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The flow in a pipe of wormlike micellar solutions is examined using a simple model that consists of the
codeformational Maxwell constitutive equation and a kinetic equation that accounts for the breaking and
reformation of micelles. The model needs six parametdrsf whichare extracted from single independent
rheological experiments. One of the parameterssttear-banding intensitgarameter is associated with the
stress plateau in the shear-banding region. The stress plateau is set in our model by the criterion of equal
extended Gibbs free energy of the bands. The model predicts a Newtonian (parabolic profile) flow at low-
shear rates or low-pressure gradients, followed by shear thinning up to a critical rate where instabilities and
long transients appear. At this critical shear rate, a shear-banding flow region arises near the pipe wall. The
model indicates that tube lengths up to 400 diameters are required to obtain fully developed flow, where a
pluglike profile at the center of the tube coexists with a region supporting a much higher shear rate next to
the wall. Shear-banding flow is present up to a second critical shear rate. At shear rates larger than the
second critical rate, the parabolic velocity profile is recovered, except near the center of the tube where a
small shear-banding flow region remains because the stress at that radial position is equal to the plateau
stress. This is a consequence of the linear dependence of the shear stress with the pipe radius. The predictions
of the model are compared with experimental results from the literature.

Introduction angle neutron scatterirf§3° Above j,, the flow becomes
. . . . . homogeneous again and a Newtonian behavior is observed with
T_he rheological behavior of wormlike mlcell_es Is rich gnd a smaller shear viscosity. This high-shear-rate branch is hard
var[ed beqause they can form entanglements in the Sem'd'lu'[eto detect in cone-and-plate rheometry because flow instabilities
regime akin to polymer solutions, and because they break andexpel the sample from the instrument; however, the high-shear-

: Y . : - .
:ﬁl;oorlrg ?g;}t'rliozﬂzé oflr\]/vE)hrfnll:E:ar;i\/c::ﬁgsegftlgvcef?émsértrc]?es rate branch was conclusively visualized recently in pipe flow
9 P d by NMR velocimetry?>

spans from near Maxwell behavior with a single relaxation time : . ) . .
to polymer-like behavior with a stretch exponential spectra of 10 €xplain shear-banding flow of wormlike micellar solutions,
several models have been forwarded. The extension of the

relaxation times, depending on the ratio of the breakifghx C ; ) )
and the reptatione, times?-19 In the fast breaking regime  reptation-reaction model to the nonlinear rheology of wormlike

(TorealTrep < 1), the rheological response of micellar solutions Micellar solutions predictszgl stress plateau equal o6 a
at low frequencies tends to Maxwell behavior with a single critical shear rate of 2.64*° Using the generalized Maxwell
relaxation timezg = (Threafrep) M2.24913:15-19 equation and a damping function to account for the nonlinear

In the nonlinear viscoelastic regime, at least four regimes have behavior, Callaghan et al. predicted the existence of a maximum

been reported in steady shear experiments as a function of" theo—y relationship followed by a negative slope regiffie.
applied shear rat®-25 At low shear rates, a Newtonian region However, neither of these models are able to predict the upturn

is observed, followed by a shear-thinning region. However, at at higher shear rates. Spenley et al., using the Lagrangian
a critical shear ratejycy, a stress plateawpiaeas accompanied Eulerian method of fluid dynamics combined with the Ottinger's

by oscillations and long transients, is observed. At this rate and Stochastic method for the constitutive equation, showed that
up to a second critical shear ratgy,, two spatially distinct above the critical shear rate, the steady state consists of bands
regions of low and high shear rate coexist. The discontinuity in Supporting different shear ratés.Others have solved the
the o —7 relationship is due to the spurt effect, also known as homogeneous flow equation in several geometries with sophis-
shear-banding flov#® Shear-banding flow has been observed ticated hydrodynamic flow solvers and found a selected stress

by NMR velocimetry23-25 by optical method&7-28and by small for shear bandin32 Also, elastic flow instabilitie¥"*> and
secondary flo®f37 have been suggested to explain the spurt

*To whom correspondence should be addressed. E-mail: puigie@ ffeéct. However, all these approaches consider that shear-
mail.udg.mx or puig_jorge@hotmail.com. banding flow is caused by mechanical flow instabilities.
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On the other hand, several groups have proposed that shear For steady simple-shear flow, eqs-3 with their time

banding is more akin to a first-order dynamic phase transition
even at concentrations far ftnue phase boundaries, in which
mechanical instabilities may or may not play a rélé®44
Evidence supporting this point of view include (i) robustness
of the stress plateau, (ii) slow sigmoidal onset kinetics which
is characteristic of nucleation and growth processes of the fluid-
oriented phase, and (iii) the similarity of the stress-shear rate
curves with the pressuralensity isotherms for liquidgas

derivatives set to zero give

2015712
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@° = 9o — k(@0 = )71 (L + 1y71) =0 (5)

systems, where nonequilibrium phases may be separated bywhereN; (=011 — 029) is the first normal stress difference
hypersurfaces (in a field variable space) representing continuousConsider now the fully developed isothermal flow of an

(e.g., critical points or lines) or discontinuous (first-order)
transitions*43In fact, the existence of “critical” conditions of

incompressible fluid in a tube of radil&and lengthL where
the pressure drop along the length of the tubAms For this

surfactant concentration and temperature where the stress plateasituation, the shear stress distribution is given by

reduces to one flat inflection point has been observed and
“master dynamic phase diagrams” have been constrittétl.

A simple, although phenomenological, model consisting of
the codeformational Maxwell constitutive equation coupled to
a kinetic equation for the breaking and reformation of micelles
was proposed by us to account for the non linear rheological
behavior of wormlike micellar solutions of cetyltrimethylam-
monium tosilate (CTATY? Later, we extended this model to
describe the shear-banding behavior of CTAT micellar solutions
detected in cone-and-plate rheometry as well as the long
transients and oscillations associated with this fldw.

In this paper, the flow in a pipe of wormlike micellar solutions
is examined with our model. First, we compare experimental
steady shear results for CTAT micellar solutions obtained by
cone-and-plate rheometAwith the predictions of the model
without fitting parameters. The position of the stress plateau in
the shear-banding region is determined using irreversible
thermodynamics arguments. Then we examine the sensitivity
of the various parameters of the model and compare its
predictions with recent results reported in the literature for the
pipe flow of viscoelastic micellar solutions.

The Model

The model consists of the codeformational Maxwell constitu-
tive equation coupled to a kinetic equation to account for the
breaking and reformation of micellé$For simple shear flow,
the model reduces to the following system of ordinary dif-
ferential equations:

1 do, 1 _ T
Ot G_O<P e G_O(p)/lzazz 0 @)
1 doj ;
o; + G_OQDE =0;(=123) (2)
dp _ (@o— @) . ,
d_(f — OT k(1 + 1471)(P0 — @)O15712  (3)

Hereo1, is the shear stresg;» is the shear ratey; (i = 1, 2,
and 3) are the normal stresseg=r"1) is the fluidity; 5 is the
shear viscositygpo and ¢., are the fluidities at zero- and at
infinite-shear rateGp is the elastic plateau modulus,is a
structure relaxation timeky is a kinetic constant for structure
breakdowny; can be interpreted asshear-banding intensity
parameter; an®; = (2y012)/(Gog) for i = 1, and®; = 0 for

i =2and 3ineq 2. Because;is negligible for CTAT micellar
solutions?? the third term on the left-hand side of eq 1 will be
eliminated for the rest of the paper.

r AP
0<% (6)
The shear stress at the tube wall is then given by eq 6 with
R. Usually in flow in a tube, the volumetric flow rat® is
measured. The volumetric flow rate can be calculated from
fluidity data as

Q=aAP [T r{ [T fp(E)dz}dr (7)

The model needs six parameters to predict experimental data:
@0, Py Go, Ko, 4, anduy. All of them can be estimated from
rheological experiments as described belgwis the inverse

of the zero-shear rate Newtonian viscosity in steady shear
experimentsg., can be obtained from the high-shear-rate plateau

in steady shear measurements. However, the range of shear rates
needed to determing., usually cannot be reached in cone-and-
plate rheometry; hence,, can be obtained by fitting the viscous
modulusG" with the Hess model, given by

770 - 7700
Ty

GH —

8

45 wheretq is the main relaxation time of the sample ands

the applied frequency.

Gp can be obtained by oscillatory shear measurements or from
instantaneous stress relaxation experiments. The agreement
between the values @, obtained from these two experiments
is within 10%!2 The structural relaxation timeé. can be
estimated from the intercept of the stress relaxation curve at
long times after cessation of steady shear flow, where the
intercept is given by expfGod(¢ss — @o)], @ssbeing the steady-
state fluidity prior to the cessation of shear fléWlhe parameter
ko, in turn, can be evaluated by fitting numerically the stress
growth coefficienty* from inception of shear flow experi-
ments?® The shear-banding intensitparameten;, as it will
be discussed below, is uniquely determined by the value of the
stress at the plateau region.

Figure 1 depicts the values of the experimentally measured
parameters at 28C for CTAT micellar solutions. The solid
lines are only aids to the eye. The plateau elastic mod@lus
follows a power law dependence on surfactant concentration
with an exponent equal to 2.0. Similar dependence has been
reported elsewherg:#8

Irreversible Thermodynamics Flow Analysis

According to the extended irreversible thermodynamics
of viscoelastic fluids under flow, the generalized Gibbs
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Figure 1. Experimental values of the parameters of the model Figure 2. Schematic representation of the shear stress versus shear
determined at 30C as a function of CTAT concentrationm) Go, rate relationship for fluids that exhibit the spurt effect.

© (@) @o, (O) 4, , (®) ua. . . .
(&) ¢ (®) o (O) 4. (V) ke (#) In eq 13,7[=(Gogpo) Y] is the Maxwell relaxation time. In
equation is given I strict sensert is a function of the fluidityp and hence it is not

a constant. However, as a first approximation, small departures

] 1 1T from ¢ are considered here. Within this approximation, normal
ds=T "du+T Py —T ( 2 )o.da ©) stresses can be neglected, and eq 13 reduces to
Here s is the extenplggl specific entropyl, the absolutfe dG = 2 o071, (14)
temperaturey the specific internal energi?, the thermodynamic Gopy
pressureyp the specific volumez the stress relaxation time,
ando the stress tensor. Substitution of the steady-state version of eq 1 in eq 14 and
For simple shear flow, only the shear stregsand the normal ~ integration gives
stress components; (i = 1, 2, and 3) remain. Hence, after .
pe_rforming th_e _d_ouble-dot tensor prodl_Jct indicated in eq 9 and AG = [-Y f V—lzdj/lz (15)
using the definition of the extended Gibbs free energy=@ ( Gopy, @

— Ts+ Pv) to get rid of the extended entropy, one obtains
whereg is the solution of eq 5.

VTQ 3 Inasmuch as the working equations are written in terms of
dG = —sdT — vdP + |—|(20y,d0,, + ) 0;do;)  (10) the shear stress and the shear rate, subscripts in these two
2 I= variables will be dropped in the rest of the paper for simplicity.

~ In steady simple shear flow, egs 1 and 3 yield a cubic equation Regy|ts

in shear rate [eq 5]. Also, in steady state; = (2j012)/(Gop) ) ) ) )

[eq 2 withi = 1] and oz, = 033 = 0 [eq 2 withi = 2 and 3], A schematic nonmonotonic representation ofdhi relation-
and sincesy, = /g from eq 1, theroyy = 2012/Go. Hence, ship, first suggested by McLeish and Bélio explain the spurt
the extended Gibbs free energy for simple shear flow (eq 10) effect in polymer solutions, is portrayed in Figure 2. For shear

underisobaric andisothermalconditions becomes rates belowyy, a Newtonian behavior is followed with = 7o
(region 1). Shear thinning behavior is observed abpyé&egion

3 ) up to yc1, at which the shear rate becomes multivalued and
12 .
— + oy,|doy, 11) a stress plateau appears. However, under some circumstances,
G, a metastable branch has been detected (region IIl) up to a critical
stress, known amp jumping stresd! For larger stresses, the
In terms of shear rate, eq 11 can be written, using eq 5, assystem becomes unstable sinces/()pr < 0* and, as a
consequence, shear banding develops (region V). In this region,
12 ) as mentioned before, bands supporting different shear rates
? + 0p,|(1 = B)dyy, 12) coexist. Once the second critical shear raigis exceeded, a
0 homogeneous Newtonian forms again (region VI) but with a
smaller viscosity §.,). A second metastable branch may occur

dG = (vre)

3
dG =1

where at high shear rates (region V). Britton et al. discovered recently
_ . this branch in pipe flow experiments performed in a decreasing
= kA (@ = @)+ Fuy7) shear-rate modé.
gpz + kol;'/quw(l +uyy) The steady relationship betweerandy, as predicted with

eq 5, is depicted in Figure 3, using values for parameters typical
It can be easily shown th@t— 0 asjy—y., and because the = of CTAT micellar solutions (Figure 1). The predicted curve has
range of the parameters of the model given in Figurg is the sigmoid shape shown in Figure 2. According to eq 15, the
small asy—0. Hence, eq 12 can be approximated to extended Gibbs free energy vergusurve exhibits one or two
minima, depending whether the shear rate (or the stress) lies
v 1 ) outside or inside the multi-valued region. For shear stresses
Gl oz +op,[dyy, (13) smaller thano, or larger thanog there is a one-to-one

oo\ Gy correspondence between the shear stress and the shear rate. The

3
12 .
> 101, dy,=
0

3
dG =ur
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Figure 4. Shear stress versus shear rate measured in cone-and-plate
rheometry at 30C for micellar solutions of CTAT: M) 2 wt %, ©)
5 wt %, @) 10 wt %, (&) 20 wt. %. Solid lines are the predictions of
the model. Lines joining the low- and high-shear-rate branches of the
sigmoid in the shear-banding region (coexistence line) were set
according to the criterion of equal Gibbs free energy of fluid bands
supporting the low and the high shear rates (eq 20).

1 10 100 @ 1000 10000

is heterogeneous flow betweew andy.,, and homogeneous
flow below y.1 and aboveyc,.

The existence of the metastable branches can also be
understood in terms of the analysis presented here. The
calculations shown in Figure 3 indicate that local free energy
minimum exists at both branches. Hence, if either of these
branches is reached by, for example, controlled-stress measure-
ments, the local free energy minimum guaranties its existence
until large enough fluctuations shift the system to the overall
minimum within the shear-banding region and, as a conse-
guence, two bands will form, whose proportions are determined
by the lever rulgl445tje.,

Free Energy (N.m)

0.01 0.1 1 10 100 1000 10000
y -1
Y )
Figure 3. (a) Shear stress versus shear rate plot, where the location of Figure 4 shows the experimental shear stress as a function

the plateau stress, the span of the multivalued region, the metastableof shear rate measured with cone-and-plate geometry for CTAT

region and the homogeneous flow region are indicated. (b) Extended ~ . I uti f . . Th lid 1i
Gibbs free energy plotted versus the shear rate for various applied micellar solutions of various concentrations. € solid lines

stresses. The actual values of the stresses have been multiplied byepresent the predictions of our model using the parameters
constant factors: 1 (12.5 Pa 4000; I (15.25 Pax 100); Ill (15.865 reported in Figure 1. As described above, at moderate and high
Pax 20); IV (18.9 Pax 1); and V (21 Pax 0.1) for better observation ~ CTAT concentrations, our model predicts a sigmoid similar to
of the curves. that shown in Figure 2. This sigmoid fade as the CTAT
extended Gibbs free energy exhibits a single absolute minimum concentration diminishes. In fact, our model predicts a mono-
at each applied shear rate in these two homogeneous regionsonic increasing relationship betweerandy with a near-zero
(see curves | and V in Figure 3b). However, for shear stressesslope that follows closely the experimental data for the 2 wt %
betweenoy, andog, the relationship betweem andy becomes CTAT solution, which has a very smal} value (Figure 1). As
multi-valued and so, the extended free energy exhibits two discussed elsewhetéthis result is due to both the decreasing
minima. A very important result is the fact that equal extended value of the product oky and 122 and to the decrease in the
free energy minima occur only when the shear ratesyare shear-banding intensity parameter (Figure 1; also Figure 2 of
andyc, (Figure 3b). Consequently, the stress platesykiéa) ref 14), with diminishing CTAT concentration. Inasmuchkags

and the critical shear rategc{ andy.,) for shear banding can  andu; are cofactors of® in eq 5, the quadratic term begins to

be uniquely determined. On the other hand, when the stress isdominate as these parameters become smaller and so, the
larger tharoy, but smaller thamwpiaeas the extended Gibbs free  sigmoid tends to wash out. On the other hand, for higher CTAT
energy curve also exhibits two minima of different depth at the concentrations, our model reveals a sigmoid whereas the
low- and the high- shear-rate sides of the sigmoid (curve Il in experimental data depict a stress plateau. Nevertheless, the
Figure 3b). The lowest minimum corresponds to the low-shear- dividing line that joints the critical shear rateg andy ., passes

rate side, which indicates that the flow is homogeneous and through the experimental data. As described above, the criterion
that the fluid is supporting only the low shear rate. However, employed to set the position of the stress plateau is that the
when the stress is larger thagiaeeaubut smaller thary (i.e., bands at the critical shear rates should have equal extended
within the metastable branch), the extended Gibbs free energyGibbs free energies. This criterion sets the value of the shear-
shows two minima, where the deeper minimum appears at thebanding intensity parameter and yieldsuaique relationship
high-shear-rate side (curve IV in Figure 3b). This implies that betweenoyjageauand .

the more stable state is the high-shear-rate side. Hence, under Figure 5 illustrates how the—y relationship (Figure 5a) is
these circumstances, the flow is also homogeneous and the fluidrelated to the pressure drop along the tube radius (Figure 5b),
is now supporting only the high shear rate. In summary, there to the extended Gibbs free energy as a function of shear rate

V=XVt (L= X)Ve2 (16)
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Figure 5. Schematic representation of the relationship between the nonmonotonic constitutive equation between shear stress and shear rate (a), the

wall-shear stress as a function of tube radial position (b), the extended Gibbs free energy, calculated from irreversible thermodynamidsnas a funct
of shear rate (c), and the velocity profile in the steady flow in the pipe (d).

(Figure 5c), and to the velocity profile (Figure 5d). When the (Figure 1). Elsewhere we showed that the stress plateau becomes
shear rate is smaller thang, the parabolic profile typical of  wider asu; increased? Also, oplateau ¥c1, andyc, shift to lower
the Poiseuille flow of a Newtonian fluid is observed. In fact, values as the shear intensity parameter rises (inset in Figure 6)
the model forecasts a parabolic velocity profile with a power- until it reaches a limiting value at higin. In flow in a tube,
law exponeni close to 1. However, the stress varies linearly neither shear banding nor instabilities are predicted when
with radius in pipe flow. So, when the stress at the tube wall 0. Instead, a smooth velocity profile typical of a shear thinning
becomes equal to the plateau stress, the model predicts twdluid develops with a power law exponent,= 0.98 (black
bands: one in the core supporting a lower shear fateand profile in Figure 6). However, for values gf greater than zero,
another next to the wall supporting a higher shear fate,The a band near the tube wall supporting a higher shear rate is
plateau stress value set by the equal-extended Gibbs free energpredicted (red and blue profiles in Figure 6). The thickness of
criterion leads to two stable branches in the low- and high- this band increases as the shear-banding intensity parameter
shear-rate regions, respectively (Figure 5c¢). The plateau stressncreases since the critical shear stress and the critical shear
line in Figure 5a corresponds to a single point in Figure 5b rate shift to smaller values.
and, hence, to a boundary between the two bands in the velocity Figure 7 depicts velocity profiles as a function of the wall
profiles shown in Figure 5d. However, if we allow for an stressoy. To isolate the effect of this variable, the valueuaf
unsteady-state situation along the metastable brastadsé top is set equal to 0.1 and the other parameters are the same as
jumping, the flow is likely to become unstable. This is observed those used in Figure 6. When the wall-shear rate is smaller than
in the section of the velocity profile corresponding to the area yy, the parabolic profile of a Newtonian fluid is predicted (black
located between the top jumping and the minimum in Figure profile in Figure 7). When the applied stress givesalues
5a. Nevertheless, the analysis by Irreversible Thermodynamicsbetweenyy andy.s, the profile is no longer Newtonian but that
of the metastable and unstable regions indicates that only thatof a shear-thinning fluid (green profile in Figure 7). However,
shear rate which gives the minimum in extended Gibbs free when the applied stress (i.e., pressure gradient) becomes equal
energy (Figure 5¢) yields the right velocity profile, even though to or slightly larger than the stress plateau value, a band
there are three values of shear rate (Figure 5a). The samesupporting a higher shear rate appears near the tube wall with
analysis also demonstrates that the equal-free energy criteriora rapid rise in shear stress at the wall (blue profile in Figure 7).
that fixesuniquelyu; corresponds to the equal minimum values This band coexists with another one supporting a smaller shear
of the extended Gibbs free energyjat and ¢, (Figure 5c). rate at the center of the tube. On the other hand, when the
For shear rates higher thaw,, a Newtonian velocity profile is applied stress is at the high-shear-rate branch oéthg flow
recovered again but with a smaller viscosity, although a small curve (see Figure 2), the Newtonian parabolic profile is
shear-banding flow region remains near the tube center. recovered but a small shear-banding region remains in the pipe
Figure 6 shows the effect of the shear-intensity paramater  center (red profile in the inset of Figure 7).
on the flow behavior in a tube at a fixed pressure gradient (i.e., Figure 8 reports experimental and predicted wall-shear stress
fixed wall-shear stress). The values of the other parameters ofversus apparent shear ratgy,[=4Q/(nR%)] for a 2 wt % CTAT
the model are similar to those for CTAT micellar solutions solution as a function of/D. Experimental data, measured in
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Figure 6. Normalized axial velocity as a function of normalized radial position for different values of the shear-banding intensity parameter
s: 0 (black line), 1 (red line), and 10 (blue line) aW@® = 200 Pa/m. Values of the other parameters@ye= 0.01 Pal s, ¢, = 10 Pal s
Gp = 100 Pa andol = 104 Pals. Inset: Shear stress versus shear rate curve for data shown in figure.
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Figure 7. Normalized axial velocity as a function of normalized radial position for different pressure gradients in Pa/m: 50 (black line), 200
(green line), 600 (blue line), 800 (red line). The critical pressure gradient for shear banding is 300 Pa/m. The parameters employed in tims calculatio
are the same than those used in Figure 5 but wite 0.1 s. Inset: Scaleup of the profiles near the center of the tube.

a capillary tube of 3 mm in diameter, were taken from L/D = 50 lie above those fot/D = 100 and both are above
Hernandez-Acosta et & Steady shear data were measured in the data obtained fdt/D = 400. Results reported elsewh&re

a Rheometrics RSD-II mechanical spectrometer in a cone-and-emphasize the importance of the residence time of the fluid in
plate geometry (diameter of 5 cm and angle of 2)28 For pipe flow. Notice also that the predictions of our modellf¢D
shear rates larger than the critical value, hundredths main= 400 superimpose the experimental pipe flow data for the same
relaxation times of the sample were required to reach steadyL/D ratio and the cone-and-plate steady data. However, the
conditions in cone-and-plate measureméaiipe-flow data for model slightly overpredicts data for smallgD ratios, although

L/D = 400 coincide with the cone-and-plate data. Also, notice the predictions follow the same tendencies as those of the
that data for./D = 50 and 100 superimpose with that fafD experimental data: that is, departures from steady-state condi-
= 400 up to shear rates around 18,3.e., for shear rates smaller  tions become larger 49D diminishes. For very small lengths,
thany.i. For shear rates larger than this critical value, data for our predictions show that the plot ofy versusyap,becomes a
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Figure 8. Wall shear stress versus apparent shear rate for the flav2owt % CTAT micellar solution for different./D values. Symbols are
experimental values taken from ref 40 and solid lines are the predictions of the model for diff#erglues. Also for comparison, steady values
(+) obtained by cone-and-plate rheometry are included.

straight line (not shown), indicating a Newtonian behavior,
which means that the shear-banding flow has not had enough
time to develop.

Velocity profiles as a function of a dimensionless flow time,
t/zrq, are shown in Figure 9 for applied pressure gradients such
that the wall-shear rate is beloj;, betweeny; andyc; (i.e.,
within the shear-banding region), or aboxe(i.e., in the high-
shear-rate branch of the—y flow curve). When the applied
gradient produces wall-shear rates smaller tharthe velocity
profile develops very rapidly, i.e., within fractions of the main
relaxation time of the sample. After a felWD, the parabolic
profile, typical of Poiseuille flow, forms (Figure 9a). At higher
shear rates but still lower than the first critical shear rate for
spurt flow, the approach to fully developed flow is fast but now
the profile of a shear thinning fluid is observed (not shown).
This profile can be fitted accurately with the power law
constitutive equation with an exponentbetween 0 and 1,
depending on the level of the applied shear rate. As the wall-
shear rate approachgg, the time required for achieving fully
developed flow increases; also deviations from the parabolic
profile are noticed. Figure 9b shows velocity profiles as a
function of time for shear rates larger thpn but smaller than
Y2 For this situation, our model predicts that tube lengths longer
than 200 diameterd (D > 200) are needed to reach the fully
developed flow condition. Moreover, fluctuations are seen even
for L/D > 400, that is, for very long residence times. At short
times, the profile is parabolic, evolving into a flat profile at
long times (inset in Figure 9). A larger viscosityo] of the 800
fluid in the central region is predicted, coexisting with a region T ¢ —
supporting a much larger shear rate near the tube wall, where ]
7~ N (Mo/n- = 1000). When the second critical shear rate, 600 +
Ve, IS exceeded, that is, for very high volumetric flow rates,
fully developed flow is again accomplished very rapidly and £
the parabolic profile is recovered, although a small shear- £ 400 +
banding flow region remains in the pipe center (Figure 9c). As =
described before (Figure 5), this is a consequence of the linear
dependence of the shear stress (or shear rate) on the pipe radial 200 -+
position that causes a small portion of the fluid to be at the
shear-banding flow region whenever the wall-shear rate becomes
Iargerthanj/cz. 0 - ————t———f

To stress the importance of the residence time in achieving ) ) R ’ ’
totally developed shear-banding flow, the ratio between the time

; i ; i 9. Velocity profiles as a function of residence time for three
required to reach steady-state conditions and the main relaxatiorf;'gure .
. : - PR - different pressure gradients: (a) 40 Pa/m, (b) 320 Pa/m, (c) 800 Pa/m.
time of the samplésdzq is depicted in Figure 10 as a function The critical pressure gradient for shear banding for this flow situation

of the pressure gradief. When the applied pressure gradient s 300 pa/m. The values of the parameters employed are the same as
is below the critical value for shear bandingReit = 300 Pa/m  those used in Figure 6 witp; in 0.1 s. Arrows indicate the time
for the case shown in Figure 10), steady state is achieved veryevolution of the profiles.
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100 conditions are reached quite quickly, although small oscillations
are detected at short times.

o Discussion and Conclusions

Based on the reptation theory of Ddtdwards for polymer
solutions, McLeish and Ball proposed that the reptatiggand
the Rouser characteristic times provide two conditions in the
shear stress-shear rate relationship which give rise to the spurt
effect> However, these two characteristic times depend strongly
on molecular weightte, ~ M2 andzg ~ M?), and so, molecular

te/Ta

0.1 weight polydispersity, which is common in high molecular
10 100 1000 10000 weight polymers, masks the discontinuity in rey relation-
V P (Pa/m) ship.

Figure 10. Ratio of time to reach steady state to main relaxation time ~ Wormlike micellar solutions also exhibit a broad size
tsd7r versus applied pressure gradient in pipe flow of micellar solutions. distribution but because of the chain breaking and recombination
The parameters used are the same as those in Figure @mitr0.1 processes that average the chain length distribution, these
S- systems exhibit a narrow distribution of characteristic times in
1000 the fast breaking regime; that is, they behave as highly
d monodisperse systertsHence, wormlike micellar solutions are
excellent candidates to examine the spurt effect.
¢ The phenomenological model used here was forwarded by
us to mimic the nonlinear rheological behavior of wormlike
micellar solutions in instantaneous stress relaxation, inception
of shear flow, interrupted shear flow and other flow situati®hs.
L Recently, we modified this model by introducing a shear rate-
dependent kinetic constant for micelles breaking to predict the
0.1 main features of shear-banding flow in cone-and-plate rheom-
etry1* This model have six parametergo( gw, Go, 4, ko, and
0.01 . . 1), whose values depend on surfactant concentration (Figure
0.01 0.1 1 10 100 1) and temperatur@.All the parameters are obtained from single
te/ e and independent rheological experiments and with these values,

Figure 11. Apparent shear rate versus dimensionless time for different gther rheological data can be reproduced. The model predicts
applied pressure gradients: (a) 10 Pa/m, (b) 40 Pa/m, (c) 320 Pa/m, . . . - - ; :
(d) 800 Pa/m. The critical pressure gradient for shear banding for this that theo—y relationship for micellar solutions has an inflection

flow situation is 300 Pa/m. The parameters employed are the same asand th_e_ shape of a sigmoid _With an unstable region between
those in Figure 6 withy, = 0.1 s. two critical shear rates (cf. Figures-2). The model besides,

forecasting both the homogeneous and the nonhomogeneous

rapidly, within fractions of the main relaxation time of the flow regions, shows the existence of a low- and a high-shear-
sample. However, onc&P reaches values at which shear rate pranches (F_lgure 3) and of a critical point where shg_ar-
banding begins to develop, the time required to arrive to the banding flow vanishes. Both metastable branches and a critical
steady-state conditions increases rapidly, reaching hundredthd?0int have been observed experimentéfy’>°4!The model
relaxation times. Moreover, there i range where no steady also predicts the presence of oscillations and long transients
state is ever reached. Such long transients have been observeﬁssgf';ted with shear-banding flow in cone-and-plate rheom-
when shear-banding flow occurs in cone-and-plate measure-St"Y- ’, . ) .
ment&-22 and recently uncovered by Hermandez-Acosta et al. AN important question about shear-banding flow is how to
in pipe flow of wormlike CTAT micellar solution& When the set the position of the stress at which the system separates into

. ) ; . ? 4 i
high-shear-rate branch is approached, our model predicts that?ands' Recently, Olmsted and*£ealculated phase diagrams

the steady state is reached again quite rapidly. Incidentally, the ori)frillgel%é?\/?/esefpﬁgzg)sn?islgtfgeiir I:Zvn\:ai(i)clwgr? dt/r(‘)? |I(;m_e:£?|ﬁl1al)
plot shown in Figure 10 resembles that Qfzy versusy P P pic, ’ g 9

observed experimentally and predicted by our model for cone- for the modified Doi-Edwards equation, and used its properties

and-olate rheometry measurements. in CTAT micellar solu- to determine the coexistence stress. Their criterion was the
tionse“ y equality of the chemical potential of the bands. Our model, just

. . ) like the modified Doi-Edwards’ model, has three stable

Figure 11 depicts the apparent shear rate as a function ofgp|ytions in homogeneous planar shear flow. Here it is used
dimensionless timézg for different pressure gradients. For small  together with the generalized Gibbs equation of viscoelastic
VP such thatyappis within the Newtonian flow regime (curve  fluids under shear flofd to derive a criterion for the coexistence
a), the steady state is reached very rapidhy, (< 1). As the of bands under shear flow. The criterion for bands coexistence
applied pressure gradient is increased, but still below the shear-is the equality of the extended Gibbs free energy of the bands.
banding region (curve b), the time required to achieve steady The predicted stress plateau coincides remarkably well with
state increases, although it is still quite fattt{ ~ 1-5). experimental data (Figure 4).
However, as soon as theP yields stresses larger the critical One of the parameters of the modge) is directly related to
value (curve c), oscillations appear which last many hundredthsthe shear-banding region. The model shows that the intensity
relaxation times. In some cases, our model predicts oscillationsof shear banding, which is the difference between the maximum
for very long times f{z4 > 1000). When the applied pressure and minimum values of stress in the instability region, increases
gradient is in the high-shear-rate branch, once again steadyasu; increases (Figure 6). The shear-banding intensity parameter

100

1, ,,(s")
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also determines the time required to reach steady state after (3) Shikata, T.; Sakaiguchi, Y.; Urakami, H.; Tamura, A.; Hirata, H.

inception of shear flow. The magnitude @f is related to the ¥ C(‘Z';Ogh'iﬂ;etgaf’r‘? IS—|Ci:;?57i—|l'1$’o%2tlé Langmuir 1967 3, 1081

width of the region where no steady state is reached (see Figure (5 ghikata, T.: Hirata, H.. Kotaka, Tangmuir1988 4, 354.

6 of ref 14). Furthermore, the width and magnitude of the stress (6) Shikata, T; Hirata, H.; Takatory, A.; Osaki, B. Non-Newtonian

plateau also determines. Fluid Mech.1988 28, 171. _

In pipe flow, our model also captures the main features gg ggﬁ:&% E,mroa}%al;i]lr}argﬂrgflglﬁ ?1%93;4%1 933

observed by NMR velocimetry such as distinct shear bands,  (g) rehage, H.: Hoffmann, Hl. p‘hyslyC-hemlggé 92, 4712.

one at the tube center and another near the pipe wall. The latter (10) Rauscher, A.; Rehage, H.; Hoffmann,Rtog. Colloid Polym. Sci.

one, which supports a very high, approximately constant, shear1991 84, 99. _ _

rate next to wall, grows in thickness with increasing shear rate.  (11) Kern, F; Zana, R. S.; Candau,Langmuir1991, 7, 1344.
e . (12) Soltero, J. F. A.; Puig, J. E.; Manero, O.; Schulz, PL&gmuir

Furthermore, our model reproduces qualitatively the experi- 1995 11 3337.

mental wall stress versus apparent shear rate for short residence (13) Soltero, J. F. A.; Puig, J. E.; Manero, Gangmuir1996 12, 2654.

times and once steady pipe flow is achieved, its predictions are  (14) Bautista, F.. Soltero, J. F. A,;’Re-Ltpez, J. H.; Puig, J. E;
Manero, O.J. Non-Newtonian Fluid Mect200Q 94, 57.

quite accurate (Figure 8). As it was shown elsewliértne (15) Cates, M. EEurophys. Lett1987, 4, 497
appearance of shear banding depends on the residence time of (16) Cates, M. EMacromolecules987, 20, 2289.
the fluid in the pipe. If the residence time is short (snha), (17) Cates, M. EJ. Phys. Fr.1988 49, 1593.

the data and the predictions approach that of a Newtonian _(18) Cates, M. E;; Candau, S.J.Phys.: Condens. Matter99q 2,
pehaylor where no shear bapdlng has occurred. As the residenc (19) Tumer, M. S.; Cates, M. E.angmuir1991 7, 1590.
time increases, shear banding develops and the plateau stress (20) Spenley, N. A.; Cates, M. E.: McLeish, T. C. Bhys. Re. Lett.
becomes apparent. 1993 71, 939.
T monstr h h velopment of shear ndin (21) Grand, C.; Arrault, J. M.; Cates, B. Phys. Il Fr.1997 6, 551.

0 demonstrate that the develop e to S. ca - t.)a ding (22) Soltero, J. F. A.; Bautista, F.; Puig, J. E.; Manero L@gmuir
depends on both the stress level and residence time, it is useful 999 15 1604.
to show that experimental data for short and long residence times  (23) Callahan, P. T.; Cates, M. E.; Rofe, C. F.; Smelders, J. B. B. A.
in the pipe coincide with steady state data obtained by cone- Ph{2§4)llhl;r.ll9sﬁvf\5/. 355'.| han P T Rheol 1997 41 901

_ : H 7 air, R. ., Callaghan, P. M. eol. A , .
ind plate rheomgtry (Figure 7). For short re3|der!ce t”.h‘éB ( (25) Britton, M. M.; Mair, R. W.; Lambert, R. K.; Callaghan, P. T.
=50 or 100), capillary data overlap to those obtained in a cone rneol.1999 43, 897.
and plate at the inception of flow or in stress ramps, where the  (26) Vinogradov, G. VRheol. Actal973 12, 357. .
stress increases linearly with time. Similarly, for long residence o §27) geclrgggeé;-apé;‘l %ressely, R.; Makhloufi, R.; Cappelaerépkoid
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tl.mes t/b 400), the d.ata overlap with those measured at (28) Makhloufi, R.; Decruppe, J. P.; Ait-Ali, A.; Cressely, Rurophys.
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also reproduces these features (Figure 8). Moreover, even though (29) Berret, J. F.; Roux, D. C.; Porte, G.; Lindner,Rurophys. Lett.
our model over-predicts data for sho/D values (Figure 8), it 1993?02585&1-_& VoL - A Roux. namuir 199
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long times (curve c in Figure 11). These results are consistent (34) Boger, D. V.Annu. Re. Fluid Mech.1987 19, 157.
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