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Kubo conductivity in two-dimensional Fibonacci lattices

Vicenta S�aanchez, Chumin Wang *

Instituto de Investigaciones en Materiales, Universidad Nacional Aut�oonoma de M�eexico,
Apartado Postal 70-360, 04510 M�eexico, DF, Mexico
Abstract

The electronic transport at zero degrees in quasiperiodic systems is investigated by using the Kubo–Greenwood

formula and a novel renormalization method, which allows an evaluation in an exact way of the products of the Green�s
function in macroscopic Fibonacci chains. The analysis of transport properties in two-dimensional Fibonacci super-

lattices and in double quasiperiodic lattices is carried out by means of the convolution technique. The spectrally av-

eraged conductance shows a linear dependence with the width of the system and a power-law decay as its length

increases along the applied electric field.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The transport property is one of the most re-

markable characteristics of quasiperiodic systems,

since their electronic wave functions are critical,

neither extended nor localized [1]. A number of
numerical studies for two-dimensional (2D)

quasiperiodic systems have been done and anom-

alous electronic conduction is observed [2], despite

that only small approximants have been addressed

due to the absence of a general Bloch-type theorem

for the quasiperiodic systems. Recently, we have

developed a new renormalization method for the

Kubo–Greenwood formula in Fibonacci chains
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[3], and it has been extended to the bond problem.

In general, the Fibonacci sequence (Fn) of genera-
tion n can be built by defining F1 ¼A, F2 ¼BA,

and the addition rule, Fn ¼ Fn�1 � Fn�2, under-

stood as the joining of sequences. For instance,

F4 ¼BAABA. For the bond problem, the on-site
energies are the same (ei ¼ 0) and the hopping

integrals, tA and tB, are organized following the

Fibonacci sequence. The 2D quasiperiodic super-

lattices can be built by stacking periodically Fi-

bonacci chains, which are connected by a hopping

integral t. The doubly quasiperiodic lattices are

constructed following the sequence of Fibonacci in

both directions. On the other hand, the dc elec-
trical conductivity at T ¼ 0 can be studied by

means of the Kubo–Greenwood formula, which is

written as [3]

rðEÞ ¼ 2e2�h
pXm2

Tr½p ImGþðEÞp ImGþðEÞ�; ð1Þ
ed.
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Fig. 1. The dc electric conductivity [r2DðEÞ] as a function of the

Fermi energy (E) for a periodic lattice (dot line), Fibonacci

superlattices (gray lines) and doubly quasiperiodic lattices

(black lines). From up to down the grey and black solid lines

represent systems with Nk ¼ 90, 6766, 514 230, and 165 580 142

atoms, which correspond respectively generations n ¼ 10, 19,

28, and 40 of the Fibonacci sequence. These systems have a

fixed width of 121 394 atoms.

152 V. S�aanchez, C. Wang / Journal of Non-Crystalline Solids 329 (2003) 151–154
where X is the volume of the system, GþðEÞ is the
retarded one-particle Green�s function, and p ¼
ima
�h

P
j ftj;jþ1jjihjþ 1j � tj;j�1jjihj� 1jg is the pro-

jection of the momentum operator along the

applied electric-field direction.

In this paper, we report an analysis of the 2D

electrical conductance, g2DðEÞ ¼ r2DðEÞL?=Lk,

where L? and Lk are respectively the width and the
length of the system in reference of the applied

electric field, and the 2D conductivity is calculated

by using the convolution technique [4]

r2DðEÞ ¼
Z 1

�1
dE0r1D

k ðE0ÞDOS1D
? ðE � E0Þ; ð2Þ

being DOS the density of states. In order to analyze
global properties of the spectra, an spectral average

of the conductance (hg2Di) can be defined as

hg2Di ¼
R
dEg2DðEÞDOS2DðEÞR

dEDOS2DðEÞ
: ð3Þ

In the following section, hg2Di as a function of the

width and the length of the quasiperiodic systems

is investigated.
Fig. 2. Spectrally averaged conductance (hg2Di) versus the

number of atoms in the perpendicular direction to the applied

electric field (N?) for 2D periodic lattices (�), Fibonacci super-
lattices (�) and doubly quasiperiodic lattices (}). The length of

these lattices is 165 580 142 atoms and for the quasiperiodic

systems, we have tA ¼ t and tB ¼ 0:9t.
2. Results

Fig. 1 shows the dc conductivity [r2DðEÞ], nor-
malized by that of a periodic chain [rP ¼
2e2aðNk � 1Þ=h] [3], versus the Fermi energy (E) for
a 2D periodic lattice (dot line), Fibonacci super-

lattices (gray lines), and doubly quasiperiodic lat-

tices (black lines), in which the hopping integrals
(tA ¼ t and tB ¼ 0:9t) are arranged following the

Fibonacci sequence and an uniform bond length

(a ¼ 1) is taken for the sake of simplicity. The

imaginary part of the energy in r1D
k ðEÞ is 10�11jtj

and in DOSðEÞ is 10�2jtj, in order to perform easily

the integration in Eq. (2). The grey and black solid

lines from up to down in Fig. 1 correspond re-

spectively Nk ¼ 90, 6766, 514 230, and 165 580 142
atoms and a fixed width of 121 394 atoms, showing

that r2DðEÞ of the quasiperiodic systems decrease

when their length (Lk ¼ Nka) grows.
To analyze global behaviors of the spectra in

Fig. 1, a spectral average of the conductance

(hg2Di) is performed and it is plotted versus the
width (L? ¼ N?a) in Fig. 2 for 2D periodic lattices

(circles), Fibonacci superlattices (squares) and

doubly quasiperiodic lattices (rhombuses), with

the same hopping integrals as in Fig. 1. The total

length of these lattices is 165 580 142 atoms, cor-

responding to the generation n ¼ 40, connected to
two semi-infinite leads with hopping integrals t. In



Fig. 3. Spectrally averaged conductance (hg2Di) as a function of

the number of atoms along the applied electric field (Nk) for the

same systems in Fig. 2, except with a fixed N? ¼ 121394.
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Fig. 3, hg2Di as a function of the length (Lk ¼ Nka)
is shown for the same systems in Fig. 2, except

with a fixed N? ¼ 121394, corresponding to the

generation n ¼ 25.
3. Discussion

It would be worth mentioning that for the pe-

riodic case the normalized dc conductivity

[r2DðEÞ=rP ] in Fig. 1 is independent on the system

length, contrary to the quasiperiodic case. Indeed,

for infinite-width periodic systems the dc conduc-

tivity [r2D
P ðEÞ] can be obtained analytically [5] and

it is given by

r2D
P ðEÞ ¼ rP

p
cos�1 jEj � 2t

2t

� �
hðj4tj � jEjÞ; ð4Þ

where hðxÞ is a step function.

In Fig. 2, observe that hg2Di grows linearly with

N?, i.e., hg2Di ¼ e2ðaN? þ bÞ=h, where for the pe-

riodic lattices a ¼ 1:13855 and b ¼ 10:02583, for
the Fibonacci superlattices a ¼ 0:33047 and

b ¼ �3:94034, and for the doubly quasiperiodic

lattices a ¼ 0:33923 and b ¼ �3:06046. The values
of b are essentially zero if they are compared with
the scale of the graph (108), and the slope (a) is

expected to be 2 for the periodic case if the parallel

linear chains (or conducting channels) are totally
independent. Furthermore, notice that hg2Di of
doubly quasiperiodic lattices is larger than those of

Fibonacci superlattices, possibly originated from

the better structural coherence in the doubly

quasiperiodic case.

Finally, notice in Fig. 3 that hg2Di of periodic

systems is constant, while for quasiperiodic sys-

tems it decays as a power law [hg2Di ¼ e2ðlN�m
k Þ=h]

when the system length increases, as reported for
finite Penrose lattices [6]. We found m ¼ 0:06961
and l ¼ 146994:13 for Fibonacci superlattices,

and m ¼ 0:06955 and l ¼ 150750:93 for doubly

quasiperiodic case. It is important to stress that

hg2Di of Fibonacci superlattices is smaller than

those of doubly quasiperiodic lattices, similar to

that occurred in Fig. 2.
4. Conclusions

We have studied the electronic transport in

macroscopic 2D Fibonacci systems within the

Kubo–Greenwood formulation. This study has

been carried out by using the renormalization

method and the convolution technique. The spec-
trally averaged conductance shows a power-law

decay length dependence, similar to that happened

in Penrose lattices. This power-law decay reveals

the critical localization nature in quasiperiodic

systems, contrary to the constant and exponential

decay behaviors in the periodic and randomly

disordered systems, respectively [7].
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