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The flow in a pipe of wormlike micellar solutions is examined using a simple model that consists of the
codeformational Maxwell constitutive equation and a kinetic equation that accounts for the breaking and
reformation of micelles. The model needs six parameters,all of whichare extracted from single independent
rheological experiments. One of the parameters, theshear-banding intensityparameter is associated with the
stress plateau in the shear-banding region. The stress plateau is set in our model by the criterion of equal
extended Gibbs free energy of the bands. The model predicts a Newtonian (parabolic profile) flow at low-
shear rates or low-pressure gradients, followed by shear thinning up to a critical rate where instabilities and
long transients appear. At this critical shear rate, a shear-banding flow region arises near the pipe wall. The
model indicates that tube lengths up to 400 diameters are required to obtain fully developed flow, where a
pluglike profile at the center of the tube coexists with a region supporting a much higher shear rate next to
the wall. Shear-banding flow is present up to a second critical shear rate. At shear rates larger than the
second critical rate, the parabolic velocity profile is recovered, except near the center of the tube where a
small shear-banding flow region remains because the stress at that radial position is equal to the plateau
stress. This is a consequence of the linear dependence of the shear stress with the pipe radius. The predictions
of the model are compared with experimental results from the literature.

Introduction

The rheological behavior of wormlike micelles is rich and
varied because they can form entanglements in the semidilute
regime akin to polymer solutions, and because they break and
reform continuously.1-14 In the linear viscoelastic regime, the
rheological response of wormlike micelles at low frequencies
spans from near Maxwell behavior with a single relaxation time
to polymer-like behavior with a stretch exponential spectra of
relaxation times, depending on the ratio of the breakingτbreak

and the reptationτrep times.15-19 In the fast breaking regime
(τbreak/τrep , 1), the rheological response of micellar solutions
at low frequencies tends to Maxwell behavior with a single
relaxation time,τd ) (τbreakτrep)1/2.2,4-9,13,15-19

In the nonlinear viscoelastic regime, at least four regimes have
been reported in steady shear experiments as a function of
applied shear rate.20-25 At low shear rates, a Newtonian region
is observed, followed by a shear-thinning region. However, at
a critical shear rate,γ̆c1, a stress plateau,σPlateau, accompanied
by oscillations and long transients, is observed. At this rate and
up to a second critical shear rate,γ̆c2, two spatially distinct
regions of low and high shear rate coexist. The discontinuity in
the σ -γ̆ relationship is due to the spurt effect, also known as
shear-banding flow.26 Shear-banding flow has been observed
by NMR velocimetry,23-25 by optical methods,27,28and by small

angle neutron scattering.29,30 Above γ̆c2, the flow becomes
homogeneous again and a Newtonian behavior is observed with
a smaller shear viscosity. This high-shear-rate branch is hard
to detect in cone-and-plate rheometry because flow instabilities
expel the sample from the instrument; however, the high-shear-
rate branch was conclusively visualized recently in pipe flow
by NMR velocimetry.25

To explain shear-banding flow of wormlike micellar solutions,
several models have been forwarded. The extension of the
reptation-reaction model to the nonlinear rheology of wormlike
micellar solutions predicts a stress plateau equal to 0.67G0 at a
critical shear rate of 2.6/τd.20 Using the generalized Maxwell
equation and a damping function to account for the nonlinear
behavior, Callaghan et al. predicted the existence of a maximum
in theσ-γ̆ relationship followed by a negative slope regime.23

However, neither of these models are able to predict the upturn
at higher shear rates. Spenley et al., using the Lagrangian-
Eulerian method of fluid dynamics combined with the Ottinger’s
stochastic method for the constitutive equation, showed that
above the critical shear rate, the steady state consists of bands
supporting different shear rates.31 Others have solved the
homogeneous flow equation in several geometries with sophis-
ticated hydrodynamic flow solvers and found a selected stress
for shear banding.32,33 Also, elastic flow instabilities34,35 and
secondary flow36,37 have been suggested to explain the spurt
effect. However, all these approaches consider that shear-
banding flow is caused by mechanical flow instabilities.
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On the other hand, several groups have proposed that shear
banding is more akin to a first-order dynamic phase transitions
even at concentrations far fortrue phase boundaries, in which
mechanical instabilities may or may not play a role.29,38-44

Evidence supporting this point of view include (i) robustness
of the stress plateau, (ii) slow sigmoidal onset kinetics which
is characteristic of nucleation and growth processes of the fluid-
oriented phase, and (iii) the similarity of the stress-shear rate
curves with the pressure-density isotherms for liquid-gas
systems, where nonequilibrium phases may be separated by
hypersurfaces (in a field variable space) representing continuous
(e.g., critical points or lines) or discontinuous (first-order)
transitions.41,43 In fact, the existence of “critical” conditions of
surfactant concentration and temperature where the stress plateau
reduces to one flat inflection point has been observed and
“master dynamic phase diagrams” have been constructed.41-44

A simple, although phenomenological, model consisting of
the codeformational Maxwell constitutive equation coupled to
a kinetic equation for the breaking and reformation of micelles
was proposed by us to account for the non linear rheological
behavior of wormlike micellar solutions of cetyltrimethylam-
monium tosilate (CTAT).22 Later, we extended this model to
describe the shear-banding behavior of CTAT micellar solutions
detected in cone-and-plate rheometry as well as the long
transients and oscillations associated with this flow.14

In this paper, the flow in a pipe of wormlike micellar solutions
is examined with our model. First, we compare experimental
steady shear results for CTAT micellar solutions obtained by
cone-and-plate rheometry22 with the predictions of the model
without fitting parameters. The position of the stress plateau in
the shear-banding region is determined using irreversible
thermodynamics arguments. Then we examine the sensitivity
of the various parameters of the model and compare its
predictions with recent results reported in the literature for the
pipe flow of viscoelastic micellar solutions.

The Model

The model consists of the codeformational Maxwell constitu-
tive equation coupled to a kinetic equation to account for the
breaking and reformation of micelles.14 For simple shear flow,
the model reduces to the following system of ordinary dif-
ferential equations:

Hereσ12 is the shear stress;γ̆12 is the shear rate,σii (i ) 1, 2,
and 3) are the normal stresses;æ(≡η-1) is the fluidity; η is the
shear viscosity,æ0 and æ∞ are the fluidities at zero- and at
infinite-shear rate;G0 is the elastic plateau modulus,λ is a
structure relaxation time;k0 is a kinetic constant for structure
breakdown,µ1 can be interpreted as ashear-banding intensity
parameter; andΘii ) (2γ̆σ12)/(G0æ) for i ) 1, andΘii ) 0 for
i ) 2 and 3 in eq 2. Becauseσ22 is negligible for CTAT micellar
solutions,22 the third term on the left-hand side of eq 1 will be
eliminated for the rest of the paper.

For steady simple-shear flow, eqs 1-3 with their time
derivatives set to zero give

where N1 (≡σ11 - σ22) is the first normal stress difference
Consider now the fully developed isothermal flow of an
incompressible fluid in a tube of radiusR and lengthL where
the pressure drop along the length of the tube is∆P. For this
situation, the shear stress distribution is given by

The shear stress at the tube wall is then given by eq 6 withr )
R. Usually in flow in a tube, the volumetric flow rateQ is
measured. The volumetric flow rate can be calculated from
fluidity data as

The model needs six parameters to predict experimental data:
æ0, æ∞, G0, k0, λ, andµ1. All of them can be estimated from
rheological experiments as described below.æ0 is the inverse
of the zero-shear rate Newtonian viscosity in steady shear
experiments.æ∞ can be obtained from the high-shear-rate plateau
in steady shear measurements. However, the range of shear rates
needed to determineæ∞ usually cannot be reached in cone-and-
plate rheometry; hence,æ∞ can be obtained by fitting the viscous
modulusG′′ with the Hess model, given by

45 whereτd is the main relaxation time of the sample andω is
the applied frequency.

G0 can be obtained by oscillatory shear measurements or from
instantaneous stress relaxation experiments. The agreement
between the values ofG0 obtained from these two experiments
is within 10%.13 The structural relaxation timeλ can be
estimated from the intercept of the stress relaxation curve at
long times after cessation of steady shear flow, where the
intercept is given by exp[-G0λ(æss- æ0)], æssbeing the steady-
state fluidity prior to the cessation of shear flow.46 The parameter
k0, in turn, can be evaluated by fitting numerically the stress
growth coefficientη+ from inception of shear flow experi-
ments.46 The shear-banding intensityparameterµ1, as it will
be discussed below, is uniquely determined by the value of the
stress at the plateau region.

Figure 1 depicts the values of the experimentally measured
parameters at 25°C for CTAT micellar solutions. The solid
lines are only aids to the eye. The plateau elastic modulusG0

follows a power law dependence on surfactant concentration
with an exponent equal to 2.0. Similar dependence has been
reported elsewhere.47,48

Irreversible Thermodynamics Flow Analysis

According to the extended irreversible thermodynamics
of viscoelastic fluids under flow, the generalized Gibbs
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equation is given by49

Here s is the extended specific entropy,T the absolute
temperature,u the specific internal energy,P the thermodynamic
pressure,V the specific volume,τ the stress relaxation time,
andσ the stress tensor.

For simple shear flow, only the shear stressσ12 and the normal
stress componentsσii (i ) 1, 2, and 3) remain. Hence, after
performing the double-dot tensor product indicated in eq 9 and
using the definition of the extended Gibbs free energy G (≡u
- Ts + PV) to get rid of the extended entropy, one obtains

In steady simple shear flow, eqs 1 and 3 yield a cubic equation
in shear rate [eq 5]. Also, in steady state,σ11 ) (2γ̆σ12)/(G0æ)
[eq 2 with i ) 1] andσ22 ) σ33 ) 0 [eq 2 with i ) 2 and 3],
and sinceσ12 ) γ̆/æ from eq 1, thenσ11 ) 2σ12

2/G0. Hence,
the extended Gibbs free energy for simple shear flow (eq 10)
underisobaric and isothermalconditions becomes

In terms of shear rate, eq 11 can be written, using eq 5, as

where

It can be easily shown thatâf 0 as γ̆fγ̆∞, and because the
range of the parameters of the model given in Figure 1,â is
small asγ̆f0. Hence, eq 12 can be approximated to

In eq 13,τ[≡(G0æ0)-1] is the Maxwell relaxation time. In
strict sense,τ is a function of the fluidityæ and hence it is not
a constant. However, as a first approximation, small departures
from æ0 are considered here. Within this approximation, normal
stresses can be neglected, and eq 13 reduces to

Substitution of the steady-state version of eq 1 in eq 14 and
integration gives

whereæ is the solution of eq 5.
Inasmuch as the working equations are written in terms of

the shear stress and the shear rate, subscripts in these two
variables will be dropped in the rest of the paper for simplicity.

Results

A schematic nonmonotonic representation of theσ-γ̆ relation-
ship, first suggested by McLeish and Ball50 to explain the spurt
effect in polymer solutions, is portrayed in Figure 2. For shear
rates belowγ̆N, a Newtonian behavior is followed withη ) η0

(region I). Shear thinning behavior is observed aboveγ̆N (region
II) up to γ̆c1, at which the shear rate becomes multivalued and
a stress plateau appears. However, under some circumstances,
a metastable branch has been detected (region III) up to a critical
stress, known astop jumping stress.21 For larger stresses, the
system becomes unstable since (dσ/dγ̆)P,T < 044 and, as a
consequence, shear banding develops (region IV). In this region,
as mentioned before, bands supporting different shear rates
coexist. Once the second critical shear rateγ̆c2 is exceeded, a
homogeneous Newtonian forms again (region VI) but with a
smaller viscosity (η∞). A second metastable branch may occur
at high shear rates (region V). Britton et al. discovered recently
this branch in pipe flow experiments performed in a decreasing
shear-rate mode.25

The steady relationship betweenσ and γ̆, as predicted with
eq 5, is depicted in Figure 3, using values for parameters typical
of CTAT micellar solutions (Figure 1). The predicted curve has
the sigmoid shape shown in Figure 2. According to eq 15, the
extended Gibbs free energy versusγ̆ curve exhibits one or two
minima, depending whether the shear rate (or the stress) lies
outside or inside the multi-valued region. For shear stresses
smaller thanσb or larger thanσd, there is a one-to-one
correspondence between the shear stress and the shear rate. The

Figure 1. Experimental values of the parameters of the model
determined at 30°C as a function of CTAT concentration: (9) G0,
(2) æ∞, (b) æ0, (O) λ, (1) k0, ([) µ1.
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Figure 2. Schematic representation of the shear stress versus shear
rate relationship for fluids that exhibit the spurt effect.
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extended Gibbs free energy exhibits a single absolute minimum
at each applied shear rate in these two homogeneous regions
(see curves I and V in Figure 3b). However, for shear stresses
betweenσb andσd, the relationship betweenσ and γ̆ becomes
multi-valued and so, the extended free energy exhibits two
minima. A very important result is the fact that equal extended
free energy minima occur only when the shear rates areγ̆c1

and γ̆c2 (Figure 3b). Consequently, the stress plateau (σplateau)
and the critical shear rates (γ̆c1 and γ̆c2) for shear banding can
be uniquely determined. On the other hand, when the stress is
larger thanσb but smaller thanσplateau, the extended Gibbs free
energy curve also exhibits two minima of different depth at the
low- and the high- shear-rate sides of the sigmoid (curve II in
Figure 3b). The lowest minimum corresponds to the low-shear-
rate side, which indicates that the flow is homogeneous and
that the fluid is supporting only the low shear rate. However,
when the stress is larger thanσplateaubut smaller thanσd (i.e.,
within the metastable branch), the extended Gibbs free energy
shows two minima, where the deeper minimum appears at the
high-shear-rate side (curve IV in Figure 3b). This implies that
the more stable state is the high-shear-rate side. Hence, under
these circumstances, the flow is also homogeneous and the fluid
is now supporting only the high shear rate. In summary, there

is heterogeneous flow betweenγ̆c1 and γ̆c2, and homogeneous
flow below γ̆c1 and aboveγ̆c2.

The existence of the metastable branches can also be
understood in terms of the analysis presented here. The
calculations shown in Figure 3 indicate that local free energy
minimum exists at both branches. Hence, if either of these
branches is reached by, for example, controlled-stress measure-
ments, the local free energy minimum guaranties its existence
until large enough fluctuations shift the system to the overall
minimum within the shear-banding region and, as a conse-
quence, two bands will form, whose proportions are determined
by the lever rule,41,44,51i.e.,

Figure 4 shows the experimental shear stress as a function
of shear rate measured with cone-and-plate geometry for CTAT
micellar solutions of various concentrations. The solid lines
represent the predictions of our model using the parameters
reported in Figure 1. As described above, at moderate and high
CTAT concentrations, our model predicts a sigmoid similar to
that shown in Figure 2. This sigmoid fade as the CTAT
concentration diminishes. In fact, our model predicts a mono-
tonic increasing relationship betweenσ andγ̆ with a near-zero
slope that follows closely the experimental data for the 2 wt %
CTAT solution, which has a very smallµ1 value (Figure 1). As
discussed elsewhere,14 this result is due to both the decreasing
value of the product ofk0 and λ22 and to the decrease in the
shear-banding intensity parameter (Figure 1; also Figure 2 of
ref 14), with diminishing CTAT concentration. Inasmuch ask0λ
andµ1 are cofactors ofγ̆3 in eq 5, the quadratic term begins to
dominate as these parameters become smaller and so, the
sigmoid tends to wash out. On the other hand, for higher CTAT
concentrations, our model reveals a sigmoid whereas the
experimental data depict a stress plateau. Nevertheless, the
dividing line that joints the critical shear ratesγ̆c1 andγ̆c2 passes
through the experimental data. As described above, the criterion
employed to set the position of the stress plateau is that the
bands at the critical shear rates should have equal extended
Gibbs free energies. This criterion sets the value of the shear-
banding intensity parameter and yields aunique relationship
betweenσplatteauandµ1.

Figure 5 illustrates how theσ-γ̆ relationship (Figure 5a) is
related to the pressure drop along the tube radius (Figure 5b),
to the extended Gibbs free energy as a function of shear rate

Figure 3. (a) Shear stress versus shear rate plot, where the location of
the plateau stress, the span of the multivalued region, the metastable
region and the homogeneous flow region are indicated. (b) Extended
Gibbs free energy plotted versus the shear rate for various applied
stresses. The actual values of the stresses have been multiplied by
constant factors: I (12.5 Pa× 4000; II (15.25 Pa× 100); III (15.865
Pa× 20); IV (18.9 Pa× 1); and V (21 Pa× 0.1) for better observation
of the curves.

Figure 4. Shear stress versus shear rate measured in cone-and-plate
rheometry at 30°C for micellar solutions of CTAT: (9) 2 wt %, (O)
5 wt %, (b) 10 wt %, (2) 20 wt. %. Solid lines are the predictions of
the model. Lines joining the low- and high-shear-rate branches of the
sigmoid in the shear-banding region (coexistence line) were set
according to the criterion of equal Gibbs free energy of fluid bands
supporting the low and the high shear rates (eq 20).

γ̆ ) x1γ̆c1 + (1 - x1)γ̆c2 (16)
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(Figure 5c), and to the velocity profile (Figure 5d). When the
shear rate is smaller thanγ̆c1, the parabolic profile typical of
the Poiseuille flow of a Newtonian fluid is observed. In fact,
the model forecasts a parabolic velocity profile with a power-
law exponentn close to 1. However, the stress varies linearly
with radius in pipe flow. So, when the stress at the tube wall
becomes equal to the plateau stress, the model predicts two
bands: one in the core supporting a lower shear rate,γ̆c1, and
another next to the wall supporting a higher shear rate,γ̆c2. The
plateau stress value set by the equal-extended Gibbs free energy
criterion leads to two stable branches in the low- and high-
shear-rate regions, respectively (Figure 5c). The plateau stress
line in Figure 5a corresponds to a single point in Figure 5b
and, hence, to a boundary between the two bands in the velocity
profiles shown in Figure 5d. However, if we allow for an
unsteady-state situation along the metastable branch (stress top
jumping), the flow is likely to become unstable. This is observed
in the section of the velocity profile corresponding to the area
located between the top jumping and the minimum in Figure
5a. Nevertheless, the analysis by Irreversible Thermodynamics
of the metastable and unstable regions indicates that only that
shear rate which gives the minimum in extended Gibbs free
energy (Figure 5c) yields the right velocity profile, even though
there are three values of shear rate (Figure 5a). The same
analysis also demonstrates that the equal-free energy criterion
that fixesuniquelyµ1 corresponds to the equal minimum values
of the extended Gibbs free energy atγ̆c1 and γ̆c2 (Figure 5c).
For shear rates higher thanγ̆c2, a Newtonian velocity profile is
recovered again but with a smaller viscosity, although a small
shear-banding flow region remains near the tube center.

Figure 6 shows the effect of the shear-intensity parameterµ1

on the flow behavior in a tube at a fixed pressure gradient (i.e.,
fixed wall-shear stress). The values of the other parameters of
the model are similar to those for CTAT micellar solutions

(Figure 1). Elsewhere we showed that the stress plateau becomes
wider asµ1 increases.14 Also, σplateau, γ̆c1, andγ̆c2 shift to lower
values as the shear intensity parameter rises (inset in Figure 6)
until it reaches a limiting value at highµ1. In flow in a tube,
neither shear banding nor instabilities are predicted whenµ1 )
0. Instead, a smooth velocity profile typical of a shear thinning
fluid develops with a power law exponent,n ) 0.98 (black
profile in Figure 6). However, for values ofµ1 greater than zero,
a band near the tube wall supporting a higher shear rate is
predicted (red and blue profiles in Figure 6). The thickness of
this band increases as the shear-banding intensity parameter
increases since the critical shear stress and the critical shear
rate shift to smaller values.

Figure 7 depicts velocity profiles as a function of the wall
stressσw. To isolate the effect of this variable, the value ofµ1

is set equal to 0.1 and the other parameters are the same as
those used in Figure 6. When the wall-shear rate is smaller than
γ̆N, the parabolic profile of a Newtonian fluid is predicted (black
profile in Figure 7). When the applied stress givesγ̆-values
betweenγ̆N andγ̆c1, the profile is no longer Newtonian but that
of a shear-thinning fluid (green profile in Figure 7). However,
when the applied stress (i.e., pressure gradient) becomes equal
to or slightly larger than the stress plateau value, a band
supporting a higher shear rate appears near the tube wall with
a rapid rise in shear stress at the wall (blue profile in Figure 7).
This band coexists with another one supporting a smaller shear
rate at the center of the tube. On the other hand, when the
applied stress is at the high-shear-rate branch of theσ-γ̆ flow
curve (see Figure 2), the Newtonian parabolic profile is
recovered but a small shear-banding region remains in the pipe
center (red profile in the inset of Figure 7).

Figure 8 reports experimental and predicted wall-shear stress
versus apparent shear rate,γ̆app[)4Q/(πR3)] for a 2 wt %CTAT
solution as a function ofL/D. Experimental data, measured in

Figure 5. Schematic representation of the relationship between the nonmonotonic constitutive equation between shear stress and shear rate (a), the
wall-shear stress as a function of tube radial position (b), the extended Gibbs free energy, calculated from irreversible thermodynamics, as a function
of shear rate (c), and the velocity profile in the steady flow in the pipe (d).
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a capillary tube of 3 mm in diameter, were taken from
Hernández-Acosta et al.52 Steady shear data were measured in
a Rheometrics RSD-II mechanical spectrometer in a cone-and-
plate geometry (diameter of 5 cm and angle of 2.28°).22 For
shear rates larger than the critical value, hundredths main
relaxation times of the sample were required to reach steady
conditions in cone-and-plate measurements.22 Pipe-flow data for
L/D ) 400 coincide with the cone-and-plate data. Also, notice
that data forL/D ) 50 and 100 superimpose with that forL/D
) 400 up to shear rates around 10 s-1, i.e., for shear rates smaller
thanγ̆c1. For shear rates larger than this critical value, data for

L/D ) 50 lie above those forL/D ) 100 and both are above
the data obtained forL/D ) 400. Results reported elsewhere52

emphasize the importance of the residence time of the fluid in
pipe flow. Notice also that the predictions of our model forL/D
) 400 superimpose the experimental pipe flow data for the same
L/D ratio and the cone-and-plate steady data. However, the
model slightly overpredicts data for smallerL/D ratios, although
the predictions follow the same tendencies as those of the
experimental data: that is, departures from steady-state condi-
tions become larger asL/D diminishes. For very small lengths,
our predictions show that the plot ofσW versusγ̆app becomes a

Figure 6. Normalized axial velocity as a function of normalized radial position for different values of the shear-banding intensity parameterµ1 in
s: 0 (black line), 1 (red line), and 10 (blue line) and∇P ) 200 Pa/m. Values of the other parameters areæ0 ) 0.01 Pa-1 s-1, æ∞ ) 10 Pa-1 s-1.
G0 ) 100 Pa andk0λ ) 10-4 Pa-1 s. Inset: Shear stress versus shear rate curve for data shown in figure.

Figure 7. Normalized axial velocity as a function of normalized radial position for different pressure gradients in Pa/m: 50 (black line), 200
(green line), 600 (blue line), 800 (red line). The critical pressure gradient for shear banding is 300 Pa/m. The parameters employed in the calculations
are the same than those used in Figure 5 but withµ1 ) 0.1 s. Inset: Scaleup of the profiles near the center of the tube.

Shear-Banding Flow of Wormlike Micelles J. Phys. Chem. B, Vol. 106, No. 50, 200213023



straight line (not shown), indicating a Newtonian behavior,
which means that the shear-banding flow has not had enough
time to develop.

Velocity profiles as a function of a dimensionless flow time,
t/τd, are shown in Figure 9 for applied pressure gradients such
that the wall-shear rate is belowγ̆c1, betweenγ̆c1 andγ̆c2 (i.e.,
within the shear-banding region), or aboveγ̆c2(i.e., in the high-
shear-rate branch of theσ-γ̆ flow curve). When the applied
gradient produces wall-shear rates smaller thanγ̆N, the velocity
profile develops very rapidly, i.e., within fractions of the main
relaxation time of the sample. After a fewL/D, the parabolic
profile, typical of Poiseuille flow, forms (Figure 9a). At higher
shear rates but still lower than the first critical shear rate for
spurt flow, the approach to fully developed flow is fast but now
the profile of a shear thinning fluid is observed (not shown).
This profile can be fitted accurately with the power law
constitutive equation with an exponentn between 0 and 1,
depending on the level of the applied shear rate. As the wall-
shear rate approachesγ̆c1, the time required for achieving fully
developed flow increases; also deviations from the parabolic
profile are noticed. Figure 9b shows velocity profiles as a
function of time for shear rates larger thanγ̆c1 but smaller than
γ̆c2. For this situation, our model predicts that tube lengths longer
than 200 diameters (L/D > 200) are needed to reach the fully
developed flow condition. Moreover, fluctuations are seen even
for L/D > 400, that is, for very long residence times. At short
times, the profile is parabolic, evolving into a flat profile at
long times (inset in Figure 9). A larger viscosity (η0) of the
fluid in the central region is predicted, coexisting with a region
supporting a much larger shear rate near the tube wall, where
η ≈ η∞ (η0/η∞ g 1000). When the second critical shear rate,
γ̆c2, is exceeded, that is, for very high volumetric flow rates,
fully developed flow is again accomplished very rapidly and
the parabolic profile is recovered, although a small shear-
banding flow region remains in the pipe center (Figure 9c). As
described before (Figure 5), this is a consequence of the linear
dependence of the shear stress (or shear rate) on the pipe radial
position that causes a small portion of the fluid to be at the
shear-banding flow region whenever the wall-shear rate becomes
larger thanγ̆c2.

To stress the importance of the residence time in achieving
totally developed shear-banding flow, the ratio between the time
required to reach steady-state conditions and the main relaxation
time of the sampletss/τd is depicted in Figure 10 as a function
of the pressure gradient∇P. When the applied pressure gradient
is below the critical value for shear banding (∇Pcrit ) 300 Pa/m
for the case shown in Figure 10), steady state is achieved very

Figure 8. Wall shear stress versus apparent shear rate for the flow of a 2 wt % CTAT micellar solution for differentL/D values. Symbols are
experimental values taken from ref 40 and solid lines are the predictions of the model for differentL/D values. Also for comparison, steady values
(+) obtained by cone-and-plate rheometry are included.

Figure 9. Velocity profiles as a function of residence time for three
different pressure gradients: (a) 40 Pa/m, (b) 320 Pa/m, (c) 800 Pa/m.
The critical pressure gradient for shear banding for this flow situation
is 300 Pa/m. The values of the parameters employed are the same as
those used in Figure 6 withµ1 in 0.1 s. Arrows indicate the time
evolution of the profiles.
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rapidly, within fractions of the main relaxation time of the
sample. However, once∇P reaches values at which shear
banding begins to develop, the time required to arrive to the
steady-state conditions increases rapidly, reaching hundredths
relaxation times. Moreover, there is a∇P range where no steady
state is ever reached. Such long transients have been observed
when shear-banding flow occurs in cone-and-plate measure-
ments21,22 and recently uncovered by Hernandez-Acosta et al.
in pipe flow of wormlike CTAT micellar solutions.52 When the
high-shear-rate branch is approached, our model predicts that
the steady state is reached again quite rapidly. Incidentally, the
plot shown in Figure 10 resembles that oftss/τd versus γ̆
observed experimentally and predicted by our model for cone-
and-plate rheometry measurements in CTAT micellar solu-
tions.14

Figure 11 depicts the apparent shear rate as a function of
dimensionless timet/τd for different pressure gradients. For small
∇P such thatγ̆app is within the Newtonian flow regime (curve
a), the steady state is reached very rapidly (t/τd < 1). As the
applied pressure gradient is increased, but still below the shear-
banding region (curve b), the time required to achieve steady
state increases, although it is still quite fast (t/τd ≈ 1-5).
However, as soon as the∇P yields stresses larger the critical
value (curve c), oscillations appear which last many hundredths
relaxation times. In some cases, our model predicts oscillations
for very long times (t/τd > 1000). When the applied pressure
gradient is in the high-shear-rate branch, once again steady

conditions are reached quite quickly, although small oscillations
are detected at short times.

Discussion and Conclusions

Based on the reptation theory of Doi-Edwards for polymer
solutions, McLeish and Ball proposed that the reptationτrep and
the RouseτR characteristic times provide two conditions in the
shear stress-shear rate relationship which give rise to the spurt
effect.50 However, these two characteristic times depend strongly
on molecular weight (τrep∼ M3 andτR ∼ M2), and so, molecular
weight polydispersity, which is common in high molecular
weight polymers, masks the discontinuity in theσ-γ̆ relation-
ship.

Wormlike micellar solutions also exhibit a broad size
distribution but because of the chain breaking and recombination
processes that average the chain length distribution, these
systems exhibit a narrow distribution of characteristic times in
the fast breaking regime; that is, they behave as highly
monodisperse systems.18 Hence, wormlike micellar solutions are
excellent candidates to examine the spurt effect.

The phenomenological model used here was forwarded by
us to mimic the nonlinear rheological behavior of wormlike
micellar solutions in instantaneous stress relaxation, inception
of shear flow, interrupted shear flow and other flow situations.22

Recently, we modified this model by introducing a shear rate-
dependent kinetic constant for micelles breaking to predict the
main features of shear-banding flow in cone-and-plate rheom-
etry.14 This model have six parameters (æ0, æ∞, Go, λ, k0, and
µ1), whose values depend on surfactant concentration (Figure
1) and temperature.22 All the parameters are obtained from single
and independent rheological experiments and with these values,
other rheological data can be reproduced. The model predicts
that theσ-γ̆ relationship for micellar solutions has an inflection
and the shape of a sigmoid with an unstable region between
two critical shear rates (cf. Figures 2-4). The model besides,
forecasting both the homogeneous and the nonhomogeneous
flow regions, shows the existence of a low- and a high-shear-
rate branches (Figure 3) and of a critical point where shear-
banding flow vanishes. Both metastable branches and a critical
point have been observed experimentally.20-25,40,41The model
also predicts the presence of oscillations and long transients
associated with shear-banding flow in cone-and-plate rheom-
etry.21,22

An important question about shear-banding flow is how to
set the position of the stress at which the system separates into
bands? Recently, Olmsted and Lu44 calculated phase diagrams
for rigid-rod suspensions in shear flow solving the interfacial
profile between phases (isotropic, nematic, and/or log-rolling)
for the modified Doi-Edwards equation, and used its properties
to determine the coexistence stress. Their criterion was the
equality of the chemical potential of the bands. Our model, just
like the modified Doi-Edwards’ model, has three stable
solutions in homogeneous planar shear flow. Here it is used
together with the generalized Gibbs equation of viscoelastic
fluids under shear flow49 to derive a criterion for the coexistence
of bands under shear flow. The criterion for bands coexistence
is the equality of the extended Gibbs free energy of the bands.
The predicted stress plateau coincides remarkably well with
experimental data (Figure 4).

One of the parameters of the modelµ1) is directly related to
the shear-banding region. The model shows that the intensity
of shear banding, which is the difference between the maximum
and minimum values of stress in the instability region, increases
asµ1 increases (Figure 6). The shear-banding intensity parameter

Figure 10. Ratio of time to reach steady state to main relaxation time
tss/τR versus applied pressure gradient in pipe flow of micellar solutions.
The parameters used are the same as those in Figure 6 withµ1 in 0.1
s.

Figure 11. Apparent shear rate versus dimensionless time for different
applied pressure gradients: (a) 10 Pa/m, (b) 40 Pa/m, (c) 320 Pa/m,
(d) 800 Pa/m. The critical pressure gradient for shear banding for this
flow situation is 300 Pa/m. The parameters employed are the same as
those in Figure 6 withµ1 ) 0.1 s.
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also determines the time required to reach steady state after
inception of shear flow. The magnitude ofµ1 is related to the
width of the region where no steady state is reached (see Figure
6 of ref 14). Furthermore, the width and magnitude of the stress
plateau also determinesµ1.

In pipe flow, our model also captures the main features
observed by NMR velocimetry such as distinct shear bands,
one at the tube center and another near the pipe wall. The latter
one, which supports a very high, approximately constant, shear
rate next to wall, grows in thickness with increasing shear rate.
Furthermore, our model reproduces qualitatively the experi-
mental wall stress versus apparent shear rate for short residence
times and once steady pipe flow is achieved, its predictions are
quite accurate (Figure 8). As it was shown elsewhere,52 the
appearance of shear banding depends on the residence time of
the fluid in the pipe. If the residence time is short (smallL/D),
the data and the predictions approach that of a Newtonian
behavior where no shear banding has occurred. As the residence
time increases, shear banding develops and the plateau stress
becomes apparent.

To demonstrate that the development of shear banding
depends on both the stress level and residence time, it is useful
to show that experimental data for short and long residence times
in the pipe coincide with steady state data obtained by cone-
and-plate rheometry (Figure 7). For short residence times (L/D
) 50 or 100), capillary data overlap to those obtained in a cone
and plate at the inception of flow or in stress ramps, where the
stress increases linearly with time. Similarly, for long residence
times (L/D ) 400), the data overlap with those measured at
simple steady shear flow in cone-and-plate geometry. Our model
also reproduces these features (Figure 8). Moreover, even though
our model over-predicts data for shortL/D values (Figure 8), it
demonstrates that the departures from steady data are more
severe asL/D becomes smaller, just as it is observed in the
experimental data.

Finally, our model also predicts that under certain values of
pressure gradient or wall-shear rate, no steady state is ever
reached (Figure 10) and that oscillations can remain for very
long times (curve c in Figure 11). These results are consistent
with the pressure drop variations observed when shear banding
forms in pipe flow of CTAT micellar solutions (see Figure 10
of ref 52). In fact, these pressure drop variations do not seem
to ever disappear. Also, for the pipe flow of a micellar solution
of cetylpyridinium chloride/sodium salicylate (60 mM/100mM
in water) a midflow region (γ̆app) 7-20 s-1) has been reported
where meaningful velocity data could not be recorded by NMR
velocimetry, due to fluctuations in the velocity profiles.24

In conclusion, we have presented here a simple model that
predicts many features of the shear banding in steady shear and
pipe flows. The model employs six parameters, all of which
can be obtained from independent rheological experiments, and
then they can be used to predict other rheological data.
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