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Abstract

We apply a new statistical complete boson–fermion model (CBFM) to describe superconduc-
tivity with arbitrary departure from the perfect two-electron (2e) and two-hole (2h) Cooper pair
(CP) symmetry to which BCS theory is restricted. The model is complete in that it accounts for
both 2h and 2e CPs. In special cases the CBFM reduces to all the main statistical continuum
models of superconductivity. From it four stable thermodynamic phases emerge around the BCS
state, a normal and three stable Bose–Einstein condensed phases of which one is mixed (with
both CP types) and two pure. Critical temperatures Tc for the new pure phases rise as one
departs from the mixed BCS state, and can result in substantially higher Tc’s than with BCS
theory for moderate departures from perfect 2e/2h CP symmetry.
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1. Introduction

Statistical boson–fermion (BF) models of superconductivity go back to the mid-1950s
[1–3] pre-dating even the BCS-Bogoliubov theory [4,5]. Although BCS theory only
contemplates the presence of Cooper “correlations” between fermion charge carriers,
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BF models [1–3,6–16] posit the existence of real bosonic Cooper pairs (CPs). See also
Refs. [17–27]. Such paired charge carriers have been observed in magnetic Fux quan-
tization experiments on elemental as well as cuprate superconductors, although there
seems to be no experiment yet that distinguishes between electron (e) and hole (h) CPs.
With one exception [15], however, BF models neglect the eHect of 2h CPs (formulated
on an equal footing with 2e CPs) to give a CBFM consisting of unpaired fermions
(both e and h) coexisting with both bosonic CP species. Previous BF models account,
of course, for eh symmetry of individual fermions arising as a trivial consequence of
Fermi–Dirac statistics. Besides this obvious symmetry, the CBFM accounts also for eh
CP symmetry as we now introduce a 2h-CP which is distinct from, and kinematically
independent of, a 2e-CP since their Bose commutation relations involve a relative sign
change, in sharp contrast with e or h fermions whose Fermi anticommutation relations
do not.
All the main statistical theories of superconductivity emerge as special cases of the

CBFM [15]. When the number of 2e- and 2h-CPs are identically equal it leads to:
(i) the BCS theory for weak coupling which in turn forces the fermionic chemical
potential to equal the Fermi energy. When 2h-CPs are neglected entirely it gives:
(ii) the Friedberg–Lee Bose–Einstein condensation (BEC) theory [8,9] of a BF charged
gas, as well as: (iii) an ideal BF model [26,27] predicting nonzero BEC-like Tc’s even
in 2D, and Jnally: (iv) the ordinary BEC Tc formula.
The unique but mysterious role played by holes in superconductivity in general has

been emphasized, e.g. by Hirsch [28] among others, through some remarkable facts. For
example, (a) over 80% of all superconducting elements have positive Hall coeMcients
(meaning hole charge carriers in the normal state); (b) over 90% of nonsuperconducting
metallic, nonmagnetic elements have electron charge carriers; (c) of the cuprate super-
conductors those that are hole-doped have transition temperatures Tc about six times
higher than electron-doped ones; and (d) in fullerite (an fcc crystal of C60 fullerenes)
Tc is now almost three times higher with hole rather than electron doping, as recently
observed [29] with the so-called “Jeld-eHect transistor” technique of injecting holes. A
many-body statistical formalism that departs from perfect eh symmetry is thus clearly
needed. And it is tempting to visualize the vital role that hole CPs might come to play
in superconductivity—as suggested by decisive role of individual holes in the 1950s
in semiconductors [30], without which the transistor might not have been invented
let alone applied. This paper is a step towards understanding their full role in super-
conductivity, particularly as regards the 2h CP component, through purely statistical
considerations.
Indeed, holes have a dramatic eHect in the elementary CP problem (where they

were originally neglected) which gives [31] a negative-energy, stationary (i.e., inJnite-
lifetime) two-fermion bound-state. If electrons and holes are treated simultaneously
through a Bethe–Salpeter equation in the ideal Fermi gas (IFG) ground-state about
which the CPs are deJned, the resulting energy is purely imaginary [5, p. 44]; [32,
Section 33]—implying an obvious instability. The original CP problem is thus mean-
ingless if particles are taken on an equal footing with holes as consistency would
demand. However, a similar Bethe–Salpeter treatment, not about the IFG but about the
BCS ground-state, yields [33] real (but positive, as with a “quasi-bound-state in the
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continuum”) 2e- and 2h-CP energies, along with an imaginary part implying a Jnite
lifetime—thus vindicating the CP problem in a very physical way.
The BCS-Bogoliubov (BCS-B) microscopic statistical theory of superconductivity

[4,5] implies perfect eh symmetry in that 2e and 2h Cooper correlations occur in
equal proportions. This theory emerges [15] as a special case of the CBFM consisting
of CPs as explicit individual composite 2e and 2h bosons, kinematically independent
of each other, and of the unpaired electrons and holes, in a BF gas mixture that can
suHer a BEC (-like) transition at suMciently low temperatures.
The purpose of this paper is twofold: (a) to numerically exhibit within the CBFM

the phase diagram in the vicinity of the BCS-B state at T = Tc which turns out to
be surrounded by the normal (i.e., ideal, noninteracting BF) phase as well as three
superconducting BEC ones of which the two pure phases are higher-Tc ones; and
(b) to prove that BCS-B theory follows from the CBFM for perfect eh CP symmetry
in the limit of weak interaction, not only from the gap equation as shown in Ref. [15]
but also from the condensation energy and from at least two dimensionless universal
ratios.
To simplify the dynamical aspect of the problem we assume that both 2e- and

2h-CP condensed bosons together with the unpaired electrons and holes undergo the
elementary processes

(2e)cond � e + e ;

(2h)cond � h+ h ;
(1)

where (2e)cond and (2h)cond are the 2e- and 2h-CPs in their BE condensates. We
designate as crossed the two-fermion interaction (1) [6–10,13,15,16] present in these
reactions to distinguish it from the more familiar direct four-fermion interaction in the
electron–electron scattering reaction

e + e� e + e : (2)

The latter involves some Jxed inter-fermion potential as, e.g., in both Refs. [4,5]
where an electron–phonon mechanism is modeled by a separable potential with a cutoH
related to the Debye frequency. Such a dynamical coupling was recently seen [34] in
angle-resolved photoemission spectroscopy to strongly inFuence the electron dynamics
also in high-temperature cuprate superconductors. Ref. [6] refers to (1) as a “hybridiza-
tion” interaction, and appears to be the Jrst time it is used, but without 2h-CPs and
hence unrelated to BCS theory which the CBFM naturally includes as a special case;
Refs. [8,9] refer to (1) and (2) as the “s- and t-channel” interactions, respectively.

2. Complete boson–fermion model

The statistical CBFM was deJned [15] as consisting of unpaired electrons and holes
(as unpaired fermions) plus two diHerent kinds of kinematically independent 2e- and
2h-CP bosons which interact in a speciJc way with the unpaired fermions. A common
misconception is that CPs are not bosons because they are too extended in size, and
indeed overlap severely, as a result of which their creation and annihilation operators for
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Jxed momentum wavevectors k1 and k2 [or, alternatively, Jxed relative k ≡ 1
2 (k1−k2)

and total or center-of-mass K ≡ k1 + k2 wavevectors] are known not [35, p. 38]
to obey the usual Bose commutation relations. However, indeJnitely large occupa-
tion in a state of given K, needed to ensure the BE distribution in turn required for
BEC, indeed occurs (see Ref. [25, p. 181H]) for the objects whose energy E±(K) [see
(3)] depends only on K but not on k. For example, with the BCS model interaction
(Ref. [36, see esp. Fig. 1]) there will be, for any coupling and in the thermodynamic
limit, indeJnitely many values of the relative momenta k for a given K. Hence, CPs
thus formed do in fact obey the BE distribution.
The CBFM is described by H = H0 + Hint where the unperturbed Hamiltonian H0

corresponds to an ideal (i.e., noninteracting) gas mixture of fermions plus both types
of CPs, 2e and 2h, namely

H0 =
∑
k1 ; s1

�k1a
+
k1 ;s1ak1 ;s1 +

∑
K

E+(K)b+KbK −
∑
K

E−(K)c+KcK ; (3)

where a+k1 ;s1 =ak1 ;s1 are creation/annihilation operators for fermions and similarly b+K=bK
and c+K =cK for 2e- and 2h-CP bosons, respectively. Also, �k ≡ ˝2k2=2m are the elec-
tron while E±(K) are the 2e- and 2h-CP energies. The interaction Hamiltonian Hint
contains two-fermion/one-boson interaction vertices, each between unpaired electrons
(subindex +) [or holes (subindex −)] and the BE-condensed 2e- and 2h-CPs allowed
in the system of size L, namely

Hint = L−3=2
∑
k;K

f+(k){a+
k+1

2K;↑
a+
−k+1

2K;↓
bK + a−k+1

2K;↓
a
k+1

2K;↑
b+K}

+L−3=2
∑
k;K

f−(k){a+
k+1

2K;↑
a+
−k+1

2K;↓
c+K + a−k+1

2K;↓
a
k+1

2K;↑
cK} : (4)

Note that Hint is reminiscent of the FrRohlich (or Dirac QED) interaction Hamiltonian
involving two fermion and one boson operators—but with two types of CPs instead of
phonons (or photons). Just as these two interaction Hamiltonians are the most natural
ones to employ in a many-electron/phonon (or photon) system, one can conjecture
the same of (4) for the CBFM system under study. Indeed, it has already been used
by many authors [6–10,13,15,16]. In contrast with the FrRohlich or Dirac hamiltonians,
however, (4) does not conserve the number of individual electrons. The diHerent species
in the CBFM are all embedded in a uniform background of positive charge ensuring
charge neutrality, and which furnishes the usual screening of the Coulomb interactions
between species.
Following the Bogoliubov [37] recipe, exact in the thermodynamic limit, we allow

for a possible BEC of the 2e- and 2h-CP bosons with K= 0 by replacing everywhere
both creation and annihilation Bose operators b+0 ; b0 for 2e-CPs by the c-number

√
N0

(N0 being the number of BE-condensed 2e-CPs, i.e., with K = 0) and Bose operators
c+0 ; c0 for 2h-CPs by another c-number

√
M0 (M0 being the number of BE-condensed

2h-CPs also with K = 0). Note that this recipe goes beyond mean-Jeld theory since
one can show that the replacement implies no approximation provided one imposes the
conditions of thermodynamic equilibrium, (17) below.
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Neglecting interactions between unpaired electrons and excited or K �= 0 CP bosons,
but accounting fully as in Refs. [6–10,13,15,16] for interactions between condensed
bosons (with K = 0) and unpaired fermions, the relevant dynamical operator Ĥ − �N̂
is then approximately given by

Ĥ − �N̂ �
∑
k; s

[�k − �]a+k; sak; s

+ [E+(0)− 2�]N0 +
∑
K �=0

[E+(K)− 2�]b+KbK

+ [2� − E−(0)]M0 +
∑
K �=0

[2� − E−(K)]c+KcK

+
∑
k

[
√
n0f+(k) +

√
m0f−(k)](a+k↑a

+
−k↓ + a−k↓ak↑) : (5)

Here N̂ is the operator associated with the total number of fermions in the system,
including unpaired, i.e., individual as well as paired fermions, while n0 ≡ N0=L3 and
m0 ≡ M0=L3 are the number densities of condensed 2e- and 2h-CPs, respectively. For
the kinetic energies E±(K) of 2e- and 2h-CPs with momentum ˝K we assume the
quadratic dispersion relations E±(K)=E±(0)±˝2K2=4m as in Ref. [15]. The functions
f±(k) in (5) characterize the crossed interaction (1) between unpaired fermions and
BE-condensed CPs with K = 0; they are really the Fourier transforms of the internal
bound-state wavefunction of the extended composite bosonic CPs. If f±(�) are just
the functions f±(k) with k =

√
2m�=˝, we shall assume the steplike symmetric forms

f±(�) =

{
f for 1

2 [E±(0)− ��]¡�¡ 1
2 [E±(0) + ��] ;

0 otherwise ;
(6)

where f is a positive coupling constant that along with CP energies E±(0) may be
taken as the phenomenological parameters of the CBFM for arbitrary eh CP symmetry.
Since E±(0) are the 2e- and 2h-CP energies for K = 0, if E+(0)¿E−(0) we may
deJne the positive parameter

�� ≡ 1
2 [E+(0)− E−(0)] ; (7)

entering (6), so that the step-functions f±(�) are contiguous to each other in energy.
The case of overlapping step-functions, to be addressed elsewhere, is also interesting
as it generates a “pseudogap”. This gap emerges above the regular critical temperature
Tc but below a “depairing” temperature T ∗ a few times larger than Tc. Several recent
experiments (see, e.g., Ref. [38, and references therein]) suggest the pseudogap and the
ordinary superconducting gap to be merely diHerent aspects of the same phenomena.
We now deJne a phenomenological energy scale

Ef ≡ 1
4 [E+(0) + E−(0)] ; (8)
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not to be confused with the usual Fermi energy of an IFG

EF ≡ ˝2k2F=2m=
˝2
2m

(3�2n)2=3 ; (9)

in 3D, where kF is the Fermi wavenumber of the IFG of electrons, with fermion-number
density n ≡ N=L3 = k3F=3�

2 and L3 the system volume. Both Ef and EF coincide only
for perfect eh CP symmetry. The three parameters f, Ef and �� now become the main
phenomenological parameters of the CBFM. With (7) and (8) one has

E±(0) = 2Ef ± �� : (10)

In contrast to BCS-B theory, in the CBFM the energies E±(0) of “nonmoving” (i.e.,
K=0) CPs are not straightforwardly associated with the Fermi energy EF , nor with the
total fermion-number density n of the IFG ground state to which the interacting ground
state goes continuously in the limit of vanishing interaction. In the present generalized
theory which the CBFM in eHect is, the parameters E±(0) are completely independent
from the parameter EF which is determined by the total electron density n.
The dynamical operator (5) can be diagonalized exactly via the so-called

Bogoliubov–Valatin [39] transformation. The corresponding thermodynamic (or grand)
potential  ≡ −PL3 for the BF mixture with P its pressure, is

 (T; L3; �; N0; M0) =−kBT ln[Tr e−#(Ĥ−�N̂ )] ; (11)

where T is the absolute temperature, # ≡ 1=kBT , kB the Boltzmann constant, � the
fermionic chemical potential, and “Tr” stands for “trace”. (Note: in Ref. [15]  was
misnamed the Helmholtz free energy F , without aHecting any results.) Using (5) in
(11) we obtain

 (T; L3; �; N0; M0)=L3

=
∫ ∞

0
d�N (�)[�− � − E(�)]− 2kBT

∫ ∞

0
d�N (�) ln{1 + exp[− #E(�)]}

+ [E+(0)− 2�]n0 + kBT
∫ ∞

0
d$M ($) ln{1− exp[− #E+($)]}

+ [2� − E−(0)]m0 + kBT
∫ ∞

0
d$M ($) ln{1− exp[− #E−($)]} ; (12)

where

N (�) ≡ m3=2

21=2�2˝3
√
�; M ($) ≡ 2m3=2

�2˝3
√
$ (13)

are the (one-spin) fermion and boson density of states at energies � = ˝2k2=2m and
$= ˝2K2=4m, respectively. Also, the 2e- and 2h-boson energies E+($) and E−($) are
deJned through

E+(K)− 2� = $+ E+(0)− 2� ≡ E+($) ;

2� + E−(K) = $+ 2� − E−(0) ≡ E−($) : (14)
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The fermion energy spectrum E(�) is gapped by an amount %(�), i.e.,

E(�) =
√

(�− �)2 + %2(�) ; (15)

%(�) ≡ √
n0f+(�) +

√
m0f−(�) : (16)

This last expression for the gap %(�) implies a very simple T -dependence rooted in the
two-electron n0 and two-hole m0 number densities of BE-condensed bosons, namely,
%(T ) =

√
n0(T )f+(�) +

√
m0(T )f−(�).

Minimizing  (T; L3; �; N0; M0) with respect to N0 and M0, and simultaneously Jxing
the total number N of electrons instead of its chemical potential �, an equilibrium state
of the system with volume L3 and temperature T was characterized [15] by requiring
that

@ 
@N0

= 0;
@ 
@M0

= 0; as well as
@ 
@�

=−N ; (17)

where N includes paired as well as unpaired fermions. After some algebra the three
coupled transcendental equations (7)–(9) of Ref. [15] that determine n0 and m0 as well
as �, all as functions of temperature T and total electron density n ≡ N=L3, followed.
Simultaneous solution of those equations yields the thermodynamic functions

n0 = n0(T; �; n); m0 = m0(T; �; n); � = �(T; n) : (18)

Note that in Ref. [15] numerical calculations dealt only with the very special cases
when either n0 = m0 (perfect eh CP symmetry) or when m0 = 0 (no 2h-CPs present).
The pressure P, entropy S and speciJc heat at constant volume C of an equilibrium

state characterized by T and n are then given by

P(T; n) =− =L3; S(T; n)=L3 =−kB @
@T

( =L3) ; (19)

C(T; n)=L3 = T
@
@T

[S(T; n)=L3] ; (20)

all evaluated at Jxed n0(T; �; n), m0(T; �; n) and �(T; n). The Helmholtz free energy
F(T; L3; N ) ≡  + �N then follows from

F(T; n)=L3 =−P(T; n) + n �(T; n) (21)

and the critical magnetic Jeld is

H 2
c (T; n)=8�≡ Fn(T; n)=L3 − Fs(T; n)=L3

= Ps(T; n)− Pn(T; n) + [�n(T; n)− �s(T; n)]n (22)

with subindices s and n meaning “superconducting” and “normal” states.
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3. BCS-B theory

As shown in Ref. [15] the equation for the fermionic energy gap %(�), or %(T ), of
BCS-B theory—which has heretofore been strenuously proHered [40] as not being a
BEC theory—follows from the CBFM for perfect eh CP symmetry and for a speci9c
value of chemical potential, namely � = Ef � EF . In this section we recall how the
BCS-B energy gap equation follows exactly from the new theory, and in the Appendix
we show that the so-called “condensation energy” in the CBFM coincides with the
familiar BCS-B expression in the weak-coupling limit. These two results, together
with a later result dealing with dimensionless universal ratios, will completely justify
the new statistical CBFM as a generalized BCS-B theory of superconductivity—which
also reduces to several other theories as mentioned in the Introduction above.
Eqs. (7) and (8) of Ref. [15] were shown to coincide if n0(T ) =m0(T ) (perfect eh

CP symmetry), and to yield the gap equation of BCS-B theory provided that we set

� = Ef ≡ 1
4 [E+(0) + E−(0)] : (23)

Besides, let

N (�) = N (�) for � − ��¡ �¡� + �� ; (24)

provided that ����, which allows the true electron density of states N (�) in (12) to be
replaced by the constant N (�) in the narrow energy interval about �. This introduces
a convenient symmetry between electron- and hole-CPs in the vicinity of �= �. From
(10) and (23) we have

E+(0)− 2� = 2 � − E−(0) = �� : (25)

Now (6) and (16) yield

%(�) =




√
n0f for �¡�¡� + �� ;

√
m0f for � − ��¡ �¡� ;

0 otherwise :

(26)

Consequently, the 2e- and 2h-CP boson energies in (14) are really identical, namely

E+($) = E−($) = $+ �� : (27)

If m0=n0 (perfect eh CP symmetry) and in view of (23), Eqs. (7) and (8) of Ref. [15]
coincide and on introducing ) ≡ � − � become the gap equation of ordinary BCS-B
theory. Also, since m0 = n0 the Jrst two terms of (9) of Ref. [15] cancel and since
E+($) = E−($) so do the last two terms on the lhs as they are contributions from
both 2e- and 2h-CPs with K �= 0, so that (9) in Ref. [15] reduces to (15) there. For
weak coupling one may further neglect % as a small correction, and restoring the full
electron density of states N (�) in (15) of Ref. [15] yields the exact IFG relation (9)
so that one may put �=EF as assumed in BCS-B theory. Then we can simply replace
(15) in Ref. [15] by (9). Eq. (14) of Ref. [15] then becomes the fundamental BCS-B
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energy gap equation (3.27) in Ref. [4], if we deJne

f2

2��
≡ V; �� ≡ ˝!D ; (28)

where V is the BCS model interaction strength and !D is the Debye frequency. The gap
equation was obtained in the original BCS theory from a physically inspired variational
trial many-electron wave function. We see here that it is, in fact, the equation for
thermodynamic phase equilibria in the BF system, or, the equation for determining
the equilibrium number densities n0(T ) = m0(T ) of BE-condensed bosons for perfect
eh CP symmetry, since now from (6), (16) and (26)

%(T ) = f
√
n0(T ) = f

√
m0(T ) : (29)

This relation is evidently what links ordinary BCS-B and BEC theories. Their critical
temperature Tc will thus be the same since in BCS-B theory it is the temperature below
which the fermionic gap opens, while in BEC it is that below which a Bose condensate
appears.
The fundamental equation for the energy gap at T=0 is then easily integrated exactly

to give

%(0) ≡ %=
��

sinh(1=-)
→
-→0

2�� exp(−1=-) ; (30)

where the dimensionless coupling parameter - is

- ≡ f2N (EF)
2��

(31)

and where the last term in (30) is the weak-coupling limit. This is the familiar BCS-B
theory result if as before we put ��= ˝!D and -= VN (EF).

4. Phase diagram of the CBFM

In numerical calculations we refer fermion energies and chemical potential to the
phenomenological energy Ef deJned in (8), and use this as the unit of all energies.
For temperatures we use the unit Tf ≡ Ef=kB. For both condensate densities we used
the unit nf0 = mf0 ≡ E2

f=f
2, but for the total electron density n it is convenient to

use another unit nf = (2mEf)3=2=3�2˝3. We deJne a dimensionless crossed-interaction
strength G (between two unpaired electrons and each of the two kinds of zero-K CPs)
and a dimensionless energy-shell halfwidth de, by

G ≡ f2m3=2=25=2�2˝3E1=2
f and de ≡ ��=Ef : (32)

To qualitatively illustrate the consequences of the generalized theory we Jx these two
dynamical parameters at G=10−4 and de=10−3, which by (28), (31) and (32) imply
BCS interaction-model parameters -=1=5 and ˝!D=EF=10−3. For the constant volume
speciJc heat we use the unit Cf=kBm3=2E3=2

f =�2˝3, and for pressure P and free energy
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Fig. 1. Phase diagram with superconducting critical temperatures Tcs+, Tcs−, Tcss+, and Tcss− as deJned in
text, as functions of Un ≡ n=nf − 1 with n the total electron density and nf deJned just above (32), in
the vicinity of the density n = nc � nf (see text) corresponding to BCS-B theory. Large circle contains
intersection with value (34).

per unit volume F=L3 the unit Pf ≡ Ff=L3 ≡ 21=2m3=2E5=2
f =�2˝3. Finally, for the critical

superconducting magnetic Jeld Hc the unit Hf ≡ m3=4E5=4
f =21=4�˝3=2 is employed.

The coupled equations (7)–(9) of Ref. [15] were obtained by minimizing  over
condensate densities n0, m0, and are valid at internal points (n0¿ 0; m0¿ 0) of the full
physical domain n0¿ 0; m0¿ 0 deJned by the quadrant with mutually perpendicular
axes n0 and m0. If parameters n and T are such that  is really a minimum, then at
these values of n and T we have the solution for a true superconducting phase with
a mixed condensate consisting of both kinds of zero-K CPs in varying proportions;
we designate this phase by the symbol ss. However, the minimum of  might lie on
the boundary of said quadrant, at: (a) n0 �= 0; m0 = 0, or (b) n0 = 0, m0 �= 0, or
the single point (c) n0 = 0, m0 = 0. In such cases (7) and (8) of Ref. [15] become
degenerate. In case (a) we omit (8) of Ref. [15] and put m0 = 0 in (7) and (9) of
Ref. [15]. In case (b) we omit (7) of Ref. [15] and put n0 = 0 in (8) and (9) of
Ref. [15]. In case (c) we need omit both (7) and (8) of Ref. [15] and put n0 = 0,
m0 = 0 in (9) of Ref. [15]. These degenerate cases correspond to diHerent equilibrium
phases of the CBFM system. When at given (T; n) we have either case (a) or (b) we
deal with solutions with a pure-condensate phase consisting of either 2e- or 2h-CPs;
we designate these phases by the symbol s. Finally, when at given (T; n) case (c) holds,
one has the normal phase solution with no condensate whatsoever; it is designated by
the symbol n.
On the temperature/eh-CP-symmetry phase plane (T;Un) in the vicinity correspond-

ing to BCS-B theory, numerical calculations suggest a complex diagram with four
diHerent possible equilibrium phases as illustrated in Fig. 1, where Un ≡ n=nf− 1 and
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equals 0 for perfect eh CP symmetry where Tf=TF . The curve labeled Tcs+ ending on
the abscissa at, say, Uncs+ is the critical temperature of the 2e-CP-condensate phase s
which lies below it. The curve Tcs− ending on the abscissa at Uncs− is the critical tem-
perature of the 2h-CP-condensate phase s which lies below it. These curves intersect
at n=nc (large circle in Jgure) and provide our formal de9nition of nc. The region in
the (T;Un) plane above both curves Tcs+ and Tcs− corresponds to the normal phase
consisting of an ideal BF gas. The region lying below the curves Tcss+ and Tcss− and
ending on the abscissa at, say, Uncss+ and Uncss− corresponds to a mixed-condensate
phase ss consisting of both 2e- and 2h-CPs. We Jnd

Unc =−0:467× 10−9 ;

Uncs+ =−0:955× 10−5; Uncs− = 0:954× 10−5 ;

Uncss+ =−0:215× 10−4; Uncss− = 0:215× 10−4 : (33)

Thus, for the relatively small values of G and de being used we neglect hence-
forth the diHerence between nc and nf as it is negligible for such weak two-fermion,
crossed-interaction coupling, and simply put nc = nf. At the precise intersection (large
circle in Jgure) where ordinary BCS-B theory applies, the critical temperature is the
extremely small value

TBCS-Bc =TF = 7:64× 10−6 (34)

though larger (and empirically more realistic) values are expected for larger values of
G. This value is consistent with that obtained directly from the BCS Tc weak-coupling
formula kBTc � 1:134˝!D exp(−1=-) for -= 1=5.
A major result of this paper is that both 2e- (s+) or 2h-CP (s−) phase boundary

curves rise in temperature as one departs from perfect eh symmetry and can yield
substantially higher Tc’s than the mixed-condensate (ss) phase, for moderate departures
from perfect eh CP symmetry. A second major result is that 2h-CP BEC Tc=TF values
are consistently higher (for equivalent departures from perfect eh CP symmetry) than
2e-CP ones, suggesting that “hole superconductors” in 3D have higher Tc=TF values
as observed [28,29]. This is because the factor Tf=TF (needed to convert the phase
boundary curves of Fig. 1 to refer to Tc=TF instead of to Tc=Tf) is greater (less) than
unity for Un ≡ n=nf − 1¡ (¿)0.
In Fig. 2 the Helmholtz free energy F calculated numerically as function of T is

shown for Un = 0 (top) and Un = ±10−5 (bottom). DiHerent phases are labelled as
ss, s, n as explained before. For BCS-B theory (Un= 0, top) as T is lowered below
TBCS-Bc the BCS-B ss phase separates out (or bifurcates) from the normal phase n,
keeping below it as thermodynamically more stable. Besides this, at the same criti-
cal temperature TBCS-Bc two additional coincident metastable phases s bifurcate from
the normal phase n and lie between the ss and n phases. The BCS-B ss phase cor-
responds to a half-and-half mixture of condensed 2e- and 2h-CPs; an s phase has
a pure condensate with 100% 2e-CPs or 100% 2h-CPs. So, in contrast to ordinary
BCS-B the generalized theory gives not only the ss (stable) phase but also these two
new metastable s phases, s+ and s−, with the same critical temperature TBCS-Bc of
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Fig. 2. Helmholtz free energy F as function of temperature T for Un ≡ n=nf − 1 = 0 (top) and for
Un =±10−5 (bottom). Open circles denote bifurcation points as discussed in text.

the BCS-B phase. In Fig. 2 (bottom) we also show how the phase picture changes
as one changes Un from 0 to ±10−5 (with numerical calculations suggesting quite
good symmetry of results at ±Un). We now have three critical temperatures Tcs1, Tcss,
and Tcs2 (the latter not shown in Jgure). At the temperature Tcs1 the superconduct-
ing phase s1 (with a pure condensate of 100% 2e-CPs when n=nf ¿ 1, or of 100%
2h-CPs when n=nf ¡ 1) bifurcates from the normal phase n. On lowering T another
phase transition occurs, at critical temperature Tcss, when the mixed ss phase (with
condensate consisting of a roughly half-and-half mixture of condensed 2e- and 2h-CPs
at n=nf ≈ 1) bifurcates from the phase s1. In the temperature range Tcss6T6Tcs1
the true stable state is the phase s1, but it becomes metastable below Tcss. At T6Tcss
and down to T = 0 the stable state is the ss phase. A second (much more unstable)
phase s2 (with its condensate, in contrast with the Jrst phase s1, consisting either of
100% 2h-CPs with n=nc ¿ 1 or of 100% 2e-CPs when n=nc ¡ 1) bifurcates at some
lower critical temperature Tcs2¡Tcss from the normal n phase but is not shown in the
Jgure.
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Fig. 3 shows numerical curves for the constant volume speciJc heat C as func-
tion of T . At Un = 0 when BCS-B theory is valid, both s and ss phases have the
same critical temperature Tcss=TF = Tcs=TF = TBCS-Bc =TF given by (34), at which the
speciJc heat suHers a jump discontinuity. If Cn(Tc) is the normal phase speciJc heat
at the critical temperature Tc, numerically we Jnd the dimensionless universal ratio
UC(Tc)=Cn(Tc) = 1:429 for phase ss and 0:404 for phase s, which compares with the
BCS-B result of 12=7/(3) � 1:43, where /(3) � 1:202 is the Riemann Zeta func-
tion of order 3. The speciJc heat for the ss phase is larger than for the s phase just
below Tc, but the opposite is true at lower temperatures. For Un = ±10−5 we have
two critical temperatures Tcs=Tf = 1:10× 10−5 and Tcss=Tf = 5:92× 10−6 and we Jnd
UC(Tc)=Cn(Tc) = 0:839 for the ss phase and 0:587 for the s phase.
Numerically calculated curves for the free energy F , pressure P, entropy S, speciJc

heat C and critical magnetic Jeld Hc, each coincide at ±Un. So these quantities are
(approximately) symmetric functions of Un for small Un. Also, condensate densities
satisfy the relation

n0(Un) = m0(−Un) (35)
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for small Un. However, the chemical potential �=�c − 1 is an antisymmetric function
of Un, for small Un. Here �c is the value of chemical potential at the point where all
phase-boundary curves intersect each other (large circle in Fig. 1).
Figs. 4 and 5 illustrate numerical solution of Eqs. (7)–(9) of Ref. [15] at Un=−10−5.

Chemical potentials � as function of temperature T are shown in Fig. 4. The critical
temperature for phase s is Tcs=Tf = 1:10 × 10−5 while for phase ss it is Tcss=Tf =
5:92 × 10−6. In Fig. 5 are displayed condensate densities n0 and m0 of 2e-CPs and
2h-CPs, respectively, for phases s and ss. We see that for temperatures Tcss ¡T ¡Tcs
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there exist only 2h-CPs (m0 =m0s), but at lower temperatures 0¡T ¡Tcss the 2h-CPs
phase s becomes metastable. In the region 0¡T ¡Tcss there appears the mixed phase
ss with condensate consisting of both 2e-CPs (n0 =n0ss) and 2h-CPs (m0 =m0ss), thick
curves. Thus, above Tcss the mixed 2e- and 2h-CPs-condensate disappears (in Fig. 5,
n0ss = 0) but the 2h-CPs-condensate survives (in Fig. 5, m0ss �= 0 at T = Tcss). The
mixed 2e- and 2h-CP condensate of the pure ss phase evolves smoothly into the pure
2h-CP condensate s phase.
In Fig. 6 are displayed numerically calculated curves for the reduced fermion energy

gap %(T )=%(0) as function of reduced temperature T=Tc for BCS-B theory, i.e., at
Un=0, where Tcss=TF=Tcs=TF=TBCS-Bc =TF is given by (34). The thick curve marked ss
numerically coincides with the BCS-B %(T ) curve [41]. For the dimensionless gap-to-Tc
universal ratio in the generalized theory we obtain 2%(0)=kBTc = 3:528 for phase ss
and 2:385 for phase s, as compared with the ordinary BCS-B value of 2�=e0 � 3:528
where 0 � 0:57722 is the Euler constant. At Un �= 0 we have in general two diHerent
fermionic energy gaps, according to (16), for phase ss, associated with electrons and
holes, respectively. For phase s we have only one (either electron or hole) fermionic
energy gap.
Lastly, Fig. 7 shows calculated curves for the critical magnetic Jeld for both

ss and s phases at Un = 0, the dimensionless reduced critical magnetic Jeld being
deJned by

hc

(
T
Tc

)
≡ Hc(T )
Hc(0)

−
[
1−

(
T
Tc

)2
]
: (36)

5. Conclusions

A complete (in the sense that two-hole Cooper pairs are not neglected) boson–
fermion statistical model (CBFM) that constitute a generalized semi-phenom-
enological BCS-B microscopic theory of superconductivity leading to higher Tc’s was
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presented that contrasts with BCS-B theory in that besides temperature T there is
a second crucial theoretical parameter describing arbitrary eh CP symmetry, namely
Un ≡ n=nf − 1(� n=nc − 1) where −1¡Un¡∞. This parameter is exactly zero
for perfect eh CP symmetry as in BCS-B theory, where nc � nf is a certain critical
value of n, the fermion-number density. Actually tuning a similar parameter in the
normal state has become possible through very recent experiments [29] using the
“Jeld-eHect transistor” technique of injecting holes in a material.
Ref. [15] showed that ordinary BCS-B theory holds in a very narrow region of den-

sity and weak unpaired-fermion=condensed-CP (two-fermion crossed) interaction for a
BF mixture of pure 2e-CPs plus unpaired electrons. Such a weak coupling corresponds,
e.g., to weak electron–phonon (four-fermion direct) coupling. In this paper we extracted
BCS-B theory from the CBFM and showed it to be a BF system of 2e- and 2h-CPs
(in a half-and-half proportion) plus unpaired electrons, for weak crossed interaction.
In the CBFM the familiar BCS-B fermionic energy gap expression takes on deJnite
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thermodynamic meaning as the equation of phase equilibrium of condensed CPs in a
half-and-half CP mixture (m0 = n0) plus unpaired fermions.
As tedious numerical calculation shows, the detailed character of the diHerences

between the CBFM and BCS-B theory depends on whether the interaction-strengths
(6) overlap with each other or not, and also whether they have a rectangular form or
not (as, e.g., a trapezoidal form). The case of overlapping step-functions admits an
alternate explanation of the peculiar empirical behavior of the fermionic energy gap in
some superconductors referred to as the “pseudogap”.
Finally and most importantly, it has been shown that in the CBFM both 2e- (s+) or

2h-CP (s−) phase boundary curves rise in temperature as one departs from perfect eh
symmetry and can predict substantially higher Tc’s than BCS-B theory for moderate
such departures. Although the CBFM reproduces all essential results of BCS-B theory
for perfect eh symmetry in the asymptotic limit of weak interaction, it still appears
to require additional self-consistency conditions linking the BCS-B theory zero-K CP
energies E±(0) in (6) with the fermionic energy gap %, a matter that is beginning to
be addressed elsewhere [33].
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Appendix A

To determine the condensation energy in the CBFM consider the ground-state energy.
The Helmholtz free energy F of the equilibrium mixture system is

F ≡ E − TS =  + �N ; (A.1)

where  is the thermodynamic potential (11). At T=0 the free energy F gives exactly
the ground-state energy E of the system. In the case of BCS-B theory �n = �s = EF ,
and at T = 0 from (12) with n0 = m0 the condensation energy per unit volume is

Es − En
L3

= 2��n0 − 2N (EF)
∫ ��

0
d)(

√
)2 + %2 − )) ; (A.2)

where ) ≡ � − EF and (25) was used. SigniJcantly, this is di>erent from the original
BCS theory expressions (2.41) and (2.43) of Ref. [4], namely

Es − En
L3

= 2N (EF)
∫ ˝!D

0
d)

(
)− )2

)2 + %2

)
− %2

V
→
-→0

− 1
2
N (EF)%2 ; (A.3)
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but in the limit -→ 0 (A.2) gives precisely this BCS theory result, as we now show.
The integral in (A.2) yields

1
2
��
√
��2 + %2 − ��2

2
− 1

2
%2 ln

%

��+
√
��2 + %2

= − 1
2
%2 ln

(
%
2��

)
+

1
4
%2 + o(%2) : (A.4)

Since from (29) n0 = %2=f2, Eq. (A.2) then becomes

Es − En
L3

=−N (EF)%2 ln
(
%
2��

)
− 1

2
N (EF)%2 + 2

��
f2 %

2 + o(%2) : (A.5)

The Jrst and the third terms on the rhs exactly cancel each other if (30) and (31) are
used, and we Jnally obtain

Es − En
L3

→
-→0

− 1
2 N (EF)%

2 ; (A.6)

the familiar BCS theory result (A.3) if as before one identiJes ��=˝!D and -=VN (EF).
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