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Abstract

An experimental investigation of the temperature increase due to viscous dissipation in an oscillating pipe flow
is presented. An oscillating pipe of circular section, acting as an extrusion die, was placed at the last stage of a
polymer extrusion process and the increase in the temperature of the fluid, due to the superimposed oscillation, was
measured. Thermocouples and a temperature control system were mounted on the walls of the oscillating section.
Experimental results were obtained following the conditions suggested by Casulli et al. [J. Polym. Eng. Sci. 30
(1990) 1551]. Commercially available low density polyethylene was chosen as the experimental fluid. Results were
obtained for the case when the imposed oscillatory motion was parallel to the axial direction of the flow.

The bulk temperature of the fluid at the exit of the oscillating section was found to increase with the oscillating
frequency and amplitude. If the dimensionless temperature increase is plotted as a function of the characteristic
oscillation speed, the experimental results collapse into a single curve.

In order to justify the experimental measurements, a theoretical analysis was performed for two simple non-
Newtonian fluid models: linear viscoelastic and power-law liquids. Analytic expressions for the velocity and tem-
perature fields were obtained. These models predicted an increase of the bulk temperature with the speed of oscillation
in agreement with the experimental results. The direct comparison of the measurements and the predictions showed
good order-of-magnitude agreement. We found that the temperature increase predicted using a linear viscoelastic
model agrees well with the experiments for low oscillation speeds. For the case of large oscillation speeds, the
prediction based on a power-law model resulted in a better agreement than the viscoelastic model prediction.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most studies involving the flow of a viscoelastic fluid in pipes assume an isothermal state; however, in
practice, many flows are far from this situation. The combination of high viscosities and large velocity
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gradients may result in a significant increase of the fluid temperature due to viscous dissipation. This
effect is used, in fact, in extrusion processes where the temperature increase accelerates the melting of
the material. It is believed that a complete model to describe the behavior of a viscoelastic material not
only depends upon the deformation and history of deformations but also upon the temperature and the
history of temperatures[2].

Heat transfer in pipes has been extensively studied for the case of Newtonian fluids. Early on, Graetz[3]
solved the classic problem of forced heat convection in a pipe subjected to different boundary conditions,
neglecting axial conduction.

In the particular case of oscillatory flows, the isothermal case has been studied in depth by Casulli
et al., and Manero and co-workers[1,4–6]. Imposing longitudinal oscillations on a viscoelastic fluid, the
velocity fields and the pressure drop changes were studied.

Studies that involve non-Newtonian flows with heat transfer effects are less numerous. Etemad and
Mujumdar[7] numerically solved the heat transfer problem for a semi-circular conduit for a power-law
type fluid considering a viscous dissipation and a temperature-dependent viscosity model. The results
obtained showed that the Nusselt number increased for the case of constant wall temperature. This
study indicates the importance of the non-Newtonian characteristics of the fluid in the heat trans-
fer processes. Min et al.[8,9] studied numerically the developing flow of a Bingham fluid with
a constant wall temperature, considering viscous dissipation and a viscosity model proposed by Pa-
panastasiou[10]. It was found that the thermal entrance length is reduced with the yield stress of the
Bingham fluid. More recently, Isayev et al.[11] and Wong et al.[12] studied theoretically and ex-
perimentally the effect of oscillations in the extruding die in a polymer melt process including some
non-isothermal effects. Their results include the influence of the oscillation on the mean temperature
of the extruded polymer. For the non-isothermal case they conclude that there is a temperature increase
in the polymer resulting from the oscillations; the viscous dissipation resulting from the oscillations
is larger than that caused by the pressure gradient across the die for the case of large amplitude os-
cillations; the conduction of heat dominates for the case of low mass flow rates. Other more recent
studies that consider the effects of oscillation in the heat transfer phenomena include Dunwoody[13]
and Ding et al.[14] who examined the inertial effects on the viscous dissipation in oscillatory shear
flows.

This paper presents an experimental study in which the pipe oscillates in the main direction of the flow.
In addition to the measurement of the temperature rise within the pipe, proper analytical expressions were
obtained for two ‘simple’ non-Newtonian models: a linear viscoelastic fluid and a power-law fluid. The
comparison of the experimental measurements and the predictions was used as an order-of-magnitude
validation test. To our knowledge, measurements of the temperature increase in non-Newtonian oscillatory
flows have not been reported to date.

2. Problem definition

Consider the flow in a pipe with circular cross-section of radiusr resulting from a uniform pressure
gradient∇P in the axial direction of the pipe,z. Additionally, the pipe oscillates in the direction parallel
to the flow imposing an additional shear stress to the fluid. The oscillation speed isAω exp(iωt). The
temperature of the working fluid at the entrance of the pipe and the wall temperatures are all constant,
with a valueT0. A schematic diagram of the flow is shown inFig. 1.
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Fig. 1. Schematic of the flow entering the oscillating die with a developed velocity profile, a mean temperatureT0 and subjected
to a oscillating wall with constant temperatureT0.

3. Experimental measurements of the temperature increase

An experimental set-up was designed in order to measure the temperature increase of a polymer flowing
in an oscillating pipe with the same conditions as those shown inFig. 1.

3.1. Experimental arrangement

The experimental set-up is shown inFig. 2. A laboratory polymer extrusion machine (Haake Rheocord
EU-3V extruder) was used to produce the polymer melt. An oscillating die mechanism was coupled
to the exit of the extruder. This mechanism imposed an oscillatory motion to the pipe through which
the fluid is flowing. Frequency and amplitude were controlled in order to subject the polymer melt to

Fig. 2. Schematic of the experimental set-up.
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Fig. 3. Physical properties of the low density polyethylene (LDPE); taken from[15] atT = 150◦C.

different flow conditions. Oscillations were possible in either the axial direction, transversal direction
(angular oscillation) or a combination of both (helicoidal oscillation). A temperature control system was
used to keep a constant wall temperature. Thermocouples were placed in several axial positions along
the oscillating section. The temperature increase of the fluid was measured by another thermocouple at
the exit of the oscillating section.

The test fluid used was low density polyethylene (LDPE), since it is a well-characterized material. The
properties of the LDPE used were obtained from property tables[15]. The rheological properties of the
working fluid are shown inFig. 3.

3.1.1. Oscillating die
A schematic diagram of the oscillating section is shown inFig. 4. The oscillating section was mounted

on a series of shafts and bearings that guided the motion in the axial or angular direction. The oscillatory
motion was produced by a lever-arm mechanism coupled to a dc motor. By adjusting the mechanism
and the rotation speed of the motor, different oscillating conditions were available. A separate motor
and mechanism set was used to produce the motion in each direction. The oscillating pipe was made
of stainless steel, with an inner diameter, 2a, of 6.8 mm and with a highly polished finish. The outer
diameter was 12.7 mm and the total length was 300 mm. The coupling between the oscillating section
and the non-oscillating nozzle from the extruder had a tolerance of 0.05 mm which was enough to avoid
leakage and allow the motion of the oscillating section.
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Fig. 4. Schematic of the oscillating die.

The oscillating pipe was surrounded by three flexible electric heaters (120 W each) connected
to a control system (temperature controller OMROM model E5CJ). The measurement of the
wall temperature was performed with type T thermocouples (copper-constant) of gauge 40 wire
(0.08 mm) with a time response of 0.1 s and an accuracy of±0.5 K. The bare head thermocouples were
embedded axially along the wall of the oscillating pipe in bore holes of 1.6 mm in diameter
and 2.5 mm in depth. A total of 10 temperature gauges were used. To ensure a good thermal con-
tact with the wall, the head of the thermocouples was immersed in silicon grease. The holes were
spaced 25 mm from each other. Half of the temperature gauges were used as feedback for the con-
trol system and the rest were used to monitor the temperature directly. The temperatures were recorded
using a computer-based data acquisition system. The measurement of the fluid temperature was
obtained with an additional thermocouple that was centrally located at the exit of the oscillating
section.

Results presented here are restricted to the case of oscillations in the axial direction, since direct
comparisons are to be drawn with our theoretical predictions. The range of conditions for which the
experiments were performed are presented inTable 1and were chosen based on previous conditions used
by Casulli et al.[1].
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Table 1
Set of experimental conditions

Frequency
(Hz)/amplitude

1 mm 2 mm 3 mm 4 mm 5 mm

1 (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)
2 (2, 1) (2, 2) (3, 2) (4, 2) (5, 2)
3 (3, 1) (2, 3) (3, 3) (4, 3) (5, 3)
4 (4, 1) (2, 4) (3, 4) (4, 4) (5, 4)
5 (5, 1) (2, 5) (3, 5) (4, 5) (5, 5)
6 (6, 1) (2, 6) (3, 6) (4, 6) (5, 6)
7 (7, 1) (2, 7) (3, 7) (4, 7) (5, 7)
8 (8, 1) (2, 8) (3, 8) (4, 8) (5, 8)
9 (9, 1) (2, 9) (3, 9) (4, 9) (5, 9)

10 (10, 1) (2, 10) (3, 10) (4, 10) (5, 10)

For all the present experimental results the wall temperature was kept atT0 = 433 K. The rotation
speed of the extruder controlling the flow rate through the system was also kept constant at a value of
30 rpm. The volumetric flow rate for this conditions wasQ = 1.5 × 10−8 m3/s.

A given set of experiments starts with the lowest frequency for a given amplitude. Once the experiment
achieves a steady state, approximately 20 min, the measurements are recorded and the frequency is
increased to the next desired value, keeping the amplitude constant.

The experimental results are presented in terms of the dimensionless temperature defined as

θ = Tc − T0

T0
,

whereTc is the measured temperature in the center of the channel andT0 is the temperature of the wall.

3.2. Experimental results

Fig. 5shows the dimensionless temperature as a function of the oscillation frequency for experiments
at different amplitudes. The error involved in the measurement is depicted by the vertical line shown on
one data point at the left of the figure. Although the error involved in the measurements is significant, as
in most heat transfer experiments, the experimental trend can be clearly observed. For small amplitudes
and low frequencies, the temperatures obtained were below the minimum measurable scale; hence, they
are not reported.

Clearly, the temperature of the fluid increases with the frequency of oscillation. For a given oscillation
frequency, the temperature increase is larger for larger oscillation amplitudes. The measured values of
the dimensionless temperatures are of the order of 10−3 which corresponded to a temperature increase of
the order of 10◦.

Fig. 6shows the experimental results in terms of the dimensionless oscillation speed,α∗, defined as

α∗ = ωA

ūz
,
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Fig. 5. Dimensionless temperatureθ as function of the oscillation frequencyω for different values of the oscillation amplitudeA
for LDPE. The size of the error bar in the first data point on the left denotes the typical error associated with the measurement:
T0 = 433 K andQ = 1.5 × 10−8 m3/s.

whereA is the oscillation amplitude,ω the oscillation frequency and̄uz is the mean velocity inside the
pipe

ūz = Q

A′ ,

whereA′ is the cross-section area of the pipe. Note that the dimensionless oscillation speed is of order 1,
the same order as the mean pressure-driven fluid velocity. The theoretical predictions have been obtained
for this particular range of dimensionless oscillation speeds.

The experimental results presented in this manner appear to collapse onto a single curve. Clearly, the
relevant parameter that controls the fluid temperature increase is the dimensionless oscillation speed.
The temperature increases rapidly for small values of the dimensionless oscillation speed but does not
increase significantly for values ofα∗ larger than 6.
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Fig. 6. Dimensionless temperatureθ as function of the dimensionless oscillation speedα∗ for LDPE: T0 = 433 K and
Q = 1.5 × 10−8 m3/s.

4. Theoretical predictions

Consider the conservation equations for an incompressible liquid,

∇ · �u = 0, (1)

ρ

(
∂�u
∂t

)
= −∇P + ∇ · τ̃, (2)

ρCp(�u · ∇T) + ∇ · (k∇T) = τ̃ : ∇�u, (3)

where�u is the velocity vector,P the scalar pressure,τ̃ the extra stress tensor,ρ the mass density,Cp the
specific heat,k the thermal conductivity andT is the temperature.

For the geometry shown inFig. 1, the velocity vectors areur = 0,uθ = 0 anduz = u(r, z), which satisfy
the equation of continuity (Eq. (1)) exactly. The conservation of momentum (Eq. (2)) in thez-direction
is reduced to

ρ
∂uz

∂t
= G + 1

r

∂

∂r
(rτrz), (4)
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whereG = −∂P /∂z is the constant pressure gradient andτrz is the component of the stress tensor in the
axial direction of the pipe. The boundary conditions for this equation are

1. uz = αR{exp(iωt)} at r = a;
2. ∂uz/∂r = 0 atr = 0.

α is the oscillation speed and can be expressed is terms of the oscillation frequencyω and the oscillation
amplitudeA, as

α = ωA. (5)

Eq. (3), for a fully developed temperature field for the same flow, neglecting the axial conduction, re-
duces to

ρCpuz

(
∂T

∂z

)
= k

1

r

∂

∂r

(
r
∂T

∂r

)
+ τrz

(
∂uz

∂r

)
. (6)

We consider that the temperature profile of the fluid is constant withT0 at the entrance of the oscillating
wall. The oscillating wall temperature is also held constant atT0. Hence, the boundary conditions are
given by

1. T = T0 at r = a for all z;
2. ∂T/∂r = 0 atr = 0 for all z.

The above set of equations can be solved if a model for the rheological behavior is given. In the following
section a linear viscoelastic and a generalized Newtonian models are considered.

4.1. Linear viscoelastic model

The viscoelastic state can be characterized by the form of the stress tensor

τij = −Pgij + τ̃ij, (7)

where the extra stress tensorτ̃ij is given as a function of the relaxation or memory functionΨ as:

τ̃ij = 2
∫ t

−∞
Ψ(t − t′)eij(x, t

′)dt′, (8)

where

Ψ(t − t′) =
∫

N(ζ)

ζ
exp

(
− t − t′

ζ

)
dζ. (9)

Following the usual notation,τij is the stress tensor,P the isotropic pressure,gij the metric tensor of a
fixed coordinate system,eij the rate of strain tensor andN(ζ) is the relaxation spectrum.

The liquid represented inEqs. (7) and (9)falls into the framework of the general equations of linear
viscoelasticity[16]. It contains, as a special case, the Jeffreys model by setting

N(ζ) = η0
λ1

λ2
δ(ζ) + η0

λ1 − λ2

λ1
δ(ζ − λ1), (10)

whereη0 is the zero shear rate viscosity,λ1 andλ2 the relaxation and retardation time, respectively, and
δ represents a Dirac delta function. Clearly, ifλ2 = 0, a Maxwell type constitutive equation is recovered,
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and if λ1 = λ2 the purely viscous case is represented. This model is sometimes known as the Oldroyd
model.

The equation of motion (Eq. (4)) can be made homogeneous using as dependent variable the departure
velocity from the steady state value

w(r, t) = u(r, t) −
(
G

4η0

)
(a2 − r2), (11)

whereG is the pressure gradient in the axial direction. Hence,

∂uz

∂t
= η0

ρ

(
∂2uz

∂r2
+ 1

r

∂uz

∂r

)
. (12)

With boundary conditionsuz(a, t) = αexp(iωt) and(∂/∂r)uz(0, t) = 0. This problem can be solved by
a separation of variables scheme. Herrera-Velarde and Mena[17] obtained the velocity field

uz = α
J0[Kr]

J0[Ka]
exp(iωt) + G

4η0
(a2 − r2), (13)

whereJ0 is the Bessel function of order zero andK is a constant defined as

K =
(
ωρ

η0

)1/2(−i(1 + iωλ1)

1 + iωλ2

)1/2

, (14)

whereλ1 andλ2 are the relaxation and retardation time, respectively.
To observe the effect of the oscillations in the flow, the Reynolds number of the non-oscillating flow is

made to be the same as that of the oscillating part of the flow,

2ρ〈up〉a
η0

≈ 2ραa

η0
,

where〈up〉 is the average velocity of the non-oscillating pipe flow (Poiseuille flow). Hence, for this case
the oscillation speedα = ωA has to be of the same order as〈up〉.

A dimensionless velocity is defined as

uz

um
= α

um

J0[Kr]

J0[Ka]
exp(iωt) +

(
1 − r2

a2

)
, (15)

whereum = Ga2/(4η0) is the maximum velocity of the non-oscillatory Poiseuille flow. Plots of the
velocity field for different values of theωλ1 andωλ2 can be found in[17,19].

Now, we can solve for the laminar forced heat convection of the flow. Assuming a fully developed
temperature profile with a constant temperature gradient in the axial direction and usingEqs. (3) and (8),
the energy balance can be written as

ρCpuz · &T
&Z

= k
1

r

d

dr

(
r
dT

dr

)
+ η0

(
1 + iωλ1

1 + iωλ2

)(
duz
dr

)2

. (16)

Using the velocity profileuz = uz(r, t) (Eq. (13)) and the boundary conditions for the temperature field,
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the above equation can be integrated to yield

T = T0 + C3

{∫
1

r

(∫
r′uz(r′)dr′

)
dr −

[∫
1

r

(∫
r′uz(r′)dr′

)
dr

]
r=a

}

−C4

{∫
1

r

(∫
r′
(
∂uz(r

′)
∂r′

)2

dr′
)

dr −
[∫

1

r

(∫
r′
(
∂uz(r

′)
∂r′

)2

dr′
)

dr

]
r=a

}
, (17)

where

C3 = ρCp

k

(
&T

&z

)
,

and

C4 = η0

k

(
1 + iωλ1

1 + iωλ2

)
.

The above equation may be solved analytically resulting in

T − T0 = C3

(
−C1

K2
(J0(Kr) − J0(Ka)) + C2

16
(4a4r2 − r4 − 3a4)

)

− C4

4K2
(2C2

1K
4((rJ1(Kr))2 − (aJ1(Ka))2) − 2C2

1K
3(rJ0(Kr)J1(Kr) − aJ0(Ka)J1(Ka))

+ 2C2
1K

4((rJ0(Kr))2 − (aJ0(Ka))2) + 2C2
1K

2((J0(Kr))2 − (J0(Ka))2) − 32C1C2(J0(Kr)

− J0(Ka)) − 16C1C2K(rJ1(Kr) − aJ1(Ka)) + C2
2K

2(r4 − a4), (18)

whereJ0 andJ1 are the Bessel functions of order 0 and 1, respectively. Also,

C1 = α
exp(iωt)

J0(Ka)
,

and

C2 = G

4η0
,

which arise from writing the velocity profile as

uz = C1J0(Kr) + C2(a
2 − r2).

Fig. 7shows the cycle-averaged dimensionless temperature profiles for three different values of the axial
temperature gradient. The dimensionless temperature is defined as

θ = T − T0

T0
.

The effect of the elasticity of the fluid can be observed. When the difference between the relaxation
and retardation times (ωλ1 andωλ2) is large, the deviation from the Newtonian temperature profile is
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Fig. 7. Dimensionless temperatureθ as a function of dimensionless radial position for a Oldroyd fluids. Three different fluids are
shown: (1) thin lines, Newtonian fluid; (2) medium thickness lines, Oldroyd fluid,ωλ1 = 10,ωλ2 = 5; (3) thick lines, Oldroyd
fluid, ωλ1 = 10,ωλ2 = 1. The solid, dashed and dashed-dotted lines show the predictions for values of&T/&z = 0, 1 and
5 K/m, respectively. For this caseum = α = 1× 10−2 m/s (a = 1× 10−3 m,η0 = 1× 103 Pa s,ω = 10/s andA = 1× 10−3 m),
Cp = 1 × 103 kJ/(kg K),T0 = 4 × 102 K, ρ = 1 × 103 kg/m3, k = 1 × 10−1 W/m2 K.

larger. Also, for all cases, as the axial temperature gradient increases, the dimensionless temperature
decreases.

To analyze the effect of the oscillation speed, the condition of(α = 〈up〉) is relaxed, therefore, the bulk
temperature can be calculated for different oscillation speed values. The dimensionless bulk temperature
is defined as

θb = T̄ − T0

T0
(19)

whereT̄ is the cycle-averaged temperature

T̄ =
∫ 2π

0

∫ a

0 uz(r, t)T(r, t)dr d(ωt)∫ 2π
0

∫ a

0 uz(r, t)dr d(ωt)
. (20)
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Fig. 8. Dimensionless bulk temperatureθb, as a function of the normalized oscillation velocityωA/um. Three different fluids are
shown: (1) thin lines, Newtonian fluid; (2) medium thickness lines, Oldroyd fluid,ωλ1 = 10, ωλ2 = 5; (3) thick lines, Oldroyd
fluid, ωλ1 = 10, ωλ2 = 1. The solid, dashed and dashed-dotted lines show the predictions for values of&T/&z = 0, 1 and
5K/m, respectively. The material parameters are the same as those used inFig. 7.

Fig. 8shows the dimensionless bulk temperature as a function of the dimensionless oscillation speedα∗

defined as

α∗ = ωA

um
. (21)

The dimensionless temperature appears to reach an asymptotic value as the dimensionless oscillation
velocity increases. The temperature appears to be independent of the oscillation velocity for the case
of a Newtonian fluid; on the other hand, as the fluid becomes more viscoelastic, the magnitude of the
oscillation causes an increase of the dimensionless temperature. The temperature is, again, inversely
proportional to the value of the axial temperature gradient.

4.2. Generalized Newtonian model

The generalized Newtonian model considers a modified viscosity–shear rate relationship to account for
the case in which the viscosity of the fluid depends on the shear rate. A well-known generalized model is
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the power-law model[16], in which the viscosity of the fluid depends on the magnitude of the strain rate,

η = mėn−1, (22)

wheren andm are constants characteristics of a particular fluid. The magnitude of the strain rate is defined

asė =
√
(1/2)

∑
i

∑
j eijeij. Hence, theij component of the extra stress tensor is

τ̃ij = menij. (23)

The relevant component of the stress tensor for the problem of interest isτrz, which can be expressed
simply by

τrz = m

(
∂uz

∂r

)n

. (24)

Note that ifn = 1, the Newtonian case is recovered where the value ofm corresponds to the shear
viscosityη0.

To solve the momentum conservation (Eq. (4)) we assume that the axial velocity componentuz can be
decomposed inuo = uo(t), the motion due to the periodic oscillation of the walls, andup resulting from
the pressure gradient,

uz = uo + up. (25)

To assume that the oscillating velocity component does not depend on the coordinater is a crude approx-
imation; however, it allows us to obtain analytic expressions for the velocity and temperature fields. If
we takeuo = R{ωAexp(iωt)}, Eq. (4)can be expressed as

iω2ρAexp(iωt) = G − 1

r

∂

∂r
(rτrz). (26)

If the pressure gradientG is constant, the expression above can be integrated with respect tor to obtain
the general solution for the componentτrz of the stress tensor. With the condition that the stress must be
finite atr = 0, we obtain

τrz = (1
2r)(G + ρiω2Aexp(iωt)). (27)

Using this expression inEq. (24), we obtain(
duz
dr

)
=
( r

2m

)1/n
(G + iω2ρAexp(iωt))1/n, (28)

which can be integrated with respect tor to obtain the velocity profile using the wall velocity as a boundary
condition,uz(r = a) = αexp(iωt). Hence,

uz =
(

n

1 + n

)(
G + iωαρ exp(iωt)

2m

)1/n (
a(1/n)+1 − r(1/n)+1

)+ αexp(iωt). (29)

For this case, a non-dimensional velocity is defined as

uz

um
=
(
G + iωαexp(iωt)1/n

G

)1/n (
1 −

( r
a

)(1/n)+1
)

+ αexp(iωt)

(n/(1 + n))(G/2m)1/na(1/n)+1
, (30)
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whereum is the maximum velocity for the non-oscillating Poiseuille pipe flow given by

um =
(

n

1 + n

)(
G

2m

)1/n

a(1/n)+1.

To make the magnitude of the oscillation velocity be of the same order as that of the Poiseuille flow, the
pressure gradientG is calculated in terms of the oscillation speed,α

α ≈ um,

hence

|G| = 2m

(
α(1 + n)

na(1/n)+1

)n

.

Plots of the velocity field for this expression can be found in[18,19].
The energy conservation (Eq. (6)) can be written for the generalized Newtonian fluid as

ρCpuz · &T
&Z

= k
1

r

d

dr

(
r
dT

dr

)
+ m

(
duz
dr

)n+1

, (31)

which can be integrated for the given set of boundary conditions since the velocity profile (Eq. (29)) is
known,

T = T0 + C7

{∫
1

r

(∫
r′uz(r′)dr′

)
dr −

[∫
1

r

(∫
r′uz(r′)dr′

)
dr

]
r=a

}

−C8

{∫
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r

(∫
r′
(
∂uz(r

′)
∂r′

)n+1

dr′
)

dr −
[∫

1

r

(∫
r′
(
∂uz(r

′)
∂r′

)n+1

dr′
)

dr

]
r=a

}
,

(32)

where

C7 = ρCp

K

(
&T

&z

)
,

and

C8 = m

k
.

An analytic solution can be found for the above expression resulting in

T − T0 = C7

(
C5a

(1/n)+1 + C6

4
(r2 − a2) − C5n

2

(3n + 1)2
(r(1/n)+3 − a(1/n)+3)

)

− C8n
2

(1 + 3n)2

(
C5(n + 1)

n

)n+1

(r(1/n)+3 − a(1/n)+3), (33)

where

C5 =
(

n

1 + n

)(
G + iωαρ exp(iωt)

2m

)1/n

,
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Fig. 9. Dimensionless temperatureθ, as a function of dimensionless radial position for power-law fluids. Three different fluids
are shown: (1) thin lines, shear thinning liquid,n = 1/2; (2) medium thickness lines, Newtonian fluid,n = 1; (3) thick lines,
shear thickening liquid,n = 1.5. The solid, dashed and dashed-dotted lines show the predictions for values of&T/&z = 0, 1 and
5 K/m, respectively. For this caseum = α = 1× 10−2 m/s (a = 1× 10−3 m,m = 1× 103 Pa s,ω = 10/s andA = 1× 10−3 m),
Cp = 1 × 103 kJ/(kg K),T0 = 1 × 102 K, ρ = 1 × 103 kg/m3, k = 1 × 10−1 W/(m2 K).

and

C6 = αexp(iωt).

The temperature profile is plotted in dimensionless form inFig. 9 for three values of the power
parameter.

Relaxing the condition that the oscillation speed be equal to the mean pipe-flow velocity, we obtain
estimates of the effect of oscillation on the overall increase of temperature in the fluid.Fig. 10shows the
bulk temperature, defined inEq. (20), for the three cases of the power coefficient and for three different
values of the axial temperature gradient. For this model, the temperature increases monotonically for
all cases. The shear thickening fluid attains larger temperatures than those for the Newtonian or shear
thinning fluids, for the same oscillating conditions. The temperature increase shows a weak dependence
on the value of the axial temperature gradient, with a small increase ofθ as&T /&z decreases.
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Fig. 10. Dimensionless bulk temperatureθb, as a function of the normalized oscillation velocityωA/um. Three different fluid
are shown: (1) thin lines, shear thinning liquid,n = 1/2; (2) medium thickness lines, Newtonian fluid,n = 1; (3) thick lines,
shear thickening liquid,n = 1.5. The solid, dashed and dashed-dotted lines show the predictions for values of&T /&z = 0, 1
and 5 K/m, respectively. For this case the flow parameters are the same as those used inFig. 9.

5. Comparison with theoretical predictions

A theoretical analysis of the heat transfer for two non-Newtonian liquids in an oscillating pipe was
presented inSections 4.1 and 4.2. Using the values of the properties of LDPE and the experimental
parameters, a direct comparison between the theoretical expressions and the experimental measurements
is possible. Results are presented in terms of the dimensionless bulk temperature (Eq. (19)) and the
dimensionless oscillation speed (Eq. (21)).

The dashed line inFig. 11shows the prediction ofEq. (18)for a range of values ofα∗ using the physical
properties of the LDPE. The value of the axial temperature gradient used in the predictions was found
experimentally,

&T

&z
≈ 1 K/m.

Predicted and experimental results agree well for dimensionless oscillation speeds below 5. It must be
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Fig. 11. Dimensionless bulk temperatureθb as function of the dimensionless oscillation speedα∗ for LDPE. Comparison between
experimental measurements and the predictions based on a viscoelastic model (dashed line) and a power-law model (solid line).
Property values used for the theoretical predictions:ρ = 920.0 kg/m3,Cp = 2000.0 kJ/(kg K),k = 0.5 W/(m K),η0 = 600 Pa s,
λ1 = 5.5 s,λ2 = 0.01 s,n = 0.47,m = 8202.9 N s/m0.47.

noted that although the magnitude of the experiments and the predictions agree well, the trends observed
are significantly different.

The solid line inFig. 11shows the theoretically predicted values ofEq. (33), considering a constant
value of&T/&z = 1 K/m. Using this theoretical model, the value of the dimensionless temperature lies
below the experiments for the whole range of oscillations. For oscillation speeds larger than 12, the model
and the measurements appear to agree better than for small speeds. For this model, the trend is similar to
the one found in the experiments.

6. Summary and conclusions

Measurements of the temperature increase caused by viscous dissipation in an oscillatory pipe flow
were obtained. Great care was taken in the experimental design to measure temperature increases of a
few degrees for mean working temperatures of the order of 400 K. The increase of the fluid temperature
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was found to scale with the dimensionless oscillation speed. Although this increase is not very large, it is
nevertheless important for processes involving the extrusion of molten polymers. Even a small temperature
variation has been known to modify significantly the surface properties of extruded products[20]. These
measurements are, to our knowledge, the first of their kind.

Direct comparisons were made between theoretical predictions and experimental measurements. The
prediction form these simple models give us a proper validity tests for the experimental measurements.
For small values of the oscillation speed, good agreement was found between the experiments and the
theoretical predictions from a linear viscoelastic model. The agreement ceased to be valid when the
magnitude of the imposed oscillation was larger than the pressure gradient driving the flow. For larger
values of the oscillatory speed, good agreement was found with theoretical predictions from a power-law
inelastic fluid. As expected, for the intermediate range of oscillation speeds, the rheological behavior
of the test fluid (LDPE) requires a constitutive equation that combines viscoelastic and shear thinning
properties. It is clear that the rheological models considered in this paper are ‘simple’; hence, it is
expected that the behavior of LDPE cannot be fully predicted by either model. However, the simplicity
of the theoretical analysis allowed us to obtain analytical expressions that could be compared in a direct
manner the experimental results. Direct comparisons between experimental and theoretical results in heat
transfer problems involving non-Newtonian flows are rare.
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