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Hubbard model in one dimension with a general bond-charge interaction:
Analytical ground-state solution for the pairing of two particles

E. Vallejo and O. Navarro
Instituto de Investigaciones en Materiales, UNAM, Apartado Postal 70-360, 04510 Me´xico D. F., México

~Received 8 August 2002; revised manuscript received 18 March 2003; published 28 May 2003!

In this work we solve a general Hubbard Hamiltonian for two interacting particles in a periodic and
nonperiodic infinite one-dimensional lattice, using a real-space mapping method, the renormalized perturbation
expansion~RPE!, and the Green-function technique. This Hamiltonian considers a general bond-charge inter-
action, the on-site interaction, and the general intersite interaction. The real-space method is based on mapping
the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding problem in a
higher-dimensional space. Analyzing the periodic and the quasiperiodic lattices in this new space, we obtained
the analytical solution for the binding condition at the ground state. Our general results for the periodic chain
reproduce completely the limit cases of the numerical solution obtained previously and those obtained in
reciprocal space
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I. INTRODUCTION

The one-dimensional simple Hubbard model is the pro
type of an exactly solvable model for correlated electrons
narrow-band systems,1,2 where at half-filling the ground stat
is found to be antiferromagnetic and insulating for a rep
sive potential. The other exact solution for the Hubba
Hamiltonian is the case of an infinite-dimensional spac3

The exact solutions, particularly those obtained using the
the ansatz, have brought very important progress to the
derstanding of strongly correlated systems. However,
conditions for integrability using the Bethe ansatz are v
restrictive, and only a very limited class of realistic mode
can be solved with this technique.4 For instance, it is difficult
to include additional interactions in the Hubbard model
that the resulting Hamiltonian is still integrable.

The Hubbard model5 is the simplest used to describe co
relations in narrow-band systems and has been studied
tensively. However, even when the Hubbard model is c
ceptually very simple, this model is very difficult to solve
general with few tractable limits. When bonding dominat
we have the so-called weak-coupling limit, which leads t
noninteracting electron gas and is therefore fairly well und
stood. But even with weak coupling there are some surpri
For a bipartite lattice at half-filling, an infinitesimal shor
range Coulomb repulsion drives the system through a me
insulator transition,6 a result that is not contained in the fre
electron description. Strong-coupling limit is hardly unde
stood at all. At half-filling, the model maps onto an insula
ing spin-half Heisenberg model.6 If the charge density is
away from half-filling, the behavior remains a mystery. Th
model has been applied successfully to describe some
electronic phenomena where electronic correlations are
important, such as the metal-insulator transition,7 itinerant
magnetism,8 charge-density and spin-density waves,9 and lo-
cal pair formation, which may play a significant role in th
explanation of the high-Tc superconductors10,11 and super-
conductivity in heavy-fermion systems.12

The Hubbard Hamiltonian has been widely studied by
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ing different approximations. One of the most common te
niques is the mean-field approximation~MFA!, which has
been used to analyze different problems,10 since with this
technique the many-body problem can be reduced to a o
body problem in an effective medium. However, it is we
known that the MFA is not sufficient to describe electron
correlations, because the fluctuations are not included wi
this approximation. Another useful technique to deal with t
Hubbard Hamiltonian is the slave-boson formalism.9,13 How-
ever, since in this formalism the Hilbert space of fermi
states is replaced by an enlarged Hilbert space of ferm
and boson states, approximations are still necessary. On
other hand, quantum Monte Carlo techniques14 provide a
natural framework for numerical calculations in strongly i
teracting electron models, but these techniques have b
used only for small clusters. The renormalization gro
method15 has been used for very large systems. This met
consists of constructing iteratively a variational ground st
by dividing the system into many cells. Since for each s
only the lowest-lying energy states in each cell are taken
account, sometimes the results are far away from the e
solution. Finally, the exact diagonalization method is t
most desirable one. However, this method is applicable o
to small systems, since the dimension of the Hamilton
matrix increases very rapidly with the number of sites a
the number of particles.16

The diluted limit of the Hubbard model has been pre
ously studied by analytical and numerical methods,10,17,18in-
cluding different kinds of disorder19–21 and also the bond-
charge interaction.22–25 However, a solution for the genera
Hubbard Hamiltonian has not yet been given, even for
low-density limit.

In this Brief Report we wish to address the low-dens
limit, two particles in one-dimensional~1D! periodic and
quasiperiodic empty lattices. An analytical solution with
general Hubbard Hamiltonian, using a real-space mapp
method, the renormalized perturbation expansion~RPE!, and
the Green-function technique, is presented.

In Sec. II we give a brief description of the Hamiltonia
together with the generalization of the mapping meth
©2003 The American Physical Society05-1
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which allows us to diagonalize exactly the general Hubb
Hamiltonian, and in Sec. III we present results and a disc
sion of the analytical solution for two interacting particles
1D periodic and quasiperiodic empty lattices. Finally, in S
IV we summarize our results.

II. THE MODEL AND THE MAPPING METHOD

The Hubbard model is the simplest model that is able
describe electronic correlation in narrow-band systems
was obtained by Hubbard5 from the general Hamiltonian

H5 (
^ i , j &,s

t i , j ci ,s
1 cj ,s

1 1
2 (

i , j ,k,l ,s,s8
^ i j uvukl&ci ,s

1 cj ,s8
1 cl ,s8ck,s , ~1!

by making some approximations in the interaction term. T
Hamiltonian has been called the general Hubbard Ham
tonian and will be considered here to study the problem
two correlated particles. In Eq.~1!, ci ,s

† (ci ,s) is the creation
~annihilation! operator with spins5↑ or ↓ at site i, ^ i , j &
denote nearest-neighbor sites, and the transfer integralt i , j is
written as t i , j5t j ,i5t for a periodic lattice. The paramete
^ i j uvukl& is the matrix element of the Coulomb interactio
with respect to the Wannier functions at the sites,i, j, k, l. It
is worth mentioning that in principle, the general tw
particle interaction parameter^ i j uvukl& is positive because i
is a direct Coulomb integral, but it could be negative if
attractive indirect interaction through phonons or oth
bosonic excitations is included and is stronger than the di
Coulomb repulsion.

In this work, we will consider the matrix elements of th
interaction as

^ i j uvukl&[H Eu i 2 j u for k5 i and l 5 j

Dtm for j 5 l , ^ i ,k& and ^ i ,l &m or ^ l ,k&m
,

~2!

together withs852s. Taking into account these interac
tions one obtains the following general Hubbard Ham
tonian:

H5t (
^ i , j &,s

ci ,s
† cj ,s1 1

2 (
i , j

Eu i 2 j uninj

1
Dtm

2 ( 8
^ i ,k&,l ,s

ci ,s
† ck,snl ,2s , ~3!

whereni5ni ,↑1ni ,↓ with ni ,s5ci ,s
† ci ,s and the on-site and

the intersite interactions are given byEu i 2 j u for i 5 j and i
Þ j , respectively.̂ i , j &m means thati and j are mth nearest
neighbors~when m50 we havei 5 j ). The prime on the
third term indicates that terms already considered previou
for eachm should be excluded and thatDtm is limited by Eq.
~2!. Dtm is the bond-charge interaction considering ma
sites, which may be viewed as a general density-depend
hopping. The special caseEu i 2 j u5U for i 5 j , Eu i 2 j u5V for i
and j nearest neighbors andDtm50 corresponds to the
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t-U-V extended Hubbard model, which has been studied
tensively by analytical and numerical methods.

In order to find an analytical solution of Eq.~3! we will
use the mapping method, previously introduced and
plained in detail in Refs. 17, 26 for different lattice topol
gies. The states associated with our Hamiltonian given
Eq. ~3! have a geometric representation in a periodic squ
lattice ~see Fig. 1!, which can be described by a one-bod
tight-binding effective Hamiltonian with ordered site an
bond impurities. This new one-body Hamiltonian is writte
as follows:27

H5(
i

Eibi
†bi1(

i , j
Ti , jbi

†bj , ~4!

where the operatorbi
† creates the many-body states,Ei rep-

resents the self-energy of the two-particle states~see Fig. 1!,
andTi , j is the hopping amplitude between nearest-neigh
two-particle states. Sites in Fig. 1 represent the two-bo
states and not the usual Wannier wave function. A sim
way to obtain the solution is to take advantage of the tra
lational symmetry of the site and bond impurities and proj
the two-dimensional lattice of states onto a linear chain
effective states as is shown in Fig. 1, whereb
52t cos(Ka/&) andb i52Dt i cos(Ka/&), the lattice param-
eter a51 andK is the wave vector in the projection direc
tion.

III. RESULTS AND DISCUSSIONS FOR TWO
CORRELATED PARTICLES

A. Analytical solution for a periodic chain

In order to obtain the ground-state analytical solution
two interacting particles in a one-dimensional periodic l

FIG. 1. Geometric representation of the two-particle states fo
periodic chain. The states are represented by circles with site en
indicated inside. The direction of the projection procedure is sho
by dashed lines. The final chain is formed by effective states,
resented by ellipses, and the effective hopping parameters.
5-2
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tice, we will use the renormalized perturbation expansio28

to solve the new effective tight-binding Hamiltonian give
by Eq. ~4! and the impurity chain represented by ellipses
Fig. 1.

Let us consider, in the impurity linear chain represen
by ellipses in Fig. 1, the nearest-neighbor interaction, wh
give us the following case:

b i5Ei50 for i>2. ~5!

The Green function for the effective linear chain~Fig. 1! at
the central site is given by

BG~0,0;x!5
1

x2e02

1
2 ~11k0!2

x2 1
2 e12 1

2 ~11k1!2~x6Ax221!

,

~6!

wherex5E/B, e05E0 /B, e i52Ei /B ~valid for i .0), and
ki5b i /b. Here, we have writtene0 , e i , andki in a general
way in order to include all the cases we will study bello
For the ground state we haveB52b, with b52t and b i
52Dt i .

Finding the poles of Eq.~6! for x2.1 andt,0, we can
obtain the condition for binding particles

A~11e0!~11e1!1~11e0!@12~11k1!2#21,k0 . ~7!
on

e

e
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The limit casek150 in Eq. ~7! gives the binding condition
obtained by Marsiglio and Hirsch.22 The same condition was
found within the BCS theory for a constant density of sta
model in the low-density limit.

Including the next-nearest-neighbor interaction, the c
dition in our impurity linear chain~Fig. 1! is

b i5Ei50 for i>3. ~8!

For this case, we can obtain the following condition for bin
ing particles in this interaction regime:

A~11e0!~11e1!1~11e0!S 12
~11k1!2

21e22~11k2!2D21

,k0 . ~9!

From this equation, the binding condition given in Eq.~7!
can be obtained by usinge25k250.

The solution for the general case, or the general impu
linear chain shown in Fig. 1, can also be obtained. The g
eral condition is given by

b i5Ei50 for i>n11, ~10!

wheren is thenth-nearest-neighbor interaction that has be
considered. The Green function for this general impurity l
ear chain at the central site is
BG~0,0;x!5
1

x2e02

1
2 ~11k0!2

x2 1
2 e12

1
4 ~11k1!2

x2 1
2 e22

1
4 ~11k2!2

]

x2~1/d!en2~m/2!~11kn!2~x6Ax221!

. ~11!
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Here,d51, m52 for n50, andd52, m51 for n.0.

B. Analytical solution for a Fibonacci chain

A Fibonacci sequence consists of two lettersA andB, and
the entire sequence is generated by successive applicati
the substitution rule. The first few generations areG05B,
G15A, G25AB, G35ABA, G45ABAAB,..., Gi
5Gi 21Gi 22 for i>2, whereGi indicates the generationi. In
a Fibonacci chain, the lettersA and B from the Fibonacci
sequence may denote two different atoms~site model! or two
different bonds separating identical atoms~transfer model!.
In this work we will study the transfer model, where th
hopping integrals take two valuestL andtS corresponding to
a large bond (L) and a short bond (S), respectively. In the
transfer model the number of large bonds isNL(n) and the
number of short bonds isNS(n). The total number of bonds
in a generationn is represented byN(n). These numbers ar
related by
of

N~n!5N~n21!1N~n22!,

NL~n!5N~n21!, ~12!

NS~n!5N~n22!.

In the quasiperiodic limit (n→`), the ratio NL(n)/NS(n)
converges toward the golden means5(A511)/2.

To study the electronic correlation of two particles wi
antiparallel spins in a Fibonacci chain, we use the gen
Hubbard model and the real-space mapping method
scribed above to obtain all the state configuration as w
done for the periodic chain. Here, the states have a geom
representation in a square lattice with bond-quasiperio
symmetry in different directions, which can be described
a one-dimensional tight-binding effective Hamiltonian. F
the ground state we can approximate the projection of
two-dimensional lattice of states onto a chain of effect
5-3
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states, similar to the projection given in Fig. 1 for the pe
odic chain. In the ground state of the extended Hubb
Hamiltonian, for the above chain of effective states we ha
E05U, E15V, Ei50 for i .1, b i50, and b52tS@( f s
11)/(s11)# with tL5 f tS ~see Fig. 1!. In our limit of low
concentration, the condition for pairing is

A~11u!~11v !21,0,

where u5U/B and v52V/B with B52b. The effects of
quasiperiodicity, in the analytical expression for the pairi
condition, are introduced through the effective hopping
rameter b, which reproduces the results for the period
chain whenf 51, or tL5tS .

IV. CONCLUSIONS

In this Brief Report we studied the dilute limit of th
general Hubbard model, including a general bond-charge
teraction and general intersite interactions, by using a r
d

hy

rs
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space mapping method, the renormalized perturbation ex
sion, and the Green-function technique. We obtained
ground-state analytical solution for the pairing condition
two interacting particles in an infinite one-dimensional pe
odic and nonperiodic empty lattice. In order to find the so
tion for the general Hubbard Hamiltonian, a generalization
the mapping method has been done. In the periodic case
general expression for the pairing condition obtained in t
paper reproduces completely the limit cases: the numer
results and those coming from the reciprocal space. The n
periodic case analyzed in this paper was the Fibonacci ch
where an analytical solution for the pairing condition of tw
interacting particles is also given.
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