 2e- and 2h-CPs. There is
far greater physical interest in the two higher-Tc

pure phases, so we focus only on them in both
2D and 3D.

For the boson energy vs. center-of-mass-
momentum hK dispersion we employ the linear lead-
ing term (λ/2π)hvF K, with vF the Fermi velocity, in
the many-body Bethe–Salpeter treatment of CPs (see
Ref. [13] for derivation in 3D)—rather than [1–3,6–
11] the quadratic h2 K2/2(2m) appropriate for a com-
posite boson of mass 2m moving not in the Fermi
sea but in vacuum, as e.g. an isolated deuteron. In
2D λ = 1/2 and hωD/EF = 0.05 (typical of cuprates)
were used to determine the BEC Tc/TF vs. n/n f and
are graphed as phase boundaries in Fig. 1 for both 2e-
(dashed curve) and 2h-CP (full curve) pure, stable
phases. Here n is the total number-density of charge-
carrier electrons while n f is that of unpaired electrons
at zero-temperature and coupling, and depends on the
average value of the zero-momenta 2e- and 2h-CPs
(unknown, but phenomenological) energies. Perfect
eh symmetry corresponds to n/n f = 1. BCS theory
predicts Tc/TF ' 1.134(hωD/EF) exp(−1/λ) ' 0.008
and is marked by the dot in figure. The open cir-
cle on the 2h-CP BEC (full) curve marks the value
of Tc/TF beyond which a complex solution for n/n f

develops. The 2e-CP BEC (dashed) curve tends to
the asymptotic value of 0.088 that follows for nÀ

n f similarly as with Eq. (24) of Ref. [10]. Cuprate
data fall [14] in the range Tc/TF = 0.03 – 0.09.
Thus, moderate departures from perfect eh symme-
try can reach empirical Tc values for the quasi-2D
cuprates.

Results in 3D are also encouraging. Whereas
BCS theory can reproduce Tc/TF values well for the
elements [even with smaller values of the coupling
λ than our (admittedly large) value of 1/2] it takes
only moderate departures from perfect eh symmetry
to access empirical [15] Tc/TF values for 3D exotic
superconductors.

To summarize, a very general complete (in the
sense that 2h-CPs are not neglected) BF model—
encompassing four different theories as special cases,
including the BCS and the BEC theories—can pro-
duce in either 2D or 3D, with the BCS electron–
phonon model interaction, sizeable enhancements
over the BCS predicted Tc values for moderate depar-
tures from perfect eh symmetry. The results lie well
within empirical ranges in 2D for exotic cuprates, as
well as in 3D for other exotic superconductors, and
are higher for 2h- than for 2e-CP BEC.

ACKNOWLEDGMENTS

JB and MC acknowledge grant PB98-0124
by DGICYT (Spain). MF and MdeLl acknowl-
edge discussions with O. Rojo, F. J. Sevilla, M.
A. Solı́s, A. A. Valladares, and H. Vucetich, and



P1: GMX

Journal of Superconductivity: Incorporating Novel Magnetism (JOSC) pp663-josc-454295 November 15, 2002 23:20 Style file version June 22, 2002

Generalizing BCS for Exotic Superconductors 657

grants UNAM-DGAPA-PAPIIT (México) IN102198,
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