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Linear oscillatory as well as transient and steady shear measurements for micellar solutions of
dodecyltrimethylammonium bromide (DTAB) and sodium salicylate (NaSal) as a function of the salt-to-
surfactant concentration ratio (CSALT/CDTAB) are presented. Our results indicate that, for molar ratios of
salt to surfactant (CSALT/CDTAB) smaller than 1, the micellar solutions follow closely Maxwell behavior with
a single relaxation time, that is, they are in the fast-breaking regime, and exhibit shear banding above
a critical shear rate. When this ratio is greater than 1, micellar solutions behave as semidilute polymer
solutions with a spectrum of relaxation times and no stress plateau is observed in steady shear. The results
are analyzed with the Granek-Cates model (for linear response) and with a simple model that consists
of the upper convected Maxwell constitutive equation coupled to a kinetic equation to account for the
breaking and reformation of the micelles (nonlinear behavior). The stress plateau and the critical shear
rates are determined from an extended irreversible thermodynamic analysis.

Introduction

Shear-banded flow is one of the most perplexing
phenomena observed in many wormlike micellar solu-
tions.1-6 A key question is the physical origin of the stress
plateau associated with shear-banded flows. Cates and
co-workers were the first to recognize the physical
importance of this stress plateau in wormlike micelles
from a theoretical point of view.7 The stress plateau has
also been reported in a variety of surfactant systems such
as lamellar phases,8-11 giant micelles,12-20 and giant highly

deformable vesicles.21 Moreover, shear-banded flow has
been observed in thermotropic liquid crystals22 and narrow
molecular-weight-distribution polymer solutions and
melts.23-25 Hence, this flow mechanism appears to be quite
general for complex fluids.

Recent theoretical and experimental results on worm-
like micellar solutions have set a controversy about the
causes of shear-banded flow.4,14,15,19,26-31 Several authors
have argued in favor of a mechanical instability,12,13,17,21

whereas others interpret their data as a shear-induced
first-order phase transition.9-11,19,28 This phenomenon was
originally explained in terms of a mechanical instability
by Cates et al.,7,32,33 who suggested that, under uniform
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stress conditions (such as those existing in a cone-and-
plate rheometer), the separation of distinct shear bands
occurs at shear rates larger than a critical value, γ̆c1.
Moreover, the mechanical instability theory predicts that,
when the shear rate reaches a threshold value, γ̆c1, flow
instabilities occur and the stress decreases with increasing
shear rate. The stress cannot decrease continuously with
increasing shear rate, so eventually there must be an
upturn in the curve of σ versus γ̆. The decreasing section
of the stress-versus-shear-rate curve is unstable, and a
steady flow can be maintained only if the system splits in
bands of low and high shear rates, γ̆c1 and γ̆c2, respectively.
Others indicate that the shear-banded flow may be akin
to a flow-induced first-order phase transition.27,29,34-36 The
coexistence of disordered and oriented phases has been
shown with neutron scattering and flow birefringence.14,29

Moreover, a master dynamic phase diagram, where the
normalized stress (σ/G0) levels off progressively up to a
plateau that is reduced to a single flat point of coordinates
(σ/G0 ) 0.9 ( 0.05 and γ̆τR ) 3 ( 0.2), has been reported,
which agrees with the experimental results.16 In the same
context, Fisher and Callaghan have shown by a combina-
tion of NMR spectroscopy and NMR velocimetry that the
shear-banding phenomena in the cetyltrimethylammo-
nium bromide (CTAB)/D2O system at concentrations close
to the isotropic-to-nematic phase transition are related to
a first-order transition, but contrary to previous assump-
tions based on flow birefringence measurements,37 the
nematic phase does not have a low but rather a high
viscosity, probably due to mesoscale ordering.38,39 An
interesting alternative to shear banding is wall slip, in
which very thin layers of highly deformed material
lubricate the walls of the rheometer.33

In this paper, we report the shear rheology of wormlike
micellar solutions of dodecyltrimethylammonium bromide
(DTAB) and sodium salicylate (NaSal) as a function of the
salt-to-surfactant concentration ratio with the goal to
switch the system from the fast- to the slow-breaking
regime and to examine the effect on the steady and
transient shear flow of these solutions. The linear oscil-
latory data are analyzed with the Granek-Cates model,40

whereas the steady and transient simple shears are
modeled with the upper convected Maxwell equation
coupled to a kinetic equation to account for the breaking
and reformation of the micelles.26

Modeling

The linear viscoelastic data was fitted with a simplified
Poisson renewal model proposed by Granek and Cates,
which replaces the exact kinetics of scission and recom-
bination of the micelles by a Poisson jump process that
neglects temporal correlations in the chain length expe-
rienced by a surfactant monomer or tube segment.40 The
best-fitting of this model to Cole-Cole plots, that is,
G′′(ω) versus G′(ω), yields the parameter ú (≡τBreak/τRep),
which allows for the discrimination between kinetic-
controlled flow (fast-breaking regime) and diffusion-
controlled flow (slow-breaking regime). From the value of
ú, the breaking time of the micelles was calculated for the
various regimes with the following formulas:41

In these equations, R ) le/Lh (Gmin′′/G0)/A, where A is a
constant of the order of unity and Gmin′′ is the value of the
loss modulus at the dip of the upturn.41

The steady and transient nonlinear flow regimes were
fitted with a model forwarded by us that consists of the
upper convected Maxwell equation coupled to a kinetic
equation to account for the breaking and reformation of
micelles.26 For simple shear, the model reads

In these equations, dσ/dt is the upper convected derivative
of the stress tensor, γ̆ is the shear rate, æ is the fluidity
()η-1, η being the shear viscosity), G0 is the plateau shear
modulus, æ0 and æ∞ are the fluidities at zero- and infinite-
shear rates, respectively, λ is a structure relaxation time,
k0 is the destruction rate constant in the absence of shear-
banded flow, and µ1 is the shear banding intensity
parameter. The parameters required to predict experi-
mental data, æ0, æ∞, G0, k0, and λ, are estimated from
rheological experiments.26,42 The values of æ0 and æ∞ were
obtained from the steady shear experiments. However,
for those samples where the second Newtonian plateau
was not reached in the range of shear rates examined, æ∞
was estimated by the best fitting of the viscous modulus
(G′′) data with the Hess model.43 The value of G0 was
obtained from oscillatory shear measurements. The
structural relaxation time, λ, was estimated from the
intercept of the stress relaxation curve at long times after
the cessation of steady shear flow, where the intercept is
given by exp[-G0λ(æss - æ0)], æss being the steady-state
fluidity prior to the cessation of shear flow.42 The
parameter k0, in turn, was evaluated by fitting numerically
the stress growth coefficient, η+, from the inception of the
shear flow experiments.42 The shear banding intensity
parameter, µ1, as discussed elsewhere, is uniquely de-
termined by the value of the stress at the plateau region.44

For simple steady shear flow, eqs 2 and 4 yield an
equation that is cubic in the shear rate:

The stress plateau was set by extended irreversible
thermodynamic arguments, mainly that the extended
Gibbs free energy versus shear rate curve has two minima
of equal depth. For simple steady shear flow, this
thermodynamic approach gives44, 45(34) Berret, J. F.; Porte, G. Phys. Rev. E 1999, 60, 4268.
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æ
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Also, at steady state, σ11 ) 2γ̆σ12/(G0æ) [eq 3 with i )
1] and σ22 ) σ33 ) 0 [eq 3 with i ) 2, 3], and because σ12
) γ̆/æ from eq 2, then σ11 ) 2σ12

2/G0. Hence, the extended
Gibbs free energy for simple shear flow (eq 6) under
isobaric and isothermal conditions becomes

In terms of the shear rate, eq 7 can be written, using
eq 2, as

where â ) [k0λ(æ∞ - æ)(2 + 3µ1γ̆)]/[æ2 + k0λγ̆2æ∞(1 + µ1γ̆)].
It can be easily shown that â f 0 as γ̆ f γ̆∞ and, because
of the range of the parameters of the model given in Table
2, â , 1 as γ̆ f 0. Hence, eq 8 can be approximated as

In eq 9, τ [≡(G0æ0)-1] is the Maxwell relaxation time.
In a strict sense, τ is a function of the fluidity, æ, and,
hence, it is not a constant. However, as a first approxima-
tion, only small departures from æ0 are considered here.
Within this approximation, normal stresses can be
neglected, and eq 9 reduces to

Upon substitution of eq 5 into eq 10 and integration of
the resulting equation, one gets

where æ is the solution of eq 5.

Experimental Section
DTAB, 98%+ pure from Tokyo Kasei, was recrystallized from

chloroform and ether. NaSal with a purity greater than 99%
from Fluka was used as received. Water was bidistilled and
deionized. Samples with a surfactant concentration of 12 mM
and salt concentrations to give constant values of CSALT/CDTAB
()0.42, 0.85, 1.27, 1.69, and 2.54) were prepared by weighing
appropriate amounts of surfactant and NaSal and homogenized
by mixing and heating to about 60 °C for 1 h. Then, these solutions
were left standing for 1 week at the temperature of the
measurements to reach equilibrium.

Steady and transient simple shear as well as small-amplitude
oscillatoryshearmeasurements were performedat30°C instress-
controlled and in strain-controlled rheometers. Stress-controlled
measurements were done in a Rheometrics dynamic stress
rheometer RS-5 with two different cone-and-plate devices (40
mm and 0.0384 rad and 25 mm and 0.0997 rad) and in two parallel
plates (25 and 40 mm in diameter) with a gap of 0.2 mm in both
cases. Strain-controlled measurements were performed in a
Rheometrics RDS-II dynamical spectrometer using a cone-and-
plate geometry of 0.1 rad and 50 mm in diameter. An environ-

mental control unit was used during the measurements to prevent
the evaporation of the solvent. Steady shear rate measurements
were made in the range of 0.01-400 s-1. The dynamic data were
measured within the linear viscoelastic regime in a frequency
range of 0.01-100 rad/s.

Results
Figure 1 depicts normalized Cole-Cole plots (G′′/G0

versus G′/G0) measured at 30 °C in the linear viscoelastic
regime for 12 mM DTAB micellar solutions containing
different NaSal concentrations. For CSALT/CDTAB ratios
smaller than 1, Cole-Cole data can be fitted accurately
by semicircles of radii G0/2, that is,(G′ - G0/2)2 + G′′2 )
G0

2/4, which demonstrates that the solutions follow closely
the Maxwell model with a single relaxation time. The
fitting of the Granek-Cates model to these curves (lines
in Figure 1) yields ú values smaller than 0.001 (Table 1),
indicating that these solutions are in the fast-breaking
regime. As CSALT/CDTAB is increased above 1, deviations
from the Maxwell model are noticeable, which become
more severe as this ratio increases. The fit of the Granek-
Cates model to the higher CSALT/CDTAB data renders
increasingly larger values of the ú parameter (Table 1),
indicating a transition from the fast- to the slow-breaking
regime, where the micellar solutions behave akin to
polymer solutions with a spectrum of relaxation times.
The values of the main relaxation and breaking times of
G0 and the zero-shear viscosity, η0, are reported in Table
1. Notice that G0 does not depend strongly on CSALT/CDTAB,
whereas η0 and τR decrease abruptly with increasing salt
concentration. Also, notice the large relaxation times (70
and 91 s) of the samples with CSALT/CDTAB ratios of 0.42
and 0.85, respectively.

Steady σ-versus-γ̆ data measured in simple shear are
shown in Figure 2 for 12 mM DTAB solutions with different
CSALT/CDTAB ratios. The solid lines in this figure are the
predictions of our model with the parameters obtained
experimentally, reported in Table 2. At low shear rates,

dG ) -s dT - v dP +
vτæ

2
(2σ12 dσ12 + ∑

i)1

3

σii dσii) (6)

dG ) vτæ(4σ12
3

G0
2

+ σ12) dσ12 (7)

dG ) vτ(4σ12
3

G0
2

+ σ12)(1 - â) dγ̆12 (8)

dG ) vτ(4σ12
3

G0
2

+ σ12) dγ̆12 ) v
G0æ0(4σ12

3

G0
2

+ σ12) dγ̆12

(9)

dG ) ( v
G0æ0

)σ12 dγ̆12 (10)

∆G ) v
G0æ0

∫γ̆12

æ
dγ̆12 (11)

Figure 1. Normalized Cole-Cole plots obtained at 30 °C for
12 mM DTAB micellar solutions with NaSal-to-surfactant molar
ratios, CSALT/CDTAB: (b) 0.42; (4) 0.85; (3) 1.27; ([) 1.69; (0)
2.54; (/) 4.2. The solid lines are the best fits to the Granek-
Cates model.40

Table 1. Parameters Obtained from Oscillatory
Experiments and the Best Fit to the Granek-Cates

Model40

CSALT/CDTAB η0 (Pa s) G0 (Pa) τR (s) τrelax (s) τb (s) ú

0.42 19.20 0.38 70 72 6.71 0.001
0.85 20.00 0.32 90 82 8.63 0.001
1.27 4.259 0.38 16.8 4.77 0.050
1.69 1.122 0.45 2.9 2.7 1.09 0.092
2.54 0.440 0.96 0.56 0.52 0.47 0.700
4.20 0.163 0.45 0.42 4.20 10.00
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all the solutions are Newtonian; moreover, when the stress
divided by the plateau modulus (σ/G0) is plotted versus
the reduced shear rate (γ̆τR), the data collapse on the same
line. At γ̆τR ≈ 1, shear-thinning behavior and a stress
plateau develop. However, the transition into the stress
plateau is not sharp but rather smooth. The stress plateau
occurs at σ/G0 ≈ 1.2 ( 0.05, which is slightly larger than
the value predicted by the Cates model.32 Also, the reduced
shear rate interval for the stress plateau is larger and
better defined at low CSALT/CDTAB ratios. At high shear
rates, above a second critical value, an upturn in the shear
stress follows, where Newtonian behavior is observed
again. However, as the ratio of salt to surfactant con-
centrations is increased, the stress plateau tends to vanish
and, at a CSALT/CDTAB ratio larger than about 1.2, an
inflection in the σ-versus-γ̆ relationship, rather than a
plateau, is observed. Notice that the theoretical stress
plateau, fixed by the criterion of an equal extended Gibbs
free energy minimum between the bands, passes through
the experimental data.

To show that the stress plateau could be related to a
mechanical instability, the steady σ-versus-γ̆ curve for
the 12 mM DTAB solution with CSALT/CDTAB ) 0.85 was
obtained in a shear rate-controlled instrument and in
stress-controlled rheometer using two different geometries
(inset in Figure 2). In both the low- and high-shear-rate
Newtonian regions, the data obtained with both instru-
ments coincide. However, in the shear-banding region,
only data obtained with a shear-rate-controlled mode can
span the whole shear-rate range of the stress plateau. By
contrast, when obtaining data with the stress-controlled

instrument was tried, there were random jumps in the
response of the instrument; that is, the response jumped
back and forth between the low- and the high-shear-rate
branches. As a result, only a few data points were obtained
in the shear-banding region with the stress-controlled
instrument. On the other hand, the extended irreversible
thermodynamic analysis outlined before and described
elsewhere44 indicates that two extended free energy
minima of different depths coexist in the metastable
region. The metastable states can be explained considering
that the flow causes fluctuations in all the variables,
especially concentration fluctuations. The most probable
fluctuations are small and decrease exponentially with
the height of the free energy barrier,46 and then the system
canremain for sometimewith theoriginal structure.When
large fluctuations occur, an incipient induced structure
forms that acts as a nucleus for the growth of the high-
shear-rate band. These metastable states are kinetically
favored, whereas at the stress plateau, the coexistence of
the states is thermodynamically preferred.

Figures 3 and 4 show stress growth after the inception
of shear flow for 12 mM DTAB solutions containing
different CSALT/CDTAB ratios for shear rates within the low-
shear Newtonian region and for shear rates within the
shear-banding region, respectively. When the applied
shear rate is in the low-shear Newtonian region, the
steady-state stress is reached very rapidly, that is, within
oneor tworelaxation times,andnoovershootsareobserved
(Figure 3). The stress relaxation after the cessation of
steady shear flow is single-exponential (inset in Figure 3)
with relaxation times that are comparable to those
obtained by oscillatory shear (Table 1). However, when
the applied shear rate is within the shear-banding region,
stress overshoots and oscillations are detected and 10 or
more relaxation times are required to achieve steady
state (Figure 4A). Figure 4B shows an amplification of
the scale for the sample containing CSALT/CDTAB ) 2.54,
where only one overshoot and no oscillations are observed
because there is no shear-banding region for this sample
(Figure 2). Moreover, the stress relaxation after the
cessation of steady shear is no longer single-exponential,
except for the solution with CSALT/CDTAB ) 2.54 (Figure
4C), which has no shear-banding region (Figure 2).

(46) McQuarry, D. A. Statistical Thermodynamics; University Science
Books: Mill Valley, CA, 1976.

Figure 2. Reduced shear stress versus reduced shear rate
measured at 30 °C for 12 mM DTAB micellar solutions as a
function of CSALT/CDTAB: (b) 0.42; (4) 0.85; (3) 1.27; ([) 1.69;
(9) 2.54; (/) 4.2. The solid lines are the best fits with eq 5. Inset:
steady σ-versus-γ̆ curve for the 12 mM DTAB solution with
CSALT/CDTAB ) 0.85 obtained in the strain-controlled mode with
two different cone-and-plate devices [(9) 40 mm and 0.0384
rad and (/) 25 mm and 0.0997 rad], in two parallel plates [(×)
25 and (3) 40 mm in diameter] with a gap of 0.2 mm in both
cases, and in the stress-controlled mode with a cone-and-plate
geometry of (O) 0.1 rad and 50 mm in diameter.

Table 2. Parameters of the Present Model Obtained from
Independent Rheological Measurements

CSALT/CDTAB

γ̆c1
(s-1)

γ̆c2
(s-1)

æ0
(Pa-1 s-1)

æ∞
(Pa-1 s-1)

k0λ
(s Pa-1) µ1 (s)

0.42 0.04 4.4 0.05 13.5 0.179 0.80
0.85 0.02 4.8 0.06 15.0 0.240 2.00
1.27 0.25 5 0.30 13.0 0.068 0.30
1.69 1 1 0.90 15.5 0.096 0.01
2.54 2.5 2.5 2.98 49.0 0.014 1 × 10-5

4.20 5.05 76.0 0.005 0

Figure 3. Normalized stress growth after the inception of shear
flow for 12 mM solutions containing different CSALT/CDTAB
ratios: (b) 0.42; (O) 0.85; (9) 1.69. The applied shear rate (0.005
s-1) is in the low-shear-rate Newtonian region. Inset: normal-
ized stress relaxation after the cessation of steady shear flow.
The solid lines in the figure and inset are the fits of the Maxwell
model using the main relaxation time of the samples obtained
from oscillatory measurements.
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Figures 5 and 6 display the stress growth as a function
of the applied shear rate for a 12 mM CTAB solution with
CSALT/CDTAB ) 0.85. For shear rates within the first
Newtonian region (γ̆ of 0.005 and 0.01 s-1), the stress
growth follows the Maxwell model (solid lines in Figure
5A) using the main relaxation time obtained from oscil-
latory measurements (Table 1), and steady state is reached
very rapidly (Figure 5A). Figure 5 also depicts the stress
growth for shear rates within the high-shear-rate New-
tonian region (γ̆ of 20 and 100 s-1); in this case, steady
state is reached within a fraction of the relaxation time
of the sample but overshoots, and small oscillations are
detected (Figure 5B). By contrast, when the applied shear
rate is within the shear-banding region (γ̆ ) 0.1, 1, 5 s-1),
overshoots, oscillations, and long transients appear

(Figure 6). The transients and oscillations last for more
than 1000 s (not shown).

Figure 7 depicts stress relaxation measurements after
the cessation of steady shear flow for a 12 mM DTAB
micellar solution with CSALT/CDTAB ) 0.85. When the shear
rate is within the low-shear Newtonian region, γ̆ ) 0.005
s-1, stress relaxation is single-exponential, and the stress
relaxation curve can be reproduced with the Maxwell
model using the relaxation time obtained from oscillatory
measurements (Table 1). At high shear rates, above the
multivalued region, γ̆ ) 100 s-1, and the relaxation is fast
and single-exponential also. However, when the applied
shear rate is within the multivalued region, γ̆ ) 0.01 to
about 10 s-1, the stress exhibits two main relaxation
mechanisms, one fast and another slow. Notice that the
slopes of the fast and slow relaxation mechanisms in the
multivalued region are similar (but not identical) to those
of the very high- and very low-shear-rate Newtonian
regions, respectively, which suggests that two structures,
which do not change much as the shear rate is increased,
coexist within the shear-banding region. To substantiate
this hypothesis, we predicted the stress relaxation curves
with our model, with the assumptions that two different
phases coexist (the low- and the high-shear-rate fluids)
and that the lever rule proposed by Porte et al. is valid.35

With these assumptions, the solution of our model for

Figure 4. (A) Normalized stress growth after the inception of
shear flow for 12 mM solutions containing different CSALT/CDTAB
ratios: (4) 0.85; (0) 1.69; (O) 2.54. The applied shear rate is
within the shear-banding region. (B) Amplification of data for
CSALT/CDTAB ) 0.85. (C) Normalized stress relaxation after the
cessation of steady shear flow. The solid lines in the inset are
the fits of the model forwarded here.

Figure 5. Stress growth for 12 mM solutions with CSALT/CDTAB
) 0.85 as a function of the applied shear rates in inverse
seconds: (A) (0) 0.005; ([) 0.01. (B) (1) 20; (]) 100.

Figure 6. Stress growth for 12 mM solutions with CSALT/
CDTAB ) 0.85 as a function of the applied shear rate in inverse
seconds: (O) 0.1; (3) 1; (2) 5.

Figure 7. Stress relaxation after the cessation of steady shear
flow for 12 mM solutions with CSALT/CDTAB ) 0.85 as a function
of the applied shear rate in inverse seconds: (9) 0.005; (O) 0.01;
(2) 0.1; (1) 2; ([) 5; (/) 20; (b) 100. The solid lines are the
predictions of eq 12.
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stress relaxation after the cessation of steady shear flow
yields

Here, τss and γ̆ss are the steady shear stress and shear
rate before the cessation of flow and the fraction of fluid
supporting the lower critical shear rate, x, is given by the
lever rule as

Predictions are excellent for shear rates within the low-
and high-shear-rate Newtonian regimes (Figure 7), where
x ) 1 and 0, respectively, in eq 12. In the shear-banding
region, and in the proximities of the stress plateau, the
model predicts two main relaxation times. Predictions are
quite good at shear rates where the values of the plateau
stress and the metastable stress are similar; however, as
the stress plateau and the metastable (top jumping) stress
become further apart, the predictions deviate from the
experimental data (Figure 7). Notice, however, that the
stress relaxation curve of the sample subjected to shear
rates of 0.01 and 20 s-1, which presumably are outside the
multivalued region, also depicts two relaxation mecha-
nisms (open circles and asterisks in Figure 7, respectively).
This can be due to an underprediction of the magnitude
of the multivalued region by our model. That our model
also predicts two relaxation mechanisms for these samples
(dashed lines in Figure 7) is due to a small viscoelastic
contribution inherent in our model that is present even
in the low- and high-shear-rate Newtonian branches.

Discussion and Conclusions
Shear-banded flow is a fascinating but still not com-

pletely understood phenomenon. Shear-banded flow (or
spurt effect) was first observed in monodisperse linear
polymer melts (Mw/Mn < 1.15).47-50 For these systems,
McLeish and Ball predicted a discontinuity in the flow
curve obtained by capillary rheometry with the Doi-
Edwards theory extended to include relaxation processes
associatedwithchain lengthequilibration.25 Theseauthors
found that the discontinuity is very sensitive to the ratio
of the reptation time (τRep) to the equilibration time (τeq).
However, these two characteristic times depend strongly
on molecular weight (τRep ∼ M3 and τeq ∼ M2) and so,
molecular weight polydispersity, which is common in high-
molecular-weight polymers, can mask the discontinuity
in the σ-γ̆ relationship.

In the absence of salt, DTAB forms spherical micelles
in water at the concentrations studied here. The effect of
adding salt is to screen the interactions between the
headgroups of the micelles, thus allowing the micelles to
grow.51 Moreover, salts also screen the interactions among
themicelles, thus facilitating theorientationof themicelles
under shear, and phase transitions to ordered phases can
be induced at lower surfactant concentrations. In fact,
Decruppe et al. showed by optical and rheological mea-
surements that the shear-induced nematic phase forms

at lower surfactant concentrations in the CTAB system
upon the addition of potassium bromide.52 Also, they
reported a sharp break when the shear rate reaches γ̆c1
in the CTAB/water system and small curvatures in the
CTAB/water system containing an equimolar amount of
KBr. These authors concluded that the curvature indicates
that the shear stress increases more slowly than the shear
rate because the average orientation of the long wormlike
micelles becomes more and more important before reach-
ing the transition.

Here, we showed that by varying the salt-to-surfactant
molar ratio (CSALT/CDTAB), the micellar solution can shift
from the fast-breaking regime, where the system behaves
as a Maxwell fluid with a single relaxation time given by
τR ) (τRepτBreak)1/2, to a slow-breaking regime, where the
system behaves as a polydisperse polymeric solution with
a spectrum of relaxation times (Figure 1). Evidently, at
the lowest CSALT/CDTAB ()0.42) ratio used here, the micelles
are fully entangled.53 For CSALT/CDTAB > 1, deviations from
Maxwell behavior become more severe as this ratio
augments.The fittingofCole-Coleplotswith theGranek-
Cates model indicates that the ú parameter increases
rapidly with salt concentration for CSALT/CDTAB > 1 (Table
1), demonstrating the shifting from the fast- to the slow-
breaking regimes.

Similar to high-molecular-weight polymer systems,
wormlike micellar solutions also exhibit a broad size
distribution, but because of the chain-breaking and
recombination processes that average the chain length
distribution, these systems exhibit a narrow distribution
of characteristic times in the fast-breaking regime; that
is, they behave as highly monodisperse systems.32 Hence,
wormlike micellar solutions are excellent candidates for
examining the spurt effect. Figure 2 reveals that, when
the micellar solution dynamics is kinetically controlled,
only one relaxation time dominates and shear-banding
flow develops at one critical shear rate and disappears at
another critical shear rate. Above this second critical rate,
the high-shear-rate Newtonian branch forms. As the salt-
to-surfactant ratio is raised, the ú parameter increases,
the shear-banding region becomes smaller, and the
transition is less sharp. When CSALT/CDTAB > 1, the ú
parameter tends to 1, indicating that the solution is in the
slow-breaking regime; that is, the dynamics are diffusion-
controlled. In this case, no shear-banded flow is observed
at all and only an inflection at the low critical shear rate
is detected (Figure 2). When the reduced variables (σ/G0
and γ̆τR) suggested by Berret et al. are used,15 a master
curve is obtained; however, the values of the reduced
critical shear stress (σc/G0 ) 1.2 ( 0.05) and of the reduced
first critical shear rate (γ̆c1τ ) 3) are larger than those
predicted by the Cates model and also larger than the
values for the master curve proposed by Berret and
collaborators. Notice also that the second critical shear
rate (γ̆c2τ) also appears at the same value for the two
samples that shear-banded (Figure 2).

A controversial issue in shear-banded flow is how to
determine from first principles the shear stress plateau
and the low- and high-shear-rate branches. Recently, using
extended irreversible thermodynamics equations develop
for shear flow of polymer solutions45 in conjunction with
our model, we were able to predict quite accurately the
experimental stress plateau in cetyltrimethylammonium
tosilatemicellar solutions.44 Here,with thesame approach,
we predict correctly the stress plateau in DTAB/NaSal

(47) Bagley, E. B.; Cabot, I. M.; West, D. C. J. Appl. Phys. 1958, 29,
109.

(48) Tordella, J. P. In Rheology Theory and Applications; Eirich, F.,
Ed.; Academic: New York, 1969; Vol. 5, p 57.

(49) Vinagrov, G. V. J. Polym. Sci. 1972, 10, 1061.
(50) Vinagrov, G. V. Rheol. Acta 1973, 12, 273.
(51) Israelachvili, J. N. Intermolecular and Surface Forces; Academic

Press: New York, 1992.

(52) Decruppe, J. P.; Capelare, E.; Cressely, R. J. Phys. II 1997, 7,
257.

(53) Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1987, 3, 1081.

τ/τss ) exp -{æ0t + [xæ0 + (1 - x)æ∞ - æ0]λe-t/λ}G0
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x )
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γ̆c1 - γ̆c2
(13)
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micellar solutions (Figure 2). It is noteworthy that
extended irreversible thermodynamics predicts a criterion
of equal areas above and below the stress plateau, similar
to the Hemholtz equal-areas criterion in P-versus-F plots
in first-order phase transitions,54 only when normal
stresses can be neglected. Details are given elsewhere.44

Shear-banded flow is usually accompanied by oscilla-
tions and long transients.16,19,31,34,52,55-59 Porte and Berret
have analyzed these phenomena and concluded that they
resemble the kinetics of nucleation and growth of a second
phase, similar tophenomenaoccurring inequilibriumfirst-
order phase transitions.34 Here, we showed that when the
solutions (regardless of the CSALT/CDTAB ratio) are in the
low-shear-rate Newtonian branch, the stress growth after
the inception of shear flow is fast and follows Maxwell
behavior with a single relaxation time (Figure 3). More-
over, after the cessation of shear flow, the solutions relax
monoexponentially, and it can be reproduced with the
Maxwell model and the crossover relaxation time obtained
from linear oscillatory measurements (inset in Figure 3).
However, once the applied shear rate is above the critical
value for shear banding (γ̆c1τR > 3), oscillations and
overshoots are observed (Figure 4A). Moreover, transients
last more than 20-40 relaxation times before steady state
is reached. Nevertheless, samples that do not exhibit shear
banding relax nearly single-exponentially after the ces-
sation of shear flow (see data for CSALT/CDTAB ) 2.54 in
Figure 4C), indicating a very different relaxation mech-
anism than that in those samples that shear-banded.

Stress growth as a function of the applied shear rate for
the 12 mM DTAB solution with CSALT/CDTAB ) 0.85 also
exhibits a fast response and near Maxwell behavior when
the applied shear rate is below γ̆c1 (Figure 5A) or above
γ̆c2, although a single overshoot is detected in the latter
(Figure 5B). However, when the applied rate is within the
shear-banding region, overshoots and undershoots, oscil-
lations, and long transients are observed (Figure 6). Grand
et al. proposed that the presence of overshoots and
oscillations is related to the proximity (in shear stress) of
the metastable branch.57 The extended Gibbs free energy
has two minima of different depths at this shear rate; the
less deep minimum (less stable) occurs at the high-shear-
rate branch.44 Under these circumstances, it is expected
that, when a shear rate is applied, the system tends to the
dynamical equilibrium at such a shear rate. This corre-
sponds to the local minimum at the metastable branch.
However, the overall extended Gibbs free energy minimum
is located at the critical shear rates, γ̆c1 and γ̆c2, and so,
the system tends to move to the overall minimum. The
nucleation and growth of the shear-aligned phase is the
path to achieve this overall minimum, which is reflected
in oscillations around the minimum and long transients.

The stress relaxation curve after the cessation of steady
shear flow is single-exponential when the applied shear
rate is smaller than γ̆c1 or larger than γ̆c2 (Figure 7). When
the applied shear rate is within these two critical values,

two relaxation mechanisms are detected (Figure 7). The
similarities of the relaxation slope when γ̆applied < γ̆c1 with
the slow mechanism and the relaxation slope when γ̆applied
> γ̆c2 with the fast relaxation mechanism suggest that the
fast relaxation corresponds to the structure at the high-
shear-rate branch and the slower one corresponds to the
low-shear-rate branch. Notice that, as the applied shear
rate is increased within the shear-banding region, both
the slopes of the slow and fast mechanisms increase. We
proposed that this is the effect of the disappearance of the
lubricating band. Berret and Porte found a similar curve
with two main relaxation mechanisms in the time evolu-
tion of the negative excess stress after stepping down the
shear rate from levels within the shear-banding region to
levels below the shear-banding region for wormlike
micellar solutions of cetylpyridinium chloride, hexanol,
D2O, and NaCl.34 These authors attributed this behavior
as evidence of the presence of two bands with different
structures and claimed that the short characteristic time
corresponds to the readjustment of the viscosity of the
two coexisting phases to the new shear rate and that the
longer characteristic time corresponds to the progressive
thinning out and eventual disappearance of the high-
viscosity band. However, Berret and Porte did not have
data on the mechanical characteristics of the shear-
induced aligned phase. By contrast, the relaxation time
of the shear-induced band was obtained here, and the
similarity with the fast relaxation mechanism in the shear-
banding region indicates the presence of this band.
Likewise, the similarity of the slow relaxation slope with
that of the low-shear-rate branch (γ̆ < γ̆c1) demonstrates
the existence of this band within the shear-banding region.
Unfortunately, we do not have access at present to
experimental techniques that allow the observation of the
bands. Nevertheless, Makhloufi et al. identified the bands
by rheo-optics in a very similar micellar system (cetyl-
trimethylammonium chloride and NaSal).16

Our model is capable of predicting a single relaxation
mechanism at very low and very high shear rates (i.e.,
within the low- and high-shear-rate Newtonian regions).
In the shear-banding region, our model predicts two main
relaxation mechanisms that qualitatively agree with the
experimental data. This is because our model has a small
inherent viscoelastic contribution even in the Newtonian
regions.

In summary, we have presented oscillatory, steady, and
transient data of wormlike micelles that suggest that
kinetic-controlled (fast-breaking) behavior is a requisite
for the appearance of shear-banded flow. A criterion of
equal extended Gibbs free energy minima determines the
stress plateau and the values of the two critical shear
rates.
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