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In this paper we investigate the linear instability of two superposed inviscid fluids between two
rotating concentric cylinders. In the hydrostatic state the two fluids rotate as a rigid body with the
same angular velocity as the annulus. Two problems are investigated. First, calculations are made of
the instability of the liquid layer coating the outside of a cylinder under rotation. Second, results are
obtained of the instability of two stratified fluids between two concentric cylinders. The first case is
the most unstable condition of the second case when the outer fluid is absent. Therefore, in the
second case only the instability of a system with a heavier fluid located outside the interface was
investigated. It was found that the introduction of the inner cylinder produces new and interesting
results about the axial and azimuthal modes not previously published in the literature. In particular,
when a liquid layer coats the outside of a cylinder it was found that the azimuthal mode,n51, is
the most important in a range of the nondimensional surface tension where the purely axial mode
dominated in the absence of the inner cylinder. Additionally, it was found that some azimuthal spiral
modes with a finite wavenumber appear as the most unstable in the presence of the inner cylinder.
It was shown that the larger the centrifugal force is, the larger the nondimensional radius of the inner
cylinder should be to make the instability more sensitive to the presence of the inner cylinder. An
equation for the growth rate was obtained in the limit of very thin liquid layers and it was found that
the maxima of growth rate agree very well with the experimental results of a fluid layer coating the
outside of a rotating cylinder. ©2003 American Institute of Physics.@DOI: 10.1063/1.1597682#

I. INTRODUCTION

In this paper the instability of two superposed inviscid
fluids rotating at the same angular velocity~rigid body rota-
tion! between two concentric cylinders in the absence of
gravity was investigated~see Fig. 1!. Due to the centrifugal
force this system is hydrostatically stable if the heavier fluid
is in contact with the external cylinder and it is unstable if
that fluid is in contact with the inner cylinder.

The stability of this stratified system has important con-
sequences in the coating of cylindrical surfaces when, for
example, a liquid layer is applied to the external surface of a
cylinder and the inertia and pressure of the outer gas is taken
into account. The same applies with respect to the coating of
the interior of a cylindrical surface.

The inner fluid is subjected to instabilities which were
investigated more than a century ago by Rayleigh and re-
viewed by Chandrasekhar,1 in the case of jets. One important
characteristic of the axisymmetrical perturbations is that, to
produce a throttling effect, their axial wavelengths need to be
larger than the circumference of the cylindrical liquid col-
umn. Thus, under appropriate conditions, due to the radial
surface tension this effect produces an instability such that
the liquid cylinder starts to pinch at the troughs of the surface
deformation until a drop is produced. When an inner cylinder
is present, the throttling effect produces dry patches on its
surface. These are, of course, very nonlinear effects.

Rayleigh2 was interested in this phenomenon and he ob-

tained as a necessary and sufficient condition for instability
that the circulation should decrease with the radius. The ef-
fect of surface tension and rotation was taken into account by
Hocking and Michael.3 They developed an analytical expres-
sion for the growth rate of longwave azimuthal perturbations
~with zero axial wavenumber! of a liquid column under ro-
tation. The instability was shown to appear when the magni-
tude of the surface tension force was small in comparison
with the centrifugal force. The magnitude also depends on
the azimuthal mode number considered.

In his paper Yih4 focused on the instability of a thin
liquid layer on a horizontal rotating cylinder. Yih showed
that the critical wavenumber depends mainly on the surface
tension and that the dependance on the Reynolds number
@based on the fluid layer thickness (1.0831023– 8.17
31023 ft) and the angular velocity~9.01–29.4 rad!# was
rather small. He showed experimentally that the perturba-
tions are mainly axisymmetric using glycerine, a glycerine
and water mixture and water alone.

Hocking5 investigated the instability of a rigidly rotating
liquid column under axisymmetric and longwave azimuthal
perturbations. He found that the viscosity does not alter the
stability criterion. In the case of longwave azimuthal pertur-
bations the surface tension must be larger by a factor of 2 in
order to stabilize the viscous liquid column.

Pedley,6 in his paper, presented results on the swirling
flow instability of a fluid with cylindrical free surface in the
inside or on the outside. He found a necessary and sufficient
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condition for the stability of the axisymmetric disturbances
which requires, at the same time, satisfaction of Rayleigh’s
criterion of increasing circulation. Pedley was able to extend
that condition to azimuthal perturbations for particular cases
of swirling flows.

Josephet al.7 made calculations on the stability of strati-
fied viscous liquids inside rotating cylindrical containers.
They found, using the method of energy for nonlinear per-
turbations, that when the heavy fluid is outside the interface
its radius remains constant depending on the positive magni-
tude of a nondimensional parameter which represents the ra-
tio of the centrifugal and surface tension forces. When that
parameter is negative the heavy fluid is inside and the inter-
face destabilizes. They compared their results with experi-
ments and their results agree with those of Moffatt8 who also
made experiments and used the lubrication approximation to
obtain an equation for one liquid film coating the inside or
the outside of a rotating cylinder.

Boudourides and Davis9 extended the Rayleigh and
Synge stability criteria for inviscid and viscous fluids to in-
clude a free surface. They looked for a sufficient condition
for centrifugal, capillary and Rayleigh–Taylor stability.

Weidman10 calculated the stability criteria for a system
of two stratified fluids rotating rigidly inside a cylinder. His
results generalized previous results where only one liquid
layer was taken into account. Beside axisymmetric modes,
azimuthal modes were considered for zero~longwave mode!
and finite wavenumbers~spiral modes!.

Weidmanet al.11 made a complete numerical analysis of
the linear problem of two stratified inviscid fluids in rigid
rotation inside a cylinder. They found the maxima of growth
rate of instability for axisymmetric and azimuthal perturba-
tions. However, they showed that for a rotating liquid col-
umn ~which is the more unstable situation where the density
of the outer fluid is negligible! only longwave azimuthal per-
turbations are the most unstable.

Concerning the papers on experiments related with the
present problem those by Yih4 and Moffatt8 have already
been mentioned. In them the instability of a liquid film coat-
ing the outside of a rotating cylinder was investigated. How-
ever, Moffatt8 took into account the effect of gravity to un-

derstand the so called rimming flow. Additionally,
experimental research has been performed by Joseph and his
group,12–15on stratified fluids under rotation. However, their
experiments were made for an inner very viscous fluid layer
coating a cylinder rotating inside an initially static less vis-
cous fluid. In other words, their results do not correspond to
a rigid body rotation of all the system as supposed in the
present paper, except for the rimming flows in air; however
here the effect of gravity is important. They found interesting
results related with rollers, coating and rimming flows.

Investigation of the instability of thin viscous liquid
films flowing down vertical cylinders under rotation,16–18has
shown that for certain values of the parameters the first azi-
muthal mode may be the most unstable. In the absence of
rotation, but in the presence of thermocapillary effects, it has
been shown that azimuthal modes up to 16 and over can be
excited as the most unstable for some values of the param-
eters involved in the problem.19

These interesting results are the motivation to search for
new results with respect to azimuthal modes in a system of
stratified inviscid fluids similar to that studied by Weidman
et al.11 but including a new cylindrical solid boundary in the
interior of the stratified fluids; that is, by the introduction of
an inner concentric cylinder. As shown in Fig. 1, the system
under investigation is composed of an annulus containing
two stratified fluids with the characteristic that all is rotating
as a solid body. The understanding of the behavior of the
perturbations to this hydrostatic state is the subject of our
research. When the radius of the inner cylinder tends to zero
the system becomes that investigated by Weidmanet al.11

The structure of the paper is as follows. In Sec. II, a
description is given of the system under investigation, that is,
two stratified inviscid liquids rotating rigidly between two
concentric cylinders. Here, the equations of motion are intro-
duced and, after subtracting the hydrostatic solution, the
equations satisfied by the linear perturbations are obtained
along with the corresponding boundary conditions. Section
III is a review of important stability results relevant to our
problem. Section IV presents results for the case of a liquid
film coating a rotating cylinder. This is the most unstable
situation of the two-layer system under investigation in
which the heavier fluid is inside and the inertia of the outer
fluid is so small that it can be neglected. It is divided into
two subsections corresponding to the instability of axisym-
metric and spiral perturbations, respectively. In Sec. V cal-
culations are presented for the two-layer system when the
heavier fluid is outside of the interface, and Sec. VI gives the
conclusions. Finally, in order to complete the analytical cal-
culations, an appendix is given at the end of the paper.

II. EQUATIONS OF MOTION

The instability of two-superposed inviscid fluids rotating
as a solid body between two concentric cylinders is investi-
gated, and the effect of gravity has been neglected. A sketch
of the system is shown in Fig. 1. In comparison with the
paper of Weidmanet al.11 the inner cylinder with radiusr
5c is the new boundary condition, which as will be shown,
brings about results not found previously in the literature.

FIG. 1. Two fluid layers inside an annulus. All the system rotates as solid
body. Here are shown the radius of the inner cylinderr 5c, the interface
r 5a and the external cylinderr 5b, respectively.

2729Phys. Fluids, Vol. 15, No. 9, September 2003 Instability of the interface between two inviscid fluids



The radius of the interface between the two fluids is atr
5a and that corresponding to the external cylinder is atr
5b. The fluids have constant densitiesr i wherei 51 and 2
for the inner and outer fluid, respectively. The angular veloc-
ity of the system isV5Vez , whereV is the magnitude of
the angular velocity vector andez is a unit vector in the axial
direction, here taken asz. The other unit vectors in the radial
and azimuthal directions areer , eu , respectively. The surface
tension constant of the interface isg.

The equations of motion in cylindrical coordinates of an
inviscid fluid in a rotating system are

Dui

Dt
12V3ui52

1

r i
¹pi1¹F ~V3r !2

2 G ~1!

along with the incompressibility equation

¹•ui50. ~2!

Here, r is the radius vector andr its magnitude and the
vectorui5(ui ,v i ,wi) is the velocity. The variables are made
nondimensional as follows, the time withV21, the length
with the interface radiusa, the velocity withaV and the
pressure withr2V2a2, respectively. In this way, the equa-
tions of motion of both fluids may be written as

]ui

]t
1~ui•¹!ui2

v i
2

r
22v i52

1

l22 i

]

]r Fpi2
l22 i

2
r 2G ,

~3!

]v i

]t
1~ui•¹!v i2

uiv i

r
12ui52

1

l22 i

1

r

]pi

]u
, ~4!

]wi

]t
1~ui•¹!wi52

1

l22 i

]pi

]z
, ~5!

1

r

]

]r
~rui !1

1

r

]v i

]u
1

]wi

]z
50, ~6!

wherel5r1 /r2 is the densities ratio and the nabla operator
in cylindrical coordinates is
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Now, the interface is located atr 51, the external cylinder at
r 5k5b/a and the surface of the inner cylinder is atr 5k1

5c/a. The perturbations to the interface are located atr
511h(u,z,t). This is used to calculate the normal vector at
the interface:

n5S er1
1

r
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]u
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]h

]z
ezD F11
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r 2 S ]h

]u D 2

1S ]h

]z D 2G21/2
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Thus, the boundary conditions are

p15p0 at r 5k1 , ~7!

u150 at r 5k1 , ~8!

u250 at r 5k, ~9!

wherep0 is a reference pressure at the surface of the inner
cylinder. The continuity of the radial velocities at the inter-
face must be satisfied along with the kinematic boundary
condition. That is

ui2S ]h

]t
1

v i

r

]h

]u
1wi

]h

]z D50 at r 511h. ~10!

The pressure discontinuity at the interface is due to the
surface tension and this can be expressed by means of a
balance equation for the normal stresses

p22p15L2¹•n at r 511h. ~11!

In the hydrostatic state the system rotates as a rigid body
and the pressure through each fluid satisfies, respectively,

p015p01 1
2 l~r 22k1

2!, k1<r<1, ~12!

p025p01 1
2 r 21

l21

2
2

1

2
lk1

22L2, 1<r<k, ~13!

where Li5g/r iV
2a3 is defined as the ratio of the surface

tension force and the centrifugal force of fluidi 51 or 2
evaluated at the interface. It may be defined as the inverse of
the centrifugal Bond number.

Applying small perturbationsui8 , pi8 , h8 to the velocity,
pressure and surface deformation, respectively, the equations
and boundary conditions can be linearized. In this way, the
hydrostatic state of the system is perturbed as

S ui
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r
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p0i

1
D 1S ui8
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D . ~14!

After substitution in Eqs.~3!–~6! and subtraction of the hy-
drostatic solution, linearization gives the equations satisfied
by the perturbations in each fluid region as follows:
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The linear boundary conditions for the perturbations are

u1850 at r 5k1 , ~19!

u2850 at r 5k, ~20!

u185u285
]h8

]t
at r 51, ~21!

p282p1852~12l!h81L2S h81
]2h8

]u2 1
]2h8

]z2 D
at r 51. ~22!

From here on the perturbations are supposed to be sepa-
rable in normal modes as (ui8 ,v i8 ,wi8 ,pi8 ,h8)
5(Ui(r ),Vi(r ),Wi(r ),Pi(r ),A) ei (kz1nu)1st, where Ui(r ),
Vi(r ), Wi(r ), Pi(r ) and A are the amplitudes of the three
components of velocity, the pressure and the interface, re-
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spectively. Furthermore,k is the axial wavenumber,n is the
azimuthal number ands5s1 iv is a complex number
whose real part is the growth rate and the imaginary part is
the frequency of oscillation of the perturbation. Therefore, in
the normal modes, Eqs.~15!–~18! become equations for the
amplitudes

sUi22Vi52
1

l22 i DPi , ~23!

sVi12Ui52
in

rl22 i Pi , ~24!

sWi52
ik

l22 i Pi , ~25!

1

r
D~rU i !1

in

r
Vi1 ikWi50, ~26!

with corresponding boundary conditions

U150 at r 5k1 , ~27!

U250 at r 5k, ~28!

U15U25sA at r 51, ~29!

P22P152CA at r 51, ~30!

whereD[d/dr and

C5~12l!2L2~12n22k2!. ~31!

III. SOME PRELIMINARY RESULTS

Before numerical calculations are performed, it is neces-
sary to know some analytical results obtained directly from
the equations of motion. These results are useful to under-
stand the stability of the system in particular cases when one
of the parameters is small and to check the numerical results.

The results obtained by Weidmanet al. in Appendix A of
their paper11 are also valid here because it is not necessary to
make explicit use of the new boundary conditions. From
those calculations the following sufficient condition for sta-
bility is obtained:

~12n22k2!L2,~12l!. ~32!

This means that perturbations with wavenumbers satisfying
k,k0 , are unstable, where

k05A~12n2!2
12l

L2
~33!

is the limit point of stability. The inequality in Eq.~32! and
k0 in Eq. ~33! will be useful in the search of unstable wave-
numbers in the numerical analysis. When 0<l<1, the inner
fluid has a smaller density than the outer one and the long-
wave (k50,nÞ0) and spiral (unu>1,kÞ0) azimuthal
modes are stable~see Appendix A of Weidmanet al.11!.
However, the axisymmetric mode (n50) is unstable only
when L2,(12l). Similarly, it can be shown that the axi-
symmetric mode is stationary.

The casel2150 is also of interest, since it corresponds
to a liquid layer coating the outside of a cylinder under ro-

tation with a free surface. This case was investigated by
Hocking and Michael3 in the absence of inner and outer cyl-
inders. Generalizing their analytical results it is found that
our layer coating the inner cylinder is stable for longwave
azimuthal perturbations (k50) when moden satisfies

L1.
n2C

n~n221!
~n>2!, ~34!

where L15g/r1V2a3 and C5 (12k1
2n)/(11k1

2n). Thus,
the liquid layer is unstable when this inequality is not satis-
fied and the longwave modesn>1 have~see the Appendix!
the following growth rate:

sn5AC$~n21!@12L1n~n11!#112C%, ~n>1!.
~35!

This result reduces to that of Hocking and Michael3 in the
limit k1→0, that is, whenC51. Note that, in Eq.~35!,
Hocking and Michael3 only accept modesn>2 as physically
possible; this is because, in the absence of an inner cylinder,
moden51 corresponds to a simple displacement of an infi-
nite liquid column~in fact nothing happens!. For that reason,
in Eq. ~35!, sn50 whenn51 if k1→0 andk50. However,
in our casen51 is physically possible because now the in-
ner cylinder plays the role of a reference point and the fluid
layer appears, under rotation, as an excentric cylinder with
respect to the inner one. Moreover, ifn51 is substituted into
Eq. ~35! the resultings15AC(12C) is constant with re-
spect toL1 ~and has the same value as that obtained numeri-
cally and presented in Figs. 5 and 6 for differentk1). The
expression fors1 can only be zero ifC50 ~no fluid at all! or
if C51 ~cylindrical liquid column3!. Thus, for any 0,C
,1, this result shows that the longwave moden51 is al-
ways unstable.

Now, it is of interest to calculate the maxima of the
growth rate for different parameters. In the absence of the
inner cylinder Pedley6 and Weidmanet al.11 gave analytical
and numerical results. They concluded that the azimuthal
longwave (k50) modes are more unstable than the spiral
modes (kÞ0). However, it should be noted that the spiral
modes have not been investigated when the liquid layer is
coating an inner cylinder under rotation. This is one of the
goals of the present paper and will be discussed presently.

IV. FLUID LAYER COATING THE OUTSIDE OF A
CYLINDER UNDER ROTATION

Before going into the subject matter of this section some
comments about the methods used to obtain the numerical
results of the proper valuesn, k, ands, in both cases of one
and two fluid layers, are in order. First, the equations of the
amplitudes and their boundary conditions Eqs.~23!–~30! are
solved analytically obtaining complex equations for the
growth rate and frequency of oscillation where they appear
implicitly. In order to solve numerically these equations use
was made of the IMSL subroutine in Fortran of the Newton–
Rapson method. In some cases, the Mu¨ller method, useful to
obtain roots of implicit complex functions, was used. An
algorithm, which worked along with the subroutines, was
designed to select the maxima of growth rate.

2731Phys. Fluids, Vol. 15, No. 9, September 2003 Instability of the interface between two inviscid fluids



Now, the case of one fluid layer with a free surface coat-
ing the outside of a rotating cylinder is investigated. Note
that this is the most unstable situation of a two-fluid layer
system where the density of the outer fluid is negligible and
its pressure is supposed constant~atmosphere!. Therefore, it
is of interest because the highest growth rate of instability is
attained among all the two-layer system situations. This case
corresponds tol2150.

The perturbations satisfy Eqs.~23!–~31! but now with
i 51 and the variables are made nondimensional usingr1 .
The velocity components can be eliminated to obtain an
equation for the pressure

D2P11
1

r
DP12Fn2

r 2 1a2GP150, ~36!

wherea25k2(s214)/s2. The solution of this equation must
be such that the radial component of velocity satisfies the
impenetrability condition at the surface of the cylinder. That
is

U152
1

~s214! S sDP11
2in

r
P1D50 at r 5k1 . ~37!

The solution for the pressure is

P1~r !5A1I n~ar !1B1Kn~ar !, ~38!

whereI n(z) andKn(z) are first and second Bessel functions,
whose argumentz is, in general, complex. Substitution of
Eq. ~38! into the boundary conditions Eqs.~30!, ~29! and
~37! leads to the proper value equation fors with fixed k, n
andk1

a3 I n8~a!2

I n8~ak1!1
2in

k1
I n~ak1!

Kn8~ak1!1
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2in

k1
Kn~ak1!
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5

s214

11~12k22n2!L1
2

2in

s
. ~39!

Here, the primes mean that the derivative with respect to the
argument of the Bessel functions has been taken. In addition,
note that use has been made of the fact thatl21→0 and that,
as a consequence,C/l52@11L1(12n22k2)#. Moreover,
the pressure has been made nondimensional usingr1 instead
of r2 . Taking the limit k1→0, the proper value Eq.~39!
reduces to that presented by Weidmanet al.11 for a liquid
column under rotation.

A. Fluid layer coating the outside of a cylinder under
rotation: Axisymmetric case

When the perturbations are axisymmetric (n50) it was
shown11 that they must be stationary (v50), that is,s5s.
In this way, the proper value Eq.~39! reduces to

aF I 08~a!1
I 1~ak1!

K1~ak1!
K08~a!

I 0~a!1
I 1~ak1!

K1~ak1!
K0~a!

G5
s214

11~12k2!L1
, ~40!

wherea5kAs214/s. In order to understand the behavior
of the system at a small rotation frequency, the limitV→0 is
taken after returning to the dimensional form of the proper
value equation. In nondimensional variables this limit gives

s2'k~12k2!

I 08~k!1
I 1~kk1!

K1~kk1!
K08~k!

I 0~k!1
I 1~kk1!

K1~kk1!
K0~k!

L1 , ~L1→`!.

~41!

In the limit k1→0, this equation reduces to that presented by
Weidman et al.,11 which corresponds to that obtained by
Rayleigh.20

Note that whenk51 there is no influence ofL1 in Eq.
~40!. Therefore, for that wavenumber the growth rates de-
pends only onk1 for any centrifugal force. Figure 2 shows
some examples of curves ofs againstk for different values
of k1 andL1 . There is no difference between the curves of
k150 ~no inner cylinder! and 0.5 except whenL1510 and
100 where the dashed line corresponds tok150.5. All the
curves cross atk51 and the crossing point corresponding to
k150 and 0.5 is ats50.43 323 and fork150.9 it is ats
50.287 21. As seen in the figure, the growth rate decreases
with increasingk1 for 0<k1<1. The physical reason for
this is that an increase ofk1 means that, for a fixed free
surface radius, the radius of the inner cylinder increases di-
minishing the volume of the fluid layer, a situation which
makes the system more stable. It is interesting thatk51
neutralizes the surface tension and the situation is just the
nondimensional critical wavenumber found by Rayleigh for
n50 in the absence of rotation@see Eq.~41! and comments
below#. In the presence of rotation the liquid layer is still
unstable atk51 because of the Rayleigh–Taylor instability.

The maxima of the growth rate can be calculated taking
the derivative with respect tok of Eq. ~40! wheres appears
implicitly. After making ]s/]k50, the resulting expression
is

L15
~s14!~k1G11G2!2a~k1G31G4!

a~12k2!~k1G31G4!22kG2
, ~42!

where

G15I 0~a!K0~ak1!2K0~a!I 0~ak1!,

G25I 08~a!K08~ak1!2K08~a!I 08~ak1!,

G35I 08~a!K0~ak1!2K08~a!I 0~ak1!,

G45I 0~a!K08~ak1!2K0~a!I 08~ak1!.

This expression forL1 is used in Eq.~40! to obtain an
equation for the maximum growth rate and corresponding
wavenumbersm and km , respectively, as functions ofk1 .
These values are again entered in Eq.~42! to obtain the cor-
responding value ofL1 . This procedure was used to calcu-
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late the curves of the maximum growth rate againstL1 of the
axisymmetric mode given in Fig. 3. Note that the casek1

50 is also included. The values of the maxima decrease with
an increase ofk1 . The curves can be divided into two parts,
one to the left of the minima where the rotation effects are
important and another to the right where capillary effects are
important. Note that all the curves tend to superimpose for
large centrifugal forces.

Figure 4 shows the curves of the wavenumber corre-
sponding to the maximum growth rate againstL1 . Here, the
general tendency is that the wavenumber decreases withL1 .
The increase withk1 is not very significant and it is observed
only for small values ofL1 .

It is of interest to compare our theoretical results with
those observed by Yih4 in his experiments. An important
difference with the results presented above is that the fluid
layers investigated by Yih are extremely thin. In order to
obtain an analytical expression from our equations, an initial
attempt was to make an expansion of Eq.~40! in terms of the
small thickness of the layer. However, the result is not con-
sistent because the coefficients of the terms of the expansion

depend ona which was shown numerically to increase con-
siderably when the layer thickness is very small. Therefore,
becausea is part of the argument of the modified Bessel
functions, it is necessary to take their asymptotic approxima-
tion for a very large argument. After some algebra, the fol-
lowing equation for the growth rate was obtained:k@11(1
2k2)L1#5sAs211(112k1)/2k1 . The differentiation with
respect tok gives the wavenumber corresponding to the
maximum growth rate. That is:k25(11L1)/3L1 . However,
to put it in the nondimensional form used by Yih, it is nec-
essary to make a change of parameters:L1→S/b3 and k
→mb. Finally, in the notation used by Yih we havem2

5(11S/b3)b/3S, where 1/b is the nondimensional liquid
film thickness. If instead ofS use is made ofSe ~which
includes the correction due to gravity in the upper side of the
cylinder, where measurements were made! this equation
agrees very well with the experimental results for the large
~say Re.40) Reynolds numbers given in Table III of Ref. 4.
Moreover, the wavenumbers of this equation agree perfectly

FIG. 2. Graphs ofs againstk for different values ofL1

andl2150. Fork150 and 0.5~left figure! the curves
superpose on each other except whenL1510 and 100
~dashed line is fork150.5). The curves fork150.9 are
shown in the figure at the right hand side.

FIG. 3. The maximum growth rate againstL1 for different values ofk.
FIG. 4. The wavenumber corresponding to the maximum growth rate
againstk1 .
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well with the curves ofm vs S given in Figs. 1 and 3 of the
same reference.

B. Fluid layer coating the outside of a cylinder under
rotation: Spiral modes

As already shown,11 the azimuthal spiral (n>1,kÞ0)
and longwave (n>1,k50) modes are time dependent and
their frequency isvÞ0; therefore,s5s1 iv in Eq. ~39!. In
this way, the exponential in the normal modes is expressed as
exp@i(kz1nu1vt)1st#. It is supposed that the rotation is
right-handed~with the right hand thumb representing the ro-
tation axis! or in the counter clockwise-direction. Therefore,
a positive frequency of oscillation means that the azimuthal
modes rotate in the clockwise direction when then modes
are positive. The stability of the moden differs when it is
positive or negative due to the action of the Coriolis force.17

The azimuthal longwave modes have an extremely large
wavelength in the axial direction and therefore they look like
the flutes in the columns used in the ancient Greek architec-
ture but with an axial undulation at very large intervals. In
this sense, the azimuthal spiral modes will also have axial
deformation but at far shorter intervals~as in the classic coke
bottle!.

In order to obtain the maximum growth rate with more
precision, it was necessary to calculate the curves ofs andv
againstk in a broad range of values of the parametersL1 and
k1 . This was done in order to be sure which mode is the
most important, an azimuthal longwave or a spiral mode. In
particular, fork150.5 it was found that for the longwave
azimuthal moden51 the maximum growth rate is larger
than that ofn50 for the range ofL1 between approximately
0.22,L1,1.46. The minimum of the curve ofn50 is found
inside this range. This is an important difference with respect
to the results obtained by Weidmanet al.,11 where the mode
n50 is the dominant one. From values ofL151.46 to L1

→` the axisymmetric mode is the most unstable. WhenL1

,0.22 the axisymmetric mode again is the more unstable in
a short range of values below which higher longwave modes
are most unstable, as seen in Fig. 5. DecreasingL1 the mode
n52 starts atL150.1053. It should be noted that almost all
the curves are the same as those ofk150 except whenn
51, as explained above, and whenn52 which has a maxi-
mum growth rate somewhat higher.

Different results have been found fork150.9 as shown
in Fig. 6. The moden51 is more unstable than moden
50 in the range 0.18,L1,2.0, with the characteristic that
n50 does not appear for a large centrifugal force. However,
mode n50 is important for small centrifugal force when
L1.2.0.

Increasing the centrifugal force, that is decreasingL1 ,
transitions into higher modes appear sequentially. However,
a new feature is that, for some mode numbers, the longwave
modes appear first giving way, after some decrease ofL1 , to
a spiral mode (kÞ0) of the same azimuthal number. This is
shown in Fig. 6 where the spiral mode section of the corre-
sponding azimuthal number is represented by means of stars
superposed on the curves. This result is new and happens
whenk1 is a little less than and slightly larger than 0.9, that

is, when the liquid layer is thin. It occurs due to the presence
of the inner cylinder when the liquid layer thickness is
around 10% or less than the radius of the unperturbed free
surface. It can be seen that, to the left of the minimum, the
moden50 no longer appears.

In Fig. 7 the same results are shown using a different
scale for theL1 axis. In this way, it is clear that when spiral
modes appear the curve is divided into two different parts.
One is a continuous line corresponding to a longwave azi-
muthal mode and the other~starred! to the left corresponds to
the spiral mode. As shown, only the spiral modesn52, 3
and 4 are able to appear for this value ofk1 . The spiral mode
n55, to the left ofn54, also exists but it is not the most
unstable. In that range ofL1 the most important longwave
mode is that ofn56. The dashed lines indicate less unstable
modes.

FIG. 5. The maximum growth rate againstL1 for k150, 0.5. Longwave
azimuthal modes. The continuous lines show the range ofL1 where the
corresponding mode is the most unstable.

FIG. 6. The maximum growth rate againstL1 for k150.9. Longwave and
spiral azimuthal modes. The continuous lines show theL1 range where the
longwave modes are the most unstable. The starred lines show theL1 range
where the spiral modes are the most unstable.
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The moden51 was investigated in the range ofk1 . It
was found that this mode is the most unstable for a wide part
of the range. For example, Fig. 8 shows that forL151 the
moden50 is the most unstable whenk1,0.4 and that mode
n51 is the most unstable fork1.0.4. The maximum growth
rate ofn521 shows that this could never be the most un-
stable. It can be seen that the curve of the maximum growth
rate for n51 also has a maximum aroundk150.6 after
which the curve tends to zero.

V. TWO STRATIFIED FLUIDS ROTATING BETWEEN
TWO CONCENTRIC CYLINDERS

The proper value equation for the three dimensional per-
turbations of a two fluid system under rotation is more gen-
eral and complex than that described in the earlier sections.
In order to calculate this equation it is necessary to eliminate
the velocity components, obtain equations for the pressure of
each fluid and suppose the following solutions:

P1~r !5A1I n~ar !1B1Kn~ar !, ~43!

P2~r !5A2I n~ar !1B2Kn~ar !. ~44!

The boundary conditions for the pressures are obtained
from those of the velocities. Therefore, conditions of Eqs.
~27!–~30! can be translated into

sDP11
2in

k1
P150 at r 5k1 , ~45!

sDP21
2in

k
P250 at r 5k, ~46!

~sDP112inP1!5l~sDP212inP2! at r 51, ~47!

P22P15
C

s214 FDP21
2in

s
P2G at r 51. ~48!

Substitution of the solutions of Eqs.~43! and ~44! into
the boundary conditions leads to the more general proper
value equation.

The situation of a fluid layer coating the outside of a
rotating cylinder investigated in Sec. IV is the more unstable

case among the stratifications represented by the more gen-
eral proper value equation. Therefore, here only the case
where the outer fluid is more dense than the inner one will be
investigated. Due to the centrifugal force this stratification is
hydrostatically stable. However, the fluid is subjected to a
throttling effect by the surface tension and to the Coriolis
force which can cause destabilization under a variety of con-
ditions. According to the results of Sec. III, the perturbations
under this stratification are stable to both longwave and spi-
ral azimuthal modes. Therefore, only axisymmetric perturba-
tions will be investigated and these must be stationary.11 In
this way, takingn50 and consequentlys5s the proper
value equation is

@aC2I 08~a!2l~s214!#F1~a,b!2~s2

14!I 08~a!F2~a,b!1C8$@aC2I 08~a!2l~s2

14!#F1~a,b!2~s214!I 08~a!F2~a,b!%50, ~49!

where

F1~a,b!5I 08~a!K08~b!2K08~a!I 08~b!, ~50!

F2~a,b!5I 0~a!K08~b!2K0~a!I 08~b!. ~51!

Here,C85I 1(ak1)/K1(ak1), a5kAs214/s, b5ka and
C25C(n50)511L2(k221). The growth rate can be ob-
tained numerically for different values ofl, L2 , k and k1

inside the wavenumber range of the limit point of instability
given by Eq.~33!. Calculations were made forl51/4 and
3/4, k150.0, 0.5, and 0.9 andk51.2 and 5 in a wide range
of L2 in order to find the correct maxima of growth rate. The
curves ofsm againstL2 for k51.2 ~the inner fluid with the
inner cylinder occupying an 83% of the radial range of the
system! are shown in Fig. 9. The growth rate is positive if
L2.(12l) and the limit points of instability intersect at the
same point dependent onl but independent ofk1 . As
shown, the maximum growth rate depends on the radius of
the inner cylinder and this dependence becomes important

FIG. 7. An amplified view of Fig. 6 fork150.9 showing theL1 range of
spiral modes.

FIG. 8. The maximum growth rate againstk1 for L151 andn521, 0, 1.
sm tends to zero whenk1→1. Note thatsm also has a maximum.
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abovek150.5, for thin liquid layers in the inside. The inter-
section point of the curves ofl51/4 and 3/4, at some value
of L2 , varies with k1 ~for k150 it occurs aroundL2C

'3.3). This crossing point is important because it is
counterintuitive that a condition which is more stable than
another can become more unstable when the rotation is in-
creased. The reason for the existence of this point is because
the surface tension becomes less important than the centrifu-
gal force asL2 decreases. Whenr1 (,r2) is near tor2 the
inner fluid increases its possibility to penetrate the outer
layer due to the effects of the centrifugal force on the pertur-
bations. In this way, when the density of the inner fluid is
smaller but near to that of the outer layer the system is more
unstable for smallL2 than when the inner fluid is far less
denser. Additionally, it is clear that it is easier for surface
tension to destabilize the system when the inner fluid is less
dense than the outer one because its throttling effect, directed
radially towards the interior, needs less force to remove the
fluid with a lower inertia. The variation ofL2 corresponding
to the crossing points with respect tok1 is shown in Fig. 10.
Here, the results are fork51.2 and 5, and it can be seen that
L2cr decreases withk1 . This means that a larger centrifugal
force is needed to attain a crossing point when the inner
liquid film becomes relatively thinner.

The maximum growth rate corresponding to the crossing
point versusk1 is shown in Fig. 11. When the inner liquid
layer thickness tends to zero the growth rate also tends to
zero, as expected, and the effect ofk1 is important only
above 0.6.

The variation of the wavenumber corresponding to the
maximum growth rate~Fig. 9! againstL2 is shown in Fig.
12. The curves overlap each other whenk1 is 0 and 0.5. In
the limiting case ofL2→` ~zero rotation! the curves tend to
the same value11 independent ofl but still dependent onk1 .

The maximum growth rate of the instability of a system
with k55.0 is shown in Fig. 13. Here, the inner fluid layer
with the inner cylinder only fills 20% of the radial range. The

presence of the inner cylinder produces a stronger effect, for
the given parameters, as can be seen by the separation of the
curves. The corresponding graphs of the crossing points are
given in Figs. 10 and 11. From these it can be understood
that the crossing points depend not only onk1 but also onk.
Furthermore, in the limitk1→0 the value obtained by
Weidmanet al.11 is reached.

The curves for the wavenumber corresponding to the
maximum growth rate againstL2 are given in Fig. 14 fork
55. Here, the curves separate clearly after a certain magni-
tude of L2 , and in the limit ofL2→` it is found thatkm

depends11 both onl andk1 .
Another way to understand the effect of the inner cylin-

der is by means of curves of the maximum growth rate
againstk1 . This is shown in Fig. 15 for a fixed value ofl

FIG. 9. Stably stratified fluids. The maximum growth rate againstL2 for
n50, k51.2, l50.25~continuous line! and 0.75~dashed line! and different
values ofk1 . See Fig. 12 for the corresponding wavenumbers.

FIG. 10. L2cr againstk1cr for k51.2 and 5. Curves of the cross points of
the graphs ofsm againstL2 corresponding tol50.25 and 0.75. Some cross
points for particular values ofk1 are shown in Figs. 9 and 13.

FIG. 11. smcr againstk1cr for k51.2 and 5. Curves of the cross points of
the graphs ofsm againstL2 corresponding tol50.25 and 0.75. Some cross
points for particular values ofk1 are shown in Figs. 9 and 13.
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50.25 and two values ofk51.2 ~dashed lines! and 5~con-
tinuous lines!. Only after some magnitude ofk1 , the value
of sm has an important decrease towards zero. However, it
should be noted that this effect is more important whenk
55. The smallerL2 is, the largerk1 should be to make the
system sensitive to the presence of the inner cylinder. When
k1 approaches 1 the growth rate tends to zero, as expected,
because the inner fluid layer tends to disappear.

VI. CONCLUSIONS

Our results make clear the importance of the influence of
an inner cylinder on the instability of the system of two
stratified fluids. When the inner liquid layer is coating the
outside of the inner cylinder alone~no outside fluid! the
problem represents the most unstable condition of a rotating

two-layer system: where the inner fluid has a larger density
than the outer one. In this case, it has been shown that the
azimuthal modes, longwave and spiral, play an important
role on the instability. In particular, it has been shown that
the L1 domain of the axisymmetric moden50 is reduced
due to the appearance of the azimuthal longwave moden
51 in the presence of the inner cylinder. This is an unex-
pected result because moden51 does not appear whenk1

50. The azimuthal spiral modes are the most important
when the liquid layer is thin and the centrifugal force is
large. However, these modes only appear in a fraction of the
L1 range of the corresponding moden>2. An example was
investigated fork150.9 where the spiral modes are the most
unstable when 4>n>2. It was seen that the azimuthal spiral

FIG. 12. The wavenumber corresponding to the maximum growth rate
againstL2 for k51.2, l50.25~continuous line! and 0.75~dashed line!, and
different values ofk1 .

FIG. 13. The maximum growth rate againstL2 for n50, k55, l50.25
~continuous line! and 0.75~dashed line!, and different values ofk1 . See Fig.
14 for the corresponding wavenumbers.

FIG. 14. The wavenumber corresponding to the maximum growth rate
againstL2 for k55, l50.25 ~continuous line! and 0.75~dashed line!, and
different values ofk1 .

FIG. 15. The maximum growth rate againstk1 for l50.25,k51.2 ~dashed
line!, k55 ~continuous line!, and different values ofL2 . The influence of
k1 on sm for k55 is faster than fork51.2.
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modes only appear as the most important in the presence of
the inner cylinder, a result which is in contrast with the case
of a rotating liquid column.

Additionally, by means of an asymptotic expansion of
our equation in terms ofa, a formula for the wavenumber
corresponding to the maximum growth rate of a perturbation
in very thin fluid layers was found which agrees very well
with the experimental results of Yih4 when the magnitude of
his rotation parameter is Re.40 and the correction of gravity
is included. In this very thin fluid layer limit it was found
that the azimuthal modes are not important.

When the stratification is reversed, that is, when the in-
ner fluid is less dense than the outer one, the azimuthal
modes are stable and consequently only the stationary axi-
symmetric mode was investigated. In order to understand the
results obtained in this case let us suppose that the density of
the outer fluid is fixed and that the density of the inner fluid
can be varied. Under these conditions it was found that
above a certain magnitude ofL2 ~the crossing point! the
stratified system is more stable when the inner fluid increases
its density. On the contrary, ifL2 is below the crossing point
an increase in density destabilizes the system. A physical
explanation of these phenomena has been given in the paper
and it was shown that the magnitude of the crossing point
L2cr depends onk1 andk. The dependence of the maximum
growth rate onk1 for various fixed magnitudes ofL2 was
also investigated and it was found that the larger the centrifu-
gal force is, the largerk1 should be in order for the system
instability to be more sensitive to the presence of the inner
cylinder. Moreover, it was found that the two-fluid layer in-
stability is more sensitive to the inner cylinder whenk is
large.

It is important to extend this investigation in the future to
include in detail the viscous instability for the rotating sys-
tem studied in this paper. The viscosity may be found to
damp out some of the instability modes identified in this
work, but it may be possible to find other instabilities arising
due to the viscosity.
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APPENDIX: ANALYTIC CALCULATION OF THE
GROWTH RATE OF LONGWAVE AZIMUTHAL
PERTURBATIONS OF A LIQUID LAYER COATING THE
OUTSIDE OF A CYLINDER UNDER ROTATION

The goal of this appendix is to obtain an analytical ex-
pression for the growth rate of longwave azimuthal perturba-
tions of the more general system investigated in this paper.
The calculation starts following the method proposed by
Hocking and Michael3 for a rotating liquid column. The re-
sult is valid only forn>1.

Under the assumption of irrotational flow the following
potentialf of the velocity perturbation is proposed in normal
modes

f5 f ~r !einu1st. ~A1!

Here, the amplitude is supposed of the form

f ~r !5A1r n1A2r 2n, ~A2!

where n is a positive integer number. The free surface is
located atr 51 and the surface of the inner cylinder is atr
5k1 in the nondimensional form. Thus, because the normal
velocity is zero,f (r ) satisfies

d f

dr
50 at r 5k1 . ~A3!

In this way, the solution is

f ~r !5A1k1
nF S r

k1
D n

1S k1

r D nG . ~A4!

A condition at the interface is the kinematic boundary
condition

u2
]h

]u
5

]h

]t
at r 51 ~A5!

with a surface perturbation of the form

h5beinu1st, ~A6!

whereb has the solution

b52A1n
12k1

2n

s1 in
. ~A7!

The pressure perturbation is obtained from the momentum
equations, that is,

p52 iA1@2~12k1
2n!1~s2n!~11k1

2n!#einu1st. ~A8!

The normal stress boundary condition is

p1h1L1S h1
]2h

]u2 D50. ~A9!

Now, substitution of Eqs.~A7! and ~A8! in ~A9! leads to

@s1 i ~n2C!#25C$~n21!@12L1n~n11!#112C%,
~A10!

where C5(12k1
2n/11k1

2n). If the right-hand side of this
equation is positive the real part ofs is the growth rate. That
is

sn5AC$~n21!@12L1n~n11!#112C%, ~n>1!.
~A11!

When the axial wavenumberk tends to zero~longwave
mode! this expression agrees with the growth rates calculated
by means of numerical analysis of Eq.~39!. These growth
rates are maxima except when the spiral modes (kÞ0) and
the axisymmetric mode are the most unstable.
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