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In this paper we investigate the linear instability of two superposed inviscid fluids between two
rotating concentric cylinders. In the hydrostatic state the two fluids rotate as a rigid body with the
same angular velocity as the annulus. Two problems are investigated. First, calculations are made of
the instability of the liquid layer coating the outside of a cylinder under rotation. Second, results are
obtained of the instability of two stratified fluids between two concentric cylinders. The first case is
the most unstable condition of the second case when the outer fluid is absent. Therefore, in the
second case only the instability of a system with a heavier fluid located outside the interface was
investigated. It was found that the introduction of the inner cylinder produces new and interesting
results about the axial and azimuthal modes not previously published in the literature. In particular,
when a liquid layer coats the outside of a cylinder it was found that the azimuthal medg,is

the most important in a range of the nondimensional surface tension where the purely axial mode
dominated in the absence of the inner cylinder. Additionally, it was found that some azimuthal spiral
modes with a finite wavenumber appear as the most unstable in the presence of the inner cylinder.
It was shown that the larger the centrifugal force is, the larger the nondimensional radius of the inner
cylinder should be to make the instability more sensitive to the presence of the inner cylinder. An
equation for the growth rate was obtained in the limit of very thin liquid layers and it was found that
the maxima of growth rate agree very well with the experimental results of a fluid layer coating the
outside of a rotating cylinder. @003 American Institute of Physic§DOI: 10.1063/1.1597682

I. INTRODUCTION tained as a necessary and sufficient condition for instability
that the circulation should decrease with the radius. The ef-
In this paper the instability of two superposed inviscid fect of surface tension and rotation was taken into account by
fluids rotating at the same angular veloditigid body rota-  Hocking and Michaef. They developed an analytical expres-
tion) between two concentric cylinders in the absence okijon for the growth rate of longwave azimuthal perturbations
gravity was investigatedsee Fig. 1. Due to the centrifugal (with zero axial wavenumbgiof a liquid column under ro-
force this system is hydrostatically stable if the heavier fluidtation. The instability was shown to appear when the magni-
is in contact with the external cylinder and it is unstable iftude of the surface tension force was small in comparison
that fluid is in contact with the inner cylinder. with the centrifugal force. The magnitude also depends on
The stability of this stratified system has important con-the azimuthal mode number considered.
sequences in the coating of cylindrical surfaces when, for In his paper Yit focused on the instability of a thin
example, a liquid layer is applied to the external surface of diquid layer on a horizontal rotating cylinder. Yih showed
cylinder and the inertia and pressure of the outer gas is takethat the critical wavenumber depends mainly on the surface
into account. The same applies with respect to the coating aénsion and that the dependance on the Reynolds number
the interior of a cylindrical surface. [based on the fluid layer thickness (1080 3-8.17
The inner fluid is subjected to instabilities which were x 102 ft) and the angular velocity9.01-29.4 rag was
investigated more than a century ago by Rayleigh and rerather small. He showed experimentally that the perturba-
viewed by Chandrasekhin the case of jets. One important tions are mainly axisymmetric using glycerine, a glycerine
characteristic of the axisymmetrical perturbations is that, taand water mixture and water alone.
produce a throttling effect, their axial wavelengths need to be  Hocking® investigated the instability of a rigidly rotating
larger than the circumference of the cylindrical liquid col- liquid column under axisymmetric and longwave azimuthal
umn. Thus, under appropriate conditions, due to the radigberturbations. He found that the viscosity does not alter the
surface tension this effect produces an instability such thastability criterion. In the case of longwave azimuthal pertur-
the liquid cylinder starts to pinch at the troughs of the surfacébations the surface tension must be larger by a factor of 2 in
deformation until a drop is produced. When an inner cylinderorder to stabilize the viscous liquid column.
is present, the throttling effect produces dry patches on its Pedley? in his paper, presented results on the swirling
surface. These are, of course, very nonlinear effects. flow instability of a fluid with cylindrical free surface in the
Rayleiglf was interested in this phenomenon and he obinside or on the outside. He found a necessary and sufficient

1070-6631/2003/15(9)/2728/12/$20.00 2728 © 2003 American Institute of Physics



Phys. Fluids, Vol. 15, No. 9, September 2003 Instability of the interface between two inviscid fluids 2729

derstand the so called rimming flow. Additionally,
@ :77\ experimental research has been performed by Joseph and his
o~ group*?~*%on stratified fluids under rotation. However, their

experiments were made for an inner very viscous fluid layer
coating a cylinder rotating inside an initially static less vis-

cous fluid. In other words, their results do not correspond to
a rigid body rotation of all the system as supposed in the
present paper, except for the rimming flows in air; however
here the effect of gravity is important. They found interesting

~5 results related with rollers, coating and rimming flows.
™z Investigation of the instability of thin viscous liquid
eylinderwall r films flowing down vertical cylinders under rotatid?y,*®has

eylinder

shown that for certain values of the parameters the first azi-
FIG. 1. Two fluid layers inside an annulus. All the system rotates as solidnuthal mode may be the most unstable. In the absence of
body. Here are shown the radius of the inner cylinderc, the interface  rotation, but in the presence of thermocapillary effects, it has
r=aand the external cylinder=b, respectively. been shown that azimuthal modes up to 16 and over can be
excited as the most unstable for some values of the param-
eters involved in the problef.
condition for the stability of the axisymmetric disturbances  These interesting results are the motivation to search for
which requires, at the same time, satisfaction of Rayleigh’$1ew results with respect to azimuthal modes in a system of
criterion of increasing circulation. Pedley was able to extendstratified inviscid fluids similar to that studied by Weidman
that condition to azimuthal perturbations for particular casest al* but including a new cylindrical solid boundary in the
of swirling flows. interior of the stratified fluids; that is, by the introduction of
Joseptet al.” made calculations on the stability of strati- an inner concentric cylinder. As shown in Fig. 1, the system
fied viscous liquids inside rotating cylindrical containers.under investigation is composed of an annulus containing
They found, using the method of energy for nonlinear periwo stratified fluids with the characteristic that all is rotating
turbations, that when the heavy fluid is outside the interfac&s a solid body. The understanding of the behavior of the
its radius remains constant depending on the positive magnperturbations to this hydrostatic state is the subject of our
tude of a nondimensional parameter which represents the raesearch. When the radius of the inner cylinder tends to zero
tio of the centrifugal and surface tension forces. When thathe system becomes that investigated by Weidetazl 1*
parameter is negative the heavy fluid is inside and the inter- The structure of the paper is as follows. In Sec. II, a
face destabilizes. They compared their results with experidescription is given of the system under investigation, that is,
ments and their results agree with those of Moffatho also  two stratified inviscid liquids rotating rigidly between two
made experiments and used the lubrication approximation teoncentric cylinders. Here, the equations of motion are intro-
obtain an equation for one liquid film coating the inside orduced and, after subtracting the hydrostatic solution, the
the outside of a rotating cylinder. equations satisfied by the linear perturbations are obtained
Boudourides and Dawisextended the Rayleigh and along with the corresponding boundary conditions. Section
Synge stability criteria for inviscid and viscous fluids to in- lll is a review of important stability results relevant to our
clude a free surface. They looked for a sufficient conditionproblem. Section IV presents results for the case of a liquid
for centrifugal, capillary and Rayleigh—Taylor stability. film coating a rotating cylinder. This is the most unstable
Weidmart® calculated the stability criteria for a system situation of the two-layer system under investigation in
of two stratified fluids rotating rigidly inside a cylinder. His which the heavier fluid is inside and the inertia of the outer
results generalized previous results where only one liquidluid is so small that it can be neglected. It is divided into
layer was taken into account. Beside axisymmetric modegwo subsections corresponding to the instability of axisym-
azimuthal modes were considered for z8omgwave mode  metric and spiral perturbations, respectively. In Sec. V cal-
and finite wavenumber@piral modes culations are presented for the two-layer system when the
Weidmanet al** made a complete numerical analysis of heavier fluid is outside of the interface, and Sec. VI gives the
the linear problem of two stratified inviscid fluids in rigid conclusions. Finally, in order to complete the analytical cal-
rotation inside a cylinder. They found the maxima of growthculations, an appendix is given at the end of the paper.
rate of instability for axisymmetric and azimuthal perturba-
tions. H(_)we_ver, they showed that_ for a rotating liquid co_l— Il. EQUATIONS OF MOTION
umn (which is the more unstable situation where the density
of the outer fluid is negligibleonly longwave azimuthal per- The instability of two-superposed inviscid fluids rotating
turbations are the most unstable. as a solid body between two concentric cylinders is investi-
Concerning the papers on experiments related with thgated, and the effect of gravity has been neglected. A sketch
present problem those by Yirand Moffatf have already of the system is shown in Fig. 1. In comparison with the
been mentioned. In them the instability of a liquid film coat- paper of Weidmaret al!! the inner cylinder with radius
ing the outside of a rotating cylinder was investigated. How-=c is the new boundary condition, which as will be shown,
ever, Moffatf took into account the effect of gravity to un- brings about results not found previously in the literature.
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The radius of the interface between the two fluids ig at
=a and that corresponding to the external cylinder ig at
=b. The fluids have constant densitigswherei=1 and 2

for the inner and outer fluid, respectively. The angular veloc-

ity of the system i2=Qe,, where(} is the magnitude of
the angular velocity vector arg is a unit vector in the axial
direction, here taken as The other unit vectors in the radial
and azimuthal directions agg, e,, respectively. The surface
tension constant of the interface js

The equations of motion in cylindrical coordinates of an
inviscid fluid in a rotating system are

i 1 (Qxr)?
ﬁ+29Xui=—EVpi+V 5 (1)

along with the incompressibility equation
V-u;=0. 2

Here, r is the radius vector and its magnitude and the
vectoru; = (u;,v;,w;) is the velocity. The variables are made
nondimensional as follows, the time with !, the length
with the interface radiug, the velocity withaQ) and the
pressure withp,02a?, respectively. In this way, the equa-
tions of motion of both fluids may be written as
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where\ =p; /p, is the densities ratio and the nabla operator
in cylindrical coordinates is
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Now, the interface is located at=1, the external cylinder at
r=«=b/a and the surface of the inner cylinder israt «,
=c/a. The perturbations to the interface are located at
=1+ n(6,z,1). This is used to calculate the normal vector at
the interface:

2 21-1/2
Thus, the boundary conditions are
P1=Ppo atr=«, (7
u;=0 atr=«y, (8
u,=0 atr=x, )

wherep, is a reference pressure at the surface of the innerable
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The pressure discontinuity at the interface is due to the
surface tension and this can be expressed by means of a
balance equation for the normal stresses

p,—pi1=L,V-n atr=1+7. (11

In the hydrostatic state the system rotates as a rigid body
and the pressure through each fluid satisfies, respectively,

Por=Po+ 3N(r%—«?), Ky=r=<1,

(12

1

2

5 7\K§—L2, Isr=k,

Po2=Po+ 3r°+ (13
whereL;=y/p;Q?a is defined as the ratio of the surface
tension force and the centrifugal force of fluiek1 or 2
evaluated at the interface. It may be defined as the inverse of
the centrifugal Bond number.

Applying small perturbations; , p; , %’ to the velocity,
pressure and surface deformation, respectively, the equations
and boundary conditions can be linearized. In this way, the
hydrostatic state of the system is perturbed as

!

U 0 u;
Pi|=| Poi | +| P/ (14)
r 1 7]'

After substitution in Eqs(3)—(6) and subtraction of the hy-
drostatic solution, linearization gives the equations satisfied
by the perturbations in each fluid region as follows:

auf 0,/ = 1 ap/ 15
AT TR a9
dv{ oy’ 1 dp/ 16
AN T TR G (19
W 1 dp/

RN 7
19 ,+1(9u{+¢9wi’_0 18
or Ut T gt 5 =0 (18

The linear boundary conditions for the perturbations are

u;=0 atr=«q, (19
u,=0 atr=x, (20
u1=u§=a—t’ atr=1, (22)
0—,277/ 0727]/
po=Pi=—(1-N)n' +Lo| 7'+ — o+ —
atr=1. (22

From here on the perturbations are supposed to be sepa-
in normal modes as u{,v{,w,p{,7n")

cylinder. The continuity of the radial velocities at the inter- = (U;(r),V;(r),W;(r),P;(r),A) e kzrnd+st where U;(r),
face must be satisfied along with the kinematic boundary;(r), W;(r), P;(r) and A are the amplitudes of the three

condition. That is

components of velocity, the pressure and the interface, re-
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spectively. Furthermore is the axial wavenumben is the  tation with a free surface. This case was investigated by
azimuthal number and=o+iw is a complex number Hocking and Micha€lin the absence of inner and outer cyl-
whose real part is the growth rate and the imaginary part isnders. Generalizing their analytical results it is found that
the frequency of oscillation of the perturbation. Therefore, inour layer coating the inner cylinder is stable for longwave
the normal modes, Eq$15)—(18) become equations for the azimuthal perturbationsk&0) when moden satisfies
amplitudes

n-C
Li>——>—— (n=2), (34)
1 1 7_
sUi—2Vi=— 7= DP;, (23) n(n"-1)
where L;=y/p;Q%a® and C= (1— «2")/(1+ «2"). Thus,
in the liquid layer is unstable when this inequality is not satis-
sVit2Ui=— =P, (24)  fied and the longwave modes=1 have(see the Appendix
the following growth rate:
ik
SW=———P;, (25) on=VC{(n—1)[1-Ln(n+1)]+1-C}, (n=1).
A (35
1 in . This result reduces to that of Hocking and MicHaiel the
FD(rUiHTVi“kWi:O’ (26 |imit k1—0, that is, whenC=1. Note that, in Eq.(35),
, ) . Hocking and Michaélonly accept modes=2 as physically
with corresponding boundary conditions possible; this is because, in the absence of an inner cylinder,
U;=0 atr=«,, (277  moden=1 corresponds to a simple displacement of an infi-
nite liquid column(in fact nothing happensFor that reason,
U=0 atr=x, (28)  in Eq.(35), 0,=0 whenn=1 if x;—0 andk=0. However,
U;=U,=sA atr=1, (29) in our casen=1 is physically possible because now the in-

ner cylinder plays the role of a reference point and the fluid
P,—P,=—VA atr=1, (30 layer appears, under rotation, as an excentric cylinder with

whereD=d/dr and respect to the inner one. Moreovernif 1 is substituted into

Eqg. (35) the resultingo;=+/C(1—C) is constant with re-

W=(1-\)—L,y(1—n?—k?). (31 spect toL; (and has the same value as that obtained numeri-
cally and presented in Figs. 5 and 6 for differen. The
IIl. SOME PRELIMINARY RESULTS expression forr; can only be zero i€=0 (no fluid at al) or

_ . o if C=1 (cylindrical liquid columr). Thus, for any 8<C

Before numerical calculations are performed, it is neces< 1, this result shows that the longwave matte 1 is al-
sary to know some analytical results obtained directly fromyays unstable.
the equations of motion. These results are useful to under- Now, it is of interest to calculate the maxima of the
stand the stability of the system in particular cases when ongrowth rate for different parameters. In the absence of the
of the parameters is small and to check the numerical resultgyner cylinder Pedléy/and Weidmaret al** gave analytical

‘The results obtained by Weidmanal.in Appendix Aof  and numerical results. They concluded that the azimuthal
their papet! are also valid here because it is not necessary thngwave k=0) modes are more unstable than the spiral
make explicit use of the new boundary conditions. Frommodes k#0). However, it should be noted that the spiral
those calculations the fOIlOWing sufficient condition for sta- modes have not been investigated when the ||qu|d |ayer is
bility is obtained: coating an inner cylinder under rotation. This is one of the

(1-n?—K})L,<(1—\). (32)  9oals of the present paper and will be discussed presently.

This means that perturbations with wavenumbers satisfying
k<k,, are unstable, where IV. FLUID LAYER COATING THE OUTSIDE OF A
CYLINDER UNDER ROTATION

/ 1-A
ko= \/(1—n?)— 3 (33 Before going into the subject matter of this section some
2

comments about the methods used to obtain the numerical

is the limit point of stability. The inequality in Eq32) and  results of the proper values k, ands, in both cases of one
ko in Eqg. (33) will be useful in the search of unstable wave- and two fluid layers, are in order. First, the equations of the
numbers in the numerical analysis. Whes B<1, the inner amplitudes and their boundary conditions E@8)—(30) are
fluid has a smaller density than the outer one and the longsolved analytically obtaining complex equations for the
wave (k=0n#0) and spiral [n|=1k#0) azimuthal growth rate and frequency of oscillation where they appear
modes are stablésee Appendix A of Weidmaret alll). implicitly. In order to solve numerically these equations use
However, the axisymmetric moden€0) is unstable only was made of the IMSL subroutine in Fortran of the Newton—
whenL,<(1—\). Similarly, it can be shown that the axi- Rapson method. In some cases, thdlbtunethod, useful to
symmetric mode is stationary. obtain roots of implicit complex functions, was used. An

The casex =0 is also of interest, since it corresponds algorithm, which worked along with the subroutines, was
to a liquid layer coating the outside of a cylinder under ro-designed to select the maxima of growth rate.
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Now, the case of one fluid layer with a free surface coat- | (aky)
ing the outside of a rotating cylinder is investigated. Note lo(a)+ mKé(Q) 244
that this is the most unstable situation of a two-fluid layer « I 1( 1) = 1T+ (1=K, (40
system where the density of the outer fluid is negligible and () + @Ky . 1
its pressure is supposed constéatosphere Therefore, it Ki(aky)

is of interest because the highest growth rate of instability iSynere ¢ = k o2+ 4/c. In order to understand the behavior
attained amongialll the two-layer system situations. This casgs ihe system at a small rotation frequency, the lifit: 0 is
corresponds ta.~“=0. taken after returning to the dimensional form of the proper

~ The perturbations satisfy Eq&23)—(31) but now with  y31ye equation. In nondimensional variables this limit gives
i=1 and the variables are made nondimensional uging

The velocity components can be eliminated to obtain an I1(kkq)

equation for the pressure ol * Ki(Kky) Kol
a’~k(1-k?) Ly, (Lyi—).
1 n2 (K I1(Kky)
D?Py+ =DPy~| 5 +a?(Py=0, (36) T Ka(key) 0

(41

wherea?= k2(52+4)/5_’2- The solution of this equation must | the limit «,— 0, this equation reduces to that presented by
be such that the radial component of velocity satisfies thgyeigman et al,” which corresponds to that obtained by
impenetrability condition at the surface of the cylinder. ThatRaerigh?o

IS Note that wherk=1 there is no influence df; in Eq.
(40). Therefore, for that wavenumber the growth ratele-

U;=—-——~|sDP;+ 2|—nP1) =0 atr=k;. (37 pends only onk; for any centrifugal force. Figure 2 shows
(s°+4) r some examples of curves ofagainstk for different values
The solution for the pressure is of k; andL,. There is no difference between the curves of
x1=0 (no inner cylindey and 0.5 except wheh,;=10 and
Pi(r)=Aqly(ar)+BiKy(ar), (38 100 where the dashed line correspondsce=0.5. All the

wherel ,(z) andK,(z) are first and second Bessel functions, curl/gs crgsg gk_= 1§rld0t2§ (3:r20355|ng ]E)omt_cgrgei pondtlng to
whose argument is, in general, complex. Substitution of X172 8¢ 9.91S ab=0.23 325 and 1ol =H.9 1L 1S ato
Eq. (38) into the boundary conditions Eq&30), (29) and =0.28721. As seen in the figure, the growth rate decreases

| h | . it fi K wi.th .increasingfq for 0<k;=<1. The physical reason for
(37) leads to the proper value equation fowith fixedk, n this is that an increase of; means that, for a fixed free

and ey surface radius, the radius of the inner cylinder increases di-
[ 2in i minishing the volume of the fluid layer, a situation which
|r’1(aK1)+K_|n(01K1) makes the system more stable. It is interesting thatl
I(a)— 2i:1 Ki(a) neutralizes the surface tension and the situation is just the
Kl (aky)+ —Kq(aky) nondimensional critical wavenumber found by Rayleigh for
o K1 n=0 in the absence of rotatidsee Eq(41) and comments
, below]. In the presence of rotation the liquid layer is still
In(aky)+ ——ln(axy) unstable ak=1 because of the Rayleigh—Taylor instability.
Ih(a)— >in Kn(a@) The maxima of the growth rate can be calculated taking
Ki(ak)+ —Kn(aky) the derivative with respect th of Eq. (40) whereo appears
L K - implicitly. After making da/dk=0, the resulting expression
s?+4 2in 29 is
1+(1-k°-n?L, s’ 39 L (0+4)(k1G1+Gy) — a(k1G3+Gy) 42
Here, the primes mean that the derivative with respect to the ! a(1-K%)(k1G3+G,) —2kG,

argument of the Bessel functions has been taken. In additiogyhere
note that use has been made of the factxhdt— 0 and that,

as a consequenc®/\ = —[1+L,(1—n?—k?)]. Moreover, Gi=lo(a)Ko(aky) —Ko(a)lo(aky),
the pressure has been made nondimensional ysiigstead G.= 1" ()K" —K(a

of p,. Taking the limit x;—0, the proper value Eq(39) 2= lo(@)Kolaky) =Ko(a)lo( k),
reduces to that presented by Weidmetral!! for a liquid Gs=1(a)Ko(aky) —Kj(a)l ol aky),

column under rotation. ) )
Ga=lo(@)Ko(aky) —Ko(a)lg(aky).
A. Fluid layer coating the outside of a cylinder under

) . . This expression fok ; is used in Eq.(40) to obtain an
rotation: Axisymmetric case

equation for the maximum growth rate and corresponding
When the perturbations are axisymmetnc=0) it was  wavenumbero,, and k,,, respectively, as functions of; .

showrt! that they must be stationarywE 0), that is,s=o. These values are again entered in E®) to obtain the cor-

In this way, the proper value E39) reduces to responding value ok ;. This procedure was used to calcu-
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*,=0.0, 0.5
FIG. 2. Graphs ofr against for different values ot ;
- and\~1=0. Forx,;=0 and 0.5(left figure) the curves
superpose on each other except wigr10 and 100
L =0.01 (dashed line is fok,=0.5). The curves fok,=0.9 are
shown in the figure at the right hand side.
0.1
4 8 8

late the curves of the maximum growth rate againsof the  depend onx which was shown numerically to increase con-
axisymmetric mode given in Fig. 3. Note that the case siderably when the layer thickness is very small. Therefore,
=0 is also included. The values of the maxima decrease withecausex is part of the argument of the modified Bessel
an increase ok;. The curves can be divided into two parts, functions, it is necessary to take their asymptotic approxima-
one to the left of the minima where the rotation effects aretion for a very large argument. After some algebra, the fol-
important and another to the right where capillary effects arédowing equation for the growth rate was obtain&fl+ (1
important. Note that all the curves tend to superimpose for-k?)L,]= oo+ 1(1+ 2k,)/2«,. The differentiation with
large centrifugal forces. respect tok gives the wavenumber corresponding to the

Figure 4 shows the curves of the wavenumber corremaximum growth rate. That i&?=(1+L,)/3L,. However,
sponding to the maximum growth rate agaibst Here, the to put it in the nondimensional form used by Yih, it is nec-
general tendency is that the wavenumber decreased with essary to make a change of parametérs—S/b® and k
The increase witlx, is not very significant and it is observed —mb. Finally, in the notation used by Yih we hawe?®
only for small values ot ;. =(1+S/b%)b/3S, where 1b is the nondimensional liquid

It is of interest to compare our theoretical results withfilm thickness. If instead ofS use is made ofS; (which
those observed by Yfin his experiments. An important includes the correction due to gravity in the upper side of the
difference with the results presented above is that the fluidylinder, where measurements were madis equation
layers investigated by Yih are extremely thin. In order toagrees very well with the experimental results for the large
obtain an analytical expression from our equations, an initia(say Re>40) Reynolds numbers given in Table Il of Ref. 4.
attempt was to make an expansion of &) in terms of the  Moreover, the wavenumbers of this equation agree perfectly
small thickness of the layer. However, the result is not con-
sistent because the coefficients of the terms of the expansion

i

q
)
| I T T N U W U T T W N N T W T Y T N A WO Y O A O |

w

—_

O “r—r T

| ) S L O R 1) ] 0.001 0.01 0.1 1 10 100
0.001 0.01 0.1 L 1 10 100 1
1

Q

FIG. 4. The wavenumber corresponding to the maximum growth rate
FIG. 3. The maximum growth rate agairist for different values ofx. againstk; .
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well with the curves oim vs S given in Figs. 1 and 3 of the 209
same reference. 1

B. Fluid layer coating the outside of a cylinder under .
rotation: Spiral modes 15 3

As already shown! the azimuthal spiral (=1k=+0)
and longwave 1t=1k=0) modes are time dependent and 1
their frequency isv# 0; therefores=o+iw in EqQ.(39). In o, 1.0 1
this way, the exponential in the normal modes is expressed as ]
exfdi(kz+né+wt)+ot]. It is supposed that the rotation is
right-handedwith the right hand thumb representing the ro- 1
tation axig or in the counter clockwise-direction. Therefore, 0.5 7
a positive frequency of oscillation means that the azimuthal ]
modes rotate in the clockwise direction when thenodes ] =t %y =00
are positive. The stability of the mode differs when it is ]
positive or negative due to the action of the Coriolis forte. 0'8,001' o0t o1 1 1o 100
The azimuthal longwave modes have an extremely large Ly
wavelength in the axial direction and therefore they look likegig, 5. The maximum growth rate agairist for «,=0, 0.5. Longwave
the flutes in the columns used in the ancient Greek architeczimuthal modes. The continuous lines show the range,ofvhere the
ture but with an axial undulation at very large intervals. Incorresponding mode is the most unstable.
this sense, the azimuthal spiral modes will also have axial

deformation but at far shorter intervalss in the classic coke o o
bottle). is, when the liquid layer is thin. It occurs due to the presence

In order to obtain the maximum growth rate with more Of the inner cylinder when the liquid layer thickness is
precision, it was necessary to calculate the curvesafide  @round 10% or less than the radius of the unperturbed free
againsk in a broad range of values of the parameteysand ~ Surface. It can be seen that, to the left of the minimum, the
x,. This was done in order to be sure which mode is the™oden=0 no longer appears. . .
most important, an azimuthal longwave or a spiral mode. In In Fig. 7 the same f?SUHS are shown using a dn‘f(_erent
particular, forx;=0.5 it was found that for the longwave Scale for thel, axis. In this way, it is clear that when spiral
azimuthal moden=1 the maximum growth rate is larger modes appear the curve is divided into two different parts.

than that ofn=0 for the range of., between approximately One is a continuous line corresponding to a longwave azi-
0.22<1,<1.46. The minimum of the curve of=0 is found muthal mode and the othéstarred to the left corresponds to

inside this range. This is an important difference with respec{he spiral mode. As shown, qnly the spiral mog‘esZ, 3
to the results obtained by Weidmanal,'* where the mode and 4 are able to appear for this valueqt The spiral mode

n=0 is the dominant one. From values bf=1.46 tol , n=>5, to the left ofn=4, also exists but it is not the most

.o the axisymmetric mode is the most unstable. When unstable. In that range df; the most important longwave

<0.22 the axisymmetric mode again is the more unstable irr]noggsls that oh=6. The dashed lines indicate less unstable

a short range of values below which higher longwave moded™®
are most unstable, as seen in Fig. 5. Decrealsintpe mode
n=2 starts aL.;=0.1053. It should be noted that almost all
the curves are the same as thosexgf 0 except whem
=1, as explained above, and wher 2 which has a maxi-
mum growth rate somewhat higher.
Different results have been found fef=0.9 as shown
in Fig. 6. The moden=1 is more unstable than mode
=0 in the range 0.18L,<2.0, with the characteristic that
n=0 does not appear for a large centrifugal force. However,
mode n=0 is important for small centrifugal force when :
L,>2.0. 050 7
Increasing the centrifugal force, that is decreading ]
transitions into higher modes appear sequentially. However 0.5 4
a new feature is that, for some mode numbers, the longwavt ]
modes appear first giving way, after some decreads pto 0.00
a spiral mode K+ 0) of the same azimuthal number. This is 0.001 0.1 ot ! 1o 100
shown in Fig. 6 where the spiral mode section of the corre- ) )
3 éG 6. The maximum growth rate agairist for «;=0.9. Longwave and

spondlng azimuthal number is represented by means of st Epwal azimuthal modes. The continuous lines showltheange where the

SuDerpOS_ed qn the curves. This _reSU|t is new and happerllﬁlgwave modes are the most unstable. The starred lines shdw tlamge
whenk; is a little less than and slightly larger than 0.9, thatwhere the spiral modes are the most unstable.

1.50 -
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FIG. 8. The maximum growth rate against for L,=1 andn=-1, 0, 1.
The moden=1 was investigated in the range of . It o, tends to zero whew;— 1. Note thato,,, also has a maximum.
was found that this mode is the most unstable for a wide part
of the range. For example, Fig. 8 shows that lfge=1 the

moden =0 is the most unstable when <0.4 and that mode 5356 among the stratifications represented by the more gen-
n=1is the most unstable for,>0.4. The maximum growth - gra| proper value equation. Therefore, here only the case
rate ofn=—1 shows that this could never be the most un-,here the outer fluid is more dense than the inner one will be
stable. It can be seen that the curve of the maximum growtl, estigated. Due to the centrifugal force this stratification is
rate forn=1 also has a maximum arouney=0.6 after pyqrostatically stable. However, the fluid is subjected to a

which the curve tends to zero. throttling effect by the surface tension and to the Coriolis
force which can cause destabilization under a variety of con-
V. TWO STRATIFIED FLUIDS ROTATING BETWEEN ditions. According to the results of Sec. lIl, the perturbations

TWO CONCENTRIC CYLINDERS under this stratification are stable to both longwave and spi-

The proper value equation for the three dimensional per[a| azimuthal modes. Therefore, only axisymmetric perturba-
turbations of a two fluid system under rotation is more gendions will be investigated and these must be statiofahy.
eral and complex than that described in the earlier sectionghis way, takingn=0 and consequentlg=o the proper
In order to calculate this equation it is necessary to eliminate¢@lue equation is
the velogity components, obtain equations for the pressure c[fallle(’,(a) A (S2+4)]F (@, B)— (S
each fluid and suppose the following solutions:
+4)1)(a)Fy(a,B)+C'{[ aW,l {(a) — N (S?

Pi(r)=Aqln(ar)+BKy(ar), (43
(2 ’ _

P,(r)=A,l ,(ar)+B,K,(ar). (44) +4)]Fi(a,B)—(s*+4)lo(@)Fa(a,B)} =0, (49

The boundary conditions for the pressures are obtainety"€re
from those of the velocities. Therefore, conditions of Egs. Fi(a,B)=1(a)KH(B)—K(a)ly(B), (50)
(27)—(30) can be translated into , ,

2in Fa(a,B)=lo(a)Ko(B) —Ko(a)lo(B). (51
sDP;+ K—1P1=O atr=m«y, (45) Here,C' =1,(aky)/Ki(aky), a=kyJo?+4lo, B=ka and

V,=¥(n=0)=1+L,(k?—1). The growth rate can be ob-
tained numerically for different values of, L,, « and «;
inside the wavenumber range of the limit point of instability
) ) given by Eq.(33). Calculations were made for=1/4 and
(sDP;+2inP;)=\(sDP,+2inPy) atr=1, (47)  3/4 x,=0.0, 0.5, and 0.9 and=1.2 and 5 in a wide range
of L, in order to find the correct maxima of growth rate. The
atr=1. (48) curves ofo,, againstL, for «=1.2 (the inner fluid with the
inner cylinder occupying an 83% of the radial range of the
Substitution of the solutions of Eq#§43) and (44) into  system are shown in Fig. 9. The growth rate is positive if
the boundary conditions leads to the more general propdr,>(1—A) and the limit points of instability intersect at the
value equation. same point dependent on but independent ofk;. As
The situation of a fluid layer coating the outside of ashown, the maximum growth rate depends on the radius of
rotating cylinder investigated in Sec. IV is the more unstablethe inner cylinder and this dependence becomes important

2in
sDP,+ TPZ:O atr=«x, (46)

N4
PPt

2in
DP,+ ?Pz
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FIG. 9. Stably stratified fluids. The maximum growth rate againstor ) )
n=0, x=1.2,\=0.25(continuous lingand 0.75dashed lingand different ~ FIG. 10. Ly, againstk,, for x=1.2 and 5. Curves of the cross points of

values ofx, . See Fig. 12 for the corresponding wavenumbers. the graphs ofr, against_, corresponding ta. =0.25 and 0.75. Some cross
points for particular values o, are shown in Figs. 9 and 13.

abovex;=0.5, for thin liquid layers in the inside. The inter- presence of the inner cylinder produces a stronger effect, for
section point of the curves of=1/4 and 3/4, at some value the given parameters, as can be seen by the separation of the
of L,, varies with x; (for ;=0 it occurs aroundL,c  curves. The corresponding graphs of the crossing points are
~3.3). This crossing point is important because it isgiven in Figs. 10 and 11. From these it can be understood
counterintuitive that a condition which is more stable thanthat the crossing points depend not onlynbut also on.
another can become more unstable when the rotation is ineyrthermore, in the limitk;—0 the value obtained by
creased. The reason for the existence of this point is becaug@eidmanet all! is reached.

the surface tension becomes less important than the centrifu- The curves for the wavenumber corresponding to the

gal force ad, decreases. Whepy (<p,) is near top, the  maximum growth rate against, are given in Fig. 14 fow

inner fluid increases its pOSSIbI'Ity to penetrate the outer=5, Here, the curves separate C|ear|y after a certain magni_
layer due to the effects of the centrifugal force on the perturtyde ofL,, and in the limit ofL,— it is found thatk,,

bations. In this way, when the density of the inner fluid is depend¥" both on\ and ;.

smaller but near to that of the outer layer the system is more ~ Another way to understand the effect of the inner cylin-
unstable for SmaIL2 than when the inner fluid is far less der is by means of curves of the maximum growth rate

denser. Additionally, it is clear that it is easier for surfaceagainstx,. This is shown in Fig. 15 for a fixed value af
tension to destabilize the system when the inner fluid is less

dense than the outer one because its throttling effect, directed
radially towards the interior, needs less force to remove the 0.30
fluid with a lower inertia. The variation df, corresponding
to the crossing points with respect g is shown in Fig. 10.
Here, the results are far=1.2 and 5, and it can be seen that
L, decreases witl;. This means that a larger centrifugal
force is needed to attain a crossing point when the inner 0.20
liquid film becomes relatively thinner.

The maximum growth rate corresponding to the crossing . 415
point versusk, is shown in Fig. 11. When the inner liquid
layer thickness tends to zero the growth rate also tends to

0.25

x = 5.0

zero, as expected, and the effect of is important only 0.10
above 0.6.
The variation of the wavenumber corresponding to the 0.05

maximum growth ratgFig. 9 againstL, is shown in Fig.
12. The curves overlap each other whenis 0 and 0.5. In
the limiting case ol ,— (zero rotation the curves tend to 02 o4 0.6 08 10
the same valug independent ok but still dependent or; . Kicr

The maximum growth rate of the instability of a system FIG. 11. oy, againstk,, for k=1.2 and 5. Curves of the cross points of

W?th K= 5-0 is Sh_own in Fig_- 13. Here, the inr_ler fluid layer the graphs ofr,, against_, corresponding ta.=0.25 and 0.75. Some cross
with the inner cylinder only fills 20% of the radial range. The points for particular values of; are shown in Figs. 9 and 13.
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FIG. 12. The wavenumber corresponding to the maximum growth rater|G. 14. The wavenumber corresponding to the maximum growth rate
against. for k=1.2,A =0.25(continuous lingand 0.75dashed ling and  againstL, for k=5, A =0.25 (continuous lin¢ and 0.75(dashed ling and
different values ofk; . different values ofi; .

=0.25 and two values ot= 1.2 (dashed linesand 5(con-

tinuous lineg. Only after some magnitude af;, the value  two-layer system: where the inner fluid has a larger density
of oy has an important decrease towards zero. However, than the outer one. In this case, it has been shown that the
should be noted that this effect is more important when azimuthal modes, longwave and spiral, play an important

=5. The smalleL is, the largerx; should be to make the role on the instability. In particular, it has been shown that

system sensitive to the presence of the inner cylinder. Whethe L, domain of the axisymmetric mode=0 is reduced

k1 approaches 1 the growth rate tends to zero, as expecteglye to the appearance of the azimuthal longwave mode

because the inner fluid layer tends to disappear. =1 in the presence of the inner cylinder. This is an unex-
pected result because mode=1 does not appear whety
VI. CONCLUSIONS =0. The azimuthal spiral modes are the most important

o It ke clear the i N f the infl i{vhen the liquid layer is thin and the centrifugal force is
Lurresults make clear tne importance of tne nfiuence o arge. However, these modes only appear in a fraction of the
an inner cylinder on the instability of the system of two

- . . - ’ : L, range of the corresponding mode=2. An example was
stratified fluids. When the inner liquid layer is coating the 1 1ang P g P

. . . . . investigated for;=0.9 where the spiral modes are the most
outside of the inner cylinder alon@o outside fluidl the 9 "1 P

" ._unstable when Zn=2. It was seen that the azimuthal spiral
problem represents the most unstable condition of a rotating

1.20

0.80

0.40

0.00 VT T T T
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2 Ky

FIG. 13. The maximum growth rate agairisf for n=0, k=5, A=0.25 FIG. 15. The maximum growth rate againstfor A =0.25, x=1.2 (dashed
(continuous lingand 0.75dashed ling and different values ot, . See Fig. line), k=5 (continuous ling and different values of ,. The influence of
14 for the corresponding wavenumbers. K1 ON oy, for k=5 is faster than fok=1.2.
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modes only appear as the most important in the presence of Under the assumption of irrotational flow the following
the inner cylinder, a result which is in contrast with the casepotential¢ of the velocity perturbation is proposed in normal
of a rotating liquid column. modes
Additionally, by means of an asymptotic expansion of b=1f(r)eno+st (A1)
our equation in terms of, a formula for the wavenumber '
corresponding to the maximum growth rate of a perturbatiorHere, the amplitude is supposed of the form
in very thin fluid layers was found which agrees very well — A (N -n
with the experimental results of Yitwhen the magnitude of F=AarT+ Aot (A2)
his rotation parameter is Ret0 and the correction of gravity Wheren is a positive integer number. The free surface is
is included. In this very thin fluid layer limit it was found located atr=1 and the surface of the inner cylinder israt
that the azimuthal modes are not important_ =K1 in the nondimensional form. ThUS, because the normal
When the stratification is reversed, that is, when the invelocity is zero,f(r) satisfies
ner fluid is less dense than the outer one, the azimuthal ¢
modes are stable and consequently only the stationary axi- mzo atr=«j. (A3)
symmetric mode was investigated. In order to understand the
results obtained in this case let us suppose that the density of this way, the solution is
the outer fluid is fixed and that the density of the inner fluid ; Ky|"
(Kl r ) '

can be varied. Under these conditions it was found that f(r)=Ak]

above a certain magnitude &f, (the crossing pointthe

stratified system is more stable when the inner fluid increases A condition at the interface is the kinematic boundary
its density. On the contrary, If, is below the crossing point condition

an increase in density destabilizes the system. A physical

explanation of these phenomena has been given in the paper ,_ a7 _ (9_’7 atr=1 (A5)
and it was shown that the magnitude of the crossing point a0  dt

Locr depends ork; and«. The dependence of the maximum yith g surface perturbation of the form

growth rate onk, for various fixed magnitudes df, was .

also investigated and it was found that the larger the centrifu- 7~ ben?sl, (A6)

gal force is, the largek; should be in order for the system \whereb has the solution

instability to be more sensitive to the presence of the inner

n

+ (A4)

2n
cylinder. Moreover, it was found that the two-fluid layer in- b= —A nl_Kl (A7)
stability is more sensitive to the inner cylinder whenis Yestin -
large.

The pressure perturbation is obtained from the momentum

It is important to extend this investigation in the future to equations, that s,

include in detail the viscous instability for the rotating sys- _

tem studied in this paper. The viscosity may be found to ~ p=—iA;[2(1—ki") +(s—n)(1+ki"]e"?*st  (A8)
damp out some of the instability modes identified in this-l-he normal stress boundary condition is

work, but it may be possible to find other instabilities arising

: . 52

due to the viscosity. 0+ 4Ly 7+ 3_972]) —0. (A9)
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APPENDIX: ANALYTIC CALCULATION OF THE When the axial wavenumbér tends to zerdlongwave

GROWTH RATE OF LONGWAVE AZIMUTHAL
PERTURBATIONS OF A LIQUID LAYER COATING THE
OUTSIDE OF A CYLINDER UNDER ROTATION

mode this expression agrees with the growth rates calculated

by means of numerical analysis of E@9). These growth

rates are maxima except when the spiral modes() and
The goal of this appendix is to obtain an analytical ex-the axisymmetric mode are the most unstable.

pression for the growth rate of longwave azimuthal perturba-

tions of the more general system investigated in this paper, _ _ B

The calculation starts following the method proposed by ﬁéxii’;grisgzghﬁgognam'c and Hydromagnetic Stabilipover,
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